

Introduction to Stochastic Analysis, Problem sheet 5

Please hand in your solutions with your names and the name of your tutor before Tuesday 24.11., 12 am, at the post-boxes opposite to the maths library.

1. (Uniform integrability).

a) For which sequences (a_n) of real numbers are the random variables

$$X_n = a_n \cdot I_{(0,1/n)} , \qquad n \in \mathbb{N},$$

uniformly integrable w.r.t the uniform distribution on the interval (0,1)?

- b) Show that the exponential martingale $M_t = \exp(B_t t/2)$ of a one-dimensional Brownian motion is not uniformly integrable.
- c) Let (M_n) be an (\mathcal{F}_n) martingale with sup $E[|M_n|^p] < \infty$ for some $p \in (1, \infty)$. Prove that (M_n) converges almost surely and in L^1 , and $M_n = E[M_\infty | \mathcal{F}_n]$ for any $n \ge 0$. Hence conclude that $|M_n - M_\infty|^p$ is uniformly integrable, and $M_n \to M_\infty$ in L^p .

2. (Backward Martingale Convergence and Law of Large Numbers). Let $(\mathcal{F}_n)_{n \in \mathbb{N}}$ be a *decreasing* sequence of sub- σ -algebras on a probability space (Ω, \mathcal{A}, P) .

a) Prove that for any random variable $X \in \mathcal{L}^1(\Omega, \mathcal{A}, P)$, the limit $M_{-\infty}$ of the sequence $M_{-n} := E[X | \mathcal{F}_n]$ as $n \to \infty$ exists almost surely and in L^1 , and

$$M_{-\infty} = E[X \mid \bigcap \mathcal{F}_n]$$
 almost surely.

b) Now let (X_n) be a sequence of i.i.d. random variables in $\mathcal{L}^1(\Omega, \mathcal{A}, P)$, and let $\mathcal{F}_n = \sigma(S_n, S_{n+1}, \ldots)$ where $S_n = X_1 + \ldots + X_n$. Prove that

$$E[X_1 \mid \mathcal{F}_n] = \frac{S_n}{n}$$

and conclude that the strong Law of Large Numbers holds:

$$\frac{S_n}{n} \longrightarrow E[X_1]$$
 almost surely.

3. (Wright model of evolution - Poisson approximation). Let $(X_n)_{n\geq 0}$ be a Markov chain with state space \mathbb{Z}_+ , initial state $x \in \mathbb{Z}_+$, and transition matrix

$$p(i,k) = e^{-\lambda i} \frac{(\lambda i)^k}{k!}$$
 $(i \ge 1, k \ge 0),$ $p(0,0) = 1$

What is the connection to the Wright model of evolution (Sheet 1, Exercise 4) ?

a) Show that for $\lambda = 1$, the process (X_n) is a martingale w.r.t. P_x , and

$$\lim_{n \to \infty} X_n = 0 \quad P_x \text{-a.s..}$$

b) Let $T_a := \min\{n \ge 0 : X_n \ge a\}$. Show that for $\lambda = 1$,

$$P_x[T_a < \infty] \leq x/a.$$

c) What can we conclude in the case $\lambda \neq 1$ using martingale methods?

4. (Local maxima of Brownian paths). Let B_t be a one-dimensional Brownian motion on (Ω, \mathcal{A}, P) . Show that the following statements hold for almost every ω :

- a) The trajectory $t \mapsto B_t(\omega)$ is not monotone in any interval [a, b] with a < b.
- b) The set of local maxima of $t \mapsto B_t(\omega)$ is dense in $[0, \infty)$.
- c) All local maxima of $t \mapsto B_t(\omega)$ are strict (i.e., for any local maximum *m* there exists an $\varepsilon > 0$ such that $B_t(\omega) < B_m(\omega)$ for all $t \in (m - \varepsilon, m + \varepsilon)$).