

Introduction to Stochastic Analysis, Problem sheet 9 Please hand in your solutions before Tuesday 12.1., 12 am. We wish you a merry christmas and a happy new year !

1. (Solutions of SDE). Let (B_t) be a one-dimensional Brownian motion with $B_0 = 0$. Show that the following processes solve the corresponding stochastic differential equations:

a) $X_t = B_t/(1+t)$ solves

$$dX_t = -(1+t)^{-1}X_t dt + (1+t)^{-1} dB_t, \qquad X_0 = 0.$$

b) $X_t = \sin(B_t)$ solves

$$dX_t = -\frac{1}{2}X_t \, dt + \sqrt{1 - X_t^2} \, dB_t \,, \qquad X_0 = 0 \,,$$

for $t < \inf \{s > 0 : B_s \notin [-\pi/2, \pi/2] \}.$

c) $(X_t, Y_t) = (t, e^t B_t)$ solves

$$\begin{bmatrix} dX_t \\ dY_t \end{bmatrix} = \begin{bmatrix} 1 \\ Y_t \end{bmatrix} dt + \begin{bmatrix} 0 \\ e^{X_t} \end{bmatrix} dB_t, \qquad \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

d) $(X_t, Y_t) = (\cosh(B_t), \sinh(B_t))$ solves

$$\begin{bmatrix} dX_t \\ dY_t \end{bmatrix} = \frac{1}{2} \begin{bmatrix} X_t \\ Y_t \end{bmatrix} dt + \begin{bmatrix} Y_t \\ X_t \end{bmatrix} dB_t, \qquad \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

e) For $x \ge 0, X_t = (x^{1/3} + \frac{1}{3}B_t)^3$ solves

$$dX_t = \frac{1}{3} X_t^{1/3} dt + X_t^{2/3} dB_t, \qquad X_0 = x$$

Is the solution of this SDE unique?

2. (Martingales of Brownian motion). Let (B_t) be a one-dimensional Brownian motion with $B_0 = 0$. Show that the following processes are martingales:

a)
$$X_t = e^{\frac{1}{2}t}\cos(B_t)$$
, b) $X_t = e^{\frac{1}{2}t}\sin(B_t)$, c) $X_t = (B_t + t)\exp(-B_t - \frac{1}{2}t)$.

3. (Variation of constants). Solve the stochastic differential equation

$$dY_t = r \, dt + \alpha \, Y_t \, dB_t$$

for a one-dimensional Brownian motion (B_t) and constants $r, \alpha \in \mathbb{R}$. Hint: Consider first the case r = 0, then try a variation of constants ansatz. 4. (An extension of Itô's formula). Suppose that $X : [0, \infty) \to \mathbb{R}$ is a continuous function with continuous quadratic variation [X] w.r.t. a sequence (π_n) of partitions s.t. mesh $(\pi_n) \to 0$. Show that for $g \in C^1$ and $F \in C^2$, the Itô–Integral $\int_0^t g(X_s) dF(X)_s$ exists, and

$$\int_0^t g(X_s) \, dF(X)_s = \int_0^t g(X_s) \, F'(X_s) \, dX_s + \frac{1}{2} \int_0^t g(X_s) \, F''(X_s) \, d[X]_s.$$

This justifies the differential notation

$$dF(X) = F'(X) \, dX \, + \, \frac{1}{2} F''(X) \, d[X]$$

for Itô's formula, since now we are allowed to multiply this equation by g(X).

5. (Poisson equation). Let $D \subset \mathbb{R}^d$ be a bounded domain, $g \in C(\overline{D})$ and $f \in C(\partial D)$. Prove by Itô's formula, that if $u \in C(\overline{D}) \cap C^2(D)$ is a solution to the Poisson equation

$$\frac{1}{2}\Delta u = -g \text{ on } D, \qquad u = f \text{ on } \partial D, \qquad \text{then}$$
$$u(x) = E_x \left[\int_0^{T_{D^c}} g(B_t) dt \right] + E_x \left[f(B_{T_{D^c}}) \right] \qquad \forall x \in D$$

where (B_t, P_x) is a Brownian motion with $B_0 = x P_x$ -a.s., and $T_{D^C} = \inf\{t \ge 0 : B_t \in D^C\}$.

6. (Itô diffusions). For $b \in C_b(\mathbb{R})$ let (X_t, P_x) be a solution of the SDE

$$dX_t = b(X_t) dt + dB_t$$
, $X_0 = x P_x$ -a.s.,

where (B_t) is a one-dimensional Brownian motion. Prove that:

a) X_t solves under P_x the time-dependent martingale problem for the generator $\mathcal{L} = \frac{1}{2} \frac{d^2}{dx^2} + b(x) \cdot \frac{d}{dx}$, i.e.,

$$M_t := u(t, X_t) - u(0, X_0) - \int_0^t \left(\frac{\partial u}{\partial s} + \mathcal{L}u\right)(s, X_s) \, ds$$

is a local martingale for any $u \in C^2$.

b) Kolmogorov's forward equation holds, i.e.,

$$E_x[f(X_t)] = f(x) + \int_0^t E_x[\mathcal{L}f(X_s)] \, ds \qquad \forall f \in C_b^2(\mathbb{R})$$

c) $\mu_t(A) := P_x[X_t \in A]$ is a solution of $\frac{\partial \mu_t}{\partial t} = \mathcal{L}^* \mu_t$ in the distributional sense, i.e.,

$$\frac{\partial}{\partial t} \int f \, d\mu_t = \int \mathcal{L}f \, d\mu_t \qquad \forall f \in C_b^2(\mathbb{R})$$

d) The function $u(t,x) = E_x[f(X_t)], f \in C_b(\mathbb{R})$, is the unique bounded solution of

$$\frac{\partial u}{\partial t} = \mathcal{L}u$$
, $u(0,x) = f(x)$.

(You may assume without proof the existence of a solution $u \in C_b^2$, so you only have to prove that such a solution has the stochastic representation stated above)