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The exercises on this page will be discussed in the tutorials during the first
week (i.e., between wednesday and monday). You are encouraged to study

them in advance but you do not have to submit written solutions.

1. (Revision of conditional expectations 1). Let (Ω,A,P) be a probability space,
F ⊂ A a σ-algebra, and X : Ω→ R+ a non-negative random variable.

a) Define the conditional expectation E[X|F ].

b) Suppose that there exists a decomposition of Ω into disjoint sets A1, . . . An such that
F = σ({A1, . . . , An}). Show that

E[X|F ] =
∑

i:P[Ai]>0
E[X|Ai] 1Ai

is a version of the conditional expectation of X given F .

2. (Revision of conditional expectations 2). Let X, Y : Ω → R+ be non-negative
random variables. Show that P-almost surely, the following identities hold:

a) For λ ∈ R we have E[λX + Y |F ] = λE[X|F ] + E[Y |F ].

b) E[E[X|F ]] = E[X] and |E[X|F ]| ≤ E[|X| |F ].

c) If σ(X) is independent of F , then E[X|F ] = E[X].

d) Let (S,S) and (T, T ) be measurable spaces. If Y : Ω→ S is F -measurable, X : Ω→
T is independent of F and f : S × T → [0,∞) is product-measurable, then

E[f(Y,X)|F ](ω) = E[f(Y (ω), X)] for P-almost every ω ∈ Ω.

3. (Revision of conditional expectations 3). Let X, Y, Z be random variables on a
joint probability space (Ω,A,P). We define

E[X|Y ] := E[X|σ(Y )].

Show the following statements:

a) If X, Y ∈ L1 are independent and identically distributed, then P-almost surely,

E[X|X + Y ] =
1

2
(X + Y ).

b) If Z is independent of the pair (X, Y ), then P-almost surely,

E[X|Y, Z] = E[X|Y ].

Is this statement still true if we only assume that X and Z are independent?
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Please hand in your solutions before 1 pm on Tuesday, October 16,
into the marked pigeonholes opposite to the maths library.

1. (Conditional expectations). Let (Ω,A,P) be a probability space, G ⊆ A a σ-
algebra, and let X, Y, Z be random variables on (Ω,A,P).

a) For A ∈ A, consider the event B = {P[A|G] = 0}. Show that B ⊂ Ac a.s.

b) Suppose that the random variables (X,Z) and (Y, Z) have the same law (in particular
X and Y have common law µ). Show that, if f is a non-negative function then

E[f(X)|Z] = E[f(Y )|Z] a.s.

c) Let g : R → R+ be measurable. Suppose that P-almost surely, E[g(Z)|X] = h1(X)
and E[g(Z)|Y ] = h2(X). Show that h1 = h2 µ-a.s.

2. (Gaussian martingales). A process (Mn)n=0,1,2,... is called Gaussian if for every n,
the vector (M0, . . . ,Mn) is normally distributed. Let (Mn) be a Gaussian martingale.

a) Show that (Mn) has independent increments, i.e., the random variable Mn+1 −Mn

is independent of the σ-algebra Fn = σ(M0, . . . ,Mn).

b) We set σ2
0 = Var(M0) and σ2

k = Var(Mk−Mk−1) for k ≥ 1. Compute the predictable
increasing process 〈M〉n in the Doob decomposition of the submartingale (M2

n).

c) Show that for every θ ∈ R, Zθ
n = eθMn−

1
2
θ2〈M〉n is a martingale. Does it converge a.s.?

3. (Martingales, supermartingales and stopping times).

a) Let (Xn) be a supermartingale s.t. E[Xn] is constant. Show that (Xn) is a martingale.

b) Let (Xn) be an integrable process adapted to the filtration (Fn). Show that (Xn) is
a martingale if and only if E[XT ] = E[X0] for every bounded (Fn) stopping time T .

4. (Noisy observations). Let X ∼ N (0, σ2) and Zn ∼ N (0, c2n) (n ∈ N) be independent
random variables with standard deviations σ, cn > 0. Suppose that Yn = X + Zn, and let

X̂n = E[X|Gn] where Gn = σ(Y1, . . . , Yn).

a) Determine the law of the vector (X, Y1, . . . , Yn).

b) Show that for every y ∈ Rn, the conditional law of X given (Y1, . . . , Yn) = y is
Gaussian, and compute its mean and variance.

c) Compute X̂n and E[(X − X̂n)2].

d) Show that X̂n → X in L2 as n→∞ if and only if
∑∞

n=1 c
−2
n =∞.

Hint: Show first that for any a ∈ Rd and any positive definite (symmetric) d× d matrix C,

(C + σ2a aT )−1 = C−1 − C−1a aTC−1

σ−2 + 〈C−1a, a〉
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