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Please hand in your solutions before 12 noon on Tuesday, December 18.

1. (Variation of constants). Solve the stochastic differential equation

dYt = r dt+ αYt dBt

for a one-dimensional Brownian motion (Bt) and constants r, α ∈ R.

Hint: Consider first the case r = 0, then try a variation of constants ansatz.

2. (Recurrence and transience of Brownian motion).

a) Show that for a Brownian motion (Bt) in R2, every non-empty open ball D is recur-
rent, i.e.,

P[∀ t ≥ 0 ∃ s ≥ t : Bs ∈ D] = 1.

b) Conclude that a typical Brownian trajectory is dense in R2.

c) Conversely, show that for d ≥ 3, every ball in Rd is transient for Brownian motion,
i.e., |Bt| → ∞ almost surely as t→∞.

3. (Itô diffusions). Let (Xt,Px) be a solution of the SDE

dXt = b(Xt) dt + dBt , X0 = x Px–a.s.,

where (Bt) is a one-dimensional Brownian motion and b ∈ Cb(R). Prove that:

a) Under Px, (Xt) solves the time-dependent martingale problem for the generator
L = 1

2
d2

dx2
+ b(x) d

dx
, i.e., for every u ∈ C2(R),

Mt := u(t,Xt)− u(0, X0)−
∫ t

0

(
∂u

∂s
+ Lu

)
(s,Xs) ds

is a local martingale.

b) Kolmogorov’s forward equation holds, i.e.,

Ex[f(Xt)] = f(x) +

∫ t

0

Ex[Lf(Xs)] ds ∀ f ∈ C2
b (R).
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c) µt[A] := Px[Xt ∈ A] is a solution of ∂µt
∂t

= L∗µt in the distributional sense, i.e.,

∂

∂t

∫
f dµt =

∫
Lf dµt ∀ f ∈ C2

b (R) .

d) The function u(t, x) = Ex[f(Xt)], f ∈ Cb(R), is the unique bounded solution of

∂u

∂t
= Lu , u(0, x) = f(x) .

(You may assume without proof the existence of a solution u ∈ C2
b , so you only have

to prove that such a solution has the stochastic representation stated above)
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