Institut für angewandte Mathematik Winter Semester 15/16 Andreas Eberle, Raphael Zimmer

Introduction to Stochastic Analysis, Problem sheet 6

Please hand in your solutions with your names and the name of your tutor before Tuesday 1.12., 12 am, at the post-boxes opposite to the maths library.

1. (Paley-Wiener Integral). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion on (Ω, \mathcal{A}, P) with $B_0 = 0$. For a function $h \in C^1([0, 1], \mathbb{R})$, the stochastic integral of h w.r.t. B can be defined via the integration by parts identity

$$\int_0^1 h(s) dB_s := h(1) B_1 - \int_0^1 h'(s) B_s \, ds.$$

a) Show that the random variables $\int_0^1 h(s) dB_s$ are normally distributed with mean 0 and variance $\int_0^1 h(s)^2 ds$. In particular,

$$E\left[\left(\int_0^1 h(s)dB_s\right)^2\right] = \int_0^1 h(s)^2 ds.$$

- b) Use this isometry to define the integral $\int_0^1 h(s) dB_s$ for an arbitrary function $h \in L^2(0, 1)$.
- c) How can you extend the approach in order to define $t \mapsto \int_0^t h(s) dB(s)$ as a continuous stochastic process for $t \in [0, 1]$?

2. (Riemann-Itô sums).

a) Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion on (Ω, \mathcal{A}, P) w.r.t. a filtration (\mathcal{F}_t) , and let $(H_t)_{t\geq 0}$ be an (\mathcal{F}_t) adapted and product measurable process, which is *continuous* in mean-square, i.e., for any $t \geq 0$,

$$H_t \in L^2(P)$$
 and $\lim_{s \to t} E[(H_s - H_t)^2] = 0.$

Show that for any sequence (π_n) of partitions of [0, t] with mesh $(\pi_n) \to 0$,

$$\int_0^t H_s dB_s = \lim_{n \to \infty} \sum_{s \in \pi_n} H_s (B_{s'} - B_s) \quad \text{in } L^2(P).$$

b) Show that if $f : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous function then $H_t := f(B_t)$ is continuous in mean-square.

3. (Lebesgue decomposition, Lebesgue densities). Let P and Q be arbitrary (not necessarily absolutely continuous) probability measures on (Ω, \mathcal{A}) . A Lebesgue density of Q w.r.t. P is a random variable $Z : \Omega \to [0, \infty]$ such that $Q = Q_a + Q_s$ with

$$Q_a[A] = \int_A Z \, dP, \quad Q_s[A] = Q[A \cap \{Z = \infty\}] \quad \text{for any } A \in \mathcal{A}.$$

The goal of the exercise is to prove that a Lebesgue density exists if the σ -algebra \mathcal{A} is separable.

a) Show that if Z is a Lebesgue density of Q w.r.t. P then 1/Z is a Lebesgue density of P w.r.t. Q. Here 1/∞ := 0 and 1/0 := ∞.

From now on assume that the σ -algebra is separable. Hence let $\mathcal{A} = \sigma(\bigcup \mathcal{F}_n)$ where (\mathcal{F}_n) is a filtration consisting of σ -algebras generated by finitely many sets.

b) Write down Lebesgue densities Z_n of Q w.r.t. P on each \mathcal{F}_n . Show that

$$Q[Z_n = \infty \text{ and } Z_{n+1} < \infty] = 0$$
 for any n ,

and conclude that (Z_n) is a non-negative supermartingale under P, and $(1/Z_n)$ is a non-negative supermartingale under Q.

- c) Prove that the limit $Z_{\infty} = \lim Z_n$ exists both *P*-almost surely and *Q*-almost surely, and $P[Z_{\infty} < \infty] = 1$ and $Q[Z_{\infty} > 0] = 1$.
- d) Conclude that Z_{∞} is a Lebesgue density of P w.r.t. Q on \mathcal{A} , and $1/Z_{\infty}$ is a Lebesgue density of Q w.r.t. P on \mathcal{A} .

4. (Uniform integrability). Let (X_n) be a sequence of random variables on a probability space (Ω, \mathcal{A}, P) auch that $\sup E[|X_n|] < \infty$. Show that:

- a) The family $\{X_n : n \in \mathbb{N}\}$ is uniformly integrable if there is an integrable random variable Y such that $|X_n| \leq Y$ for any $n \in \mathbb{N}$.
- b) Uniform integrability holds if and only if the measures $Q_n(A) = E[|X_n|; A]$ are uniformly absolutely continuous w.r.t P, i.e., iff for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any $A \in \mathcal{A}$,

$$P[A] < \delta \implies \sup_{n \in \mathbb{N}} E[|X_n|; A] < \varepsilon.$$

c) If (X_n) converges in L^1 then the family $\{X_n : n \in \mathbb{N}\}$ is uniformly integrable.