,"Introduction to Stochastic Analysis" Problem Sheet 11

Please hand in your solutions before 12 noon on Tuesday, January 8th, 2019.

We wish you a merry christmas and a happy new year 2019!

1. (Quadratic variation of Itô integrals). Suppose that $X:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function with continuous quadratic variation $[X]$ w.r.t. a fixed sequence $\left(\pi_{n}\right)$ of partitions s.t. $\operatorname{mesh}\left(\pi_{n}\right) \rightarrow 0$.
a) Let $F \in C^{1}(\mathbb{R})$. Show that the quadratic variation of $t \mapsto F\left(X_{t}\right)$ along $\left(\pi_{n}\right)$ is given by

$$
[F(X)]_{t}=\int_{0}^{t} F^{\prime}\left(X_{s}\right)^{2} d[X]_{s}
$$

b) Conclude that for $f \in C^{1}(\mathbb{R})$, the Itô integral $I_{t}=\int_{0}^{t} f\left(X_{s}\right) d X_{s}$ has quadratic variation

$$
[I(f)]_{t}=\int_{0}^{t} f\left(X_{s}\right)^{2} d[X]_{s}
$$

2. (Complex-valued Brownian motion). A complex-valued Brownian motion is given by $B_{t}=B_{t}^{1}+i B_{t}^{2}$ with independent one-dimensional Brownian motions B^{1} and B^{2}.
a) Prove that for any holomorphic function F,

$$
F\left(B_{t}\right)=F\left(B_{0}\right)+\int_{0}^{t} F^{\prime}\left(B_{s}\right) d B_{s}
$$

where F^{\prime} denotes the complex derivative of F.
Hint: Use the Cauchy-Riemann equations.
b) Solve the complex-valued $\operatorname{SDE} \quad d Z_{t}=\alpha Z_{t} d B_{t}, \quad \alpha \in \mathbb{C}$.
3. (Heat equation on an interval). Let $V:(a, b) \rightarrow[0, \infty)$ be continuous and bounded, and suppose that $u \in C^{1,2}([0, \infty) \times(a, b))(-\infty<a<b<\infty)$ is an up to the boundary continuous and bounded solution of the heat equation

$$
\frac{\partial u}{\partial t}(t, x)=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}(t, x)-V(x) u(t, x)
$$

with initial and boundary conditions

$$
u(0, x)=f(x), \quad u(t, a)=h(t), \quad u(t, b)=k(t)
$$

By considering an appropriate martingale show that

$$
\begin{aligned}
u(t, x)= & \mathbb{E}_{x}\left[f\left(B_{t}\right) \exp \left(-\int_{0}^{t} V\left(B_{s}\right) d s\right) ; t \leq T_{a} \wedge T_{b}\right] \\
& +\mathbb{E}_{x}\left[h\left(t-T_{a}\right) \exp \left(-\int_{0}^{T_{a}} V\left(B_{s}\right) d s\right) ; T_{a}<t \wedge T_{b}\right] \\
& +\mathbb{E}_{x}\left[k\left(t-T_{b}\right) \exp \left(-\int_{0}^{T_{b}} V\left(B_{s}\right) d s\right) ; T_{b}<t \wedge T_{a}\right] .
\end{aligned}
$$

4. (Local time of Brownian motion). What happens if we try to apply Itô's formula to $g\left(B_{t}\right)$ when $\left(B_{t}\right)_{t \geq 0}$ is a one dimensional Brownian motion and $g(x)=|x|$?
Since g is not differentiable at 0 , we consider the smooth approximations

$$
g_{\epsilon}(x):=\left\{\begin{array}{ll}
|x| & \text { if }|x| \geq \epsilon, \\
\frac{1}{2}\left(\epsilon+\frac{x^{2}}{\epsilon}\right) & \text { if }|x|<\epsilon,
\end{array} \quad \text { where } \epsilon>0 .\right.
$$

a) Show that almost surely,

$$
g_{\epsilon}\left(B_{t}\right)=g_{\epsilon}\left(B_{0}\right)+\int_{0}^{t} g_{\epsilon}^{\prime}\left(B_{s}\right) d B_{s}+\frac{1}{2 \epsilon} \lambda\left[\left\{s \in[0, t]: B_{s} \in(-\epsilon, \epsilon)\right\}\right] .
$$

b) Prove that as $\epsilon \rightarrow 0$,

$$
\int_{0}^{t} g_{\epsilon}^{\prime}\left(B_{s}\right) \mathbb{1}_{(-\epsilon, \epsilon)}\left(B_{s}\right) d B_{s} \rightarrow 0
$$

in an appropriate sense to be specified.
c) Conclude that almost surely,

$$
\begin{equation*}
\left|B_{t}\right|=\left|B_{0}\right|+\int_{0}^{t} \operatorname{sign}\left(B_{s}\right) d B_{s}+L_{t} \tag{1}
\end{equation*}
$$

where we set $\operatorname{sign}(x):=-1$ for $x \leq 0(!)$ and $\operatorname{sign}(x):=+1$ for $x>0$, and

$$
L_{t}=\lim _{\epsilon \downarrow 0} \frac{1}{2 \epsilon} \lambda\left[\left\{s \in[0, t]: B_{s} \in(-\epsilon, \epsilon)\right\}\right] .
$$

The process L_{t} is called the local time for Brownian motion at 0 .

