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Please hand in your solutions with your names and the name of your tutor
before Tuesday 17.11., 12 am, at the post-boxes opposite to the maths library.

1. (Martingales and stopping times of Brownian motion). Let (Bt) be a d-dimensional
Brownian motion. Show that:

a) The following processes are martingales w.r.t. each of the filtrations (FB
t ) and (Ft),

where Ft =
⋂

ε>0FB
t+ε denotes the right continuous filtration :

i) The coordinate processes B
(i)
t , 1 ≤ i ≤ d,

ii) B
(i)
t B

(j)
t − t · δij for any 1 ≤ i, j ≤ d,

iii) exp(α · Bt − 1
2 |α|2t) for any α ∈ R

d.

b) For a closed set A ⊂ R
d, the first hitting time TA = inf{t ≥ 0 : Bt ∈ A} is a stopping

time w.r.t. (FB
t ).

c) For an open set U ⊂ R
d, TU is a stopping time w.r.t. (Ft) but not necessarily w.r.t.

(FB
t ).

2. (Ruin probabilities and passage times revisited). Let (Bt) be a one-dimensional
Brownian motion starting at 0. For a, b > 0 let

T = inf{t ≥ 0 : Bt 6∈ (−b, a)} and Ta = inf{t ≥ 0 : Bt = a}

denote the first exit time from the interval (−b, a), and the first hitting time of a, respectively.
You may assume without proof that both stopping times are almost surely finite. Show that:

a) Ruin probabilities: P [BT = a] = b/(a+ b), P [BT = −b] = a/(a+ b),

b) Mean exit time: E[T ] = a · b, and E[Ta] = ∞,

c) Laplace transform of passage times: E[exp(−sTa)] = exp(−a
√
2s) for any s > 0.

d) The distribution of Ta on (0,∞) is absolutely continuous with density

fTa
(t) = a · (2πt3)−1/2 · exp(−a2/2t).
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3. (Wiener-Lévy Representation of Brownian Motion).

The Schauder functions en,k ∈ C([0, 1]) are defined in the following way :

e0,1(t) := min(t, 1 − t),

en,k(t) :=

{

2−n/2 · e0,1(2nt− k) for t ∈ [k2−n, (k + 1)2−n],
0 otherwise,

n ∈ N, k = 0, 1, 2, . . . , 2n − 1. For x ∈ C([0, 1]) with x(0) = 0 let

an,k := 2n/2 ·∆n,kx with ∆n,kx := 2 · (x(mn,k)− x̄n,k),

where mn,k denotes the midpoint of the dyadic interval [k2−n, (k + 1)2−n], and

x̄n,k := (x((k + 1) · 2−n) + x(k · 2−n))/2.

a) Show that the sequence

xm(t) := x(1) · t +
m
∑

n=0

2n−1
∑

k=0

an,k · en,k(t), m ∈ N,

converges to x(t) uniformly for t ∈ [0, 1]. ( Hint : Verify that xm is the polygonal
approximation of x w.r.t. the m–th dyadic partition of the interval [0, 1])

b) Prove that w.r.t. Wiener measure µ0 on Ω = C([0, 1]), the random variables

X1(ω) and Yn,k(ω) := 2n/2 ·∆n,kX(ω) (n ≥ 0, 0 ≤ k < 2n),

are independent and standard normally distributed, and the Wiener–Lévy representa-
tion

Xt(ω) = X1(ω) · t +
∞
∑

n=0

2n−1
∑

k=0

Yn,k(ω) · en,k(t) holds for any ω ∈ Ω.

c) How can this be used in order to simulate sample paths of Brownian motion ?

4. (Bin Packing). Let (Xn)n∈N be a sequence of i.i.d. random variables taking values in
[0, 1]. How many bins of size 1 are needed to pack n objects of sizes X1, X2 , . . ., Xn ? Let
Bn be the minimal number of bins and set

Mk := E[Bn|σ(X1, . . . ,Xk)] , 0 ≤ k ≤ n .

Show that |Mk −Mk−1| ≤ 1 and conclude that

P [|Bn − E[Bn]| ≥ ε] ≤ 2 · e− ε
2

2n .

Remark: One can show that asymptotically, E[Bn] is growing linearly in n.
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