Institut für angewandte Mathematik Winter Semester 15/16 Andreas Eberle, Raphael Zimmer

Introduction to Stochastic Analysis, Problem sheet 7

Please hand in your solutions with your names and the name of your tutor before Tuesday 8.12., 12 am, at the post-boxes opposite to the maths library.

1. (Itô and Stratonovich integrals). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion on a probability space (Ω, \mathcal{A}, P) , and let $\pi_n = \{k2^{-n} : k \in \mathbb{Z}_+\}$ be the *n*-th dyadic partition of \mathbb{R}_+ .

a) Show that for any $t \ge 0$,

$$\lim_{n \to \infty} \sum_{s \in \pi_n} (B_{s' \wedge t} - B_{s \wedge t})^2 = t \quad \text{in } L^2(P) \,.$$

b) Starting from the definition of the Itô integral, prove that

$$\int_0^t B_s \, dB_s = \frac{1}{2} B_t^2 - \frac{1}{2} t \; .$$

c) The Stratonovich integral of (B_s) w.r.t. (B_s) is defined by

$$\int_0^t B_s \circ dB_s := \lim_{n \to \infty} \sum_{s \in \pi_n} \frac{1}{2} (B_{s' \wedge t} + B_s) \cdot (B_{s' \wedge t} - B_s) \quad \text{in } L^2(P) \,.$$

Show that

$$\int_0^t B_s \circ dB_s = \frac{1}{2} B_t^2 \,.$$

2. (Wiener integrals). We consider the Itô integral

$$I_t := \int_0^t h(s) \, dB_s \,, \qquad 0 \le t \le 1 \,,$$

of a deterministic function $h \in L^2([0,1], ds)$ w.r.t. a Brownian motion (B_s) .

a) Show that I_t is normally distributed with mean zero and variance

$$\tau(t) = \int_0^t h(r)^2 \, dr \, .$$

b) More generally, prove that increments of (I_t) over disjoint intervals are independent with law

$$I_t - I_s \sim N(0, \tau(t) - \tau(s))$$
 for any $0 \le s \le t$.

c) Conclude that the process $(I_t)_{t \in [0,1]}$ has the same law on $C([0,1], \mathbb{R})$ as the time-changed Brownian motion $t \mapsto B_{\tau(t)}$.

3. (Stieltjes integrals).

a) State the definition of the Lebesgue-Stieltjes integral

$$\int_0^t f(s) \, dg(s)$$

of a locally bounded measurable function $f: [0, \infty) \to \mathbb{R}$ w.r.t. a non-decreasing continuous function $g: [0, \infty) \to \mathbb{R}$.

b) The variation of a function $g: [0, \infty) \to \mathbb{R}$ on the interval [0, t] is defined by

$$V^{(1)}(t) := \sup_{\pi} \sum_{s \in \pi} |g(s' \wedge t) - g(s \wedge t)|$$

where the supremum is taken over all partitions of \mathbb{R}_+ . Show that for continuous functions g with finite variation, both $V^{(1)}$ and $V^{(1)} - g$ are non-decreasing and continuous. Use this fact to extend the definition of the Lebesgue-Stieltjes integral to continuous integrators g of finite variation.

c) Let (π_n) be a sequence of partitions of \mathbb{R}_+ with $\operatorname{mesh}(\pi_n) \to 0$, and let $f, g: \mathbb{R}_+ \to \mathbb{R}$ be continuous functions. Show that if g has finite variation, then the Riemann-Stieltjes integral

$$\int_0^t g(s) \, df(s) := \lim_{n \to \infty} \sum_{s \in \pi_n} g(s) \left(f(s' \wedge t) - f(s \wedge t) \right)$$

exists, and the integration by parts identity

$$\int_0^t f(s) \, dg(s) = f(t)g(t) - f(0)g(0) - \int_0^t g(s) \, df(s)$$

holds. In particular, $\int g \, df$ is independent of the choice of the partition sequence (π_n) .