

## Introduction to Stochastic Analysis, Problem sheet 4

Please hand in your solutions with your names and the name of your tutor before Tuesday 17.11., 12 am, at the post-boxes opposite to the maths library.

1. (Martingales and stopping times of Brownian motion). Let  $(B_t)$  be a *d*-dimensional Brownian motion. Show that:

- a) The following processes are martingales w.r.t. each of the filtrations  $(\mathcal{F}_t^B)$  and  $(\mathcal{F}_t)$ , where  $\mathcal{F}_t = \bigcap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon}^B$  denotes the right continuous filtration :
  - i) The coordinate processes  $B_t^{(i)}$ ,  $1 \le i \le d$ ,
  - ii)  $B_t^{(i)} B_t^{(j)} t \cdot \delta_{ij}$  for any  $1 \le i, j \le d$ ,
  - iii)  $\exp(\alpha \cdot B_t \frac{1}{2}|\alpha|^2 t)$  for any  $\alpha \in \mathbb{R}^d$ .
- b) For a closed set  $A \subset \mathbb{R}^d$ , the first hitting time  $T_A = \inf\{t \ge 0 : B_t \in A\}$  is a stopping time w.r.t.  $(\mathcal{F}_t^B)$ .
- c) For an open set  $U \subset \mathbb{R}^d$ ,  $T_U$  is a stopping time w.r.t.  $(\mathcal{F}_t)$  but not necessarily w.r.t.  $(\mathcal{F}_t^B)$ .

2. (Ruin probabilities and passage times revisited). Let  $(B_t)$  be a one-dimensional Brownian motion starting at 0. For a, b > 0 let

$$T = \inf\{t \ge 0 : B_t \notin (-b, a)\}$$
 and  $T_a = \inf\{t \ge 0 : B_t = a\}$ 

denote the first exit time from the interval (-b, a), and the first hitting time of a, respectively. You may assume without proof that both stopping times are almost surely finite. Show that:

- a) Ruin probabilities:  $P[B_T = a] = b/(a+b)$ ,  $P[B_T = -b] = a/(a+b)$ ,
- b) Mean exit time:  $E[T] = a \cdot b$ , and  $E[T_a] = \infty$ ,
- c) Laplace transform of passage times:  $E[\exp(-sT_a)] = \exp(-a\sqrt{2s})$  for any s > 0.
- d) The distribution of  $T_a$  on  $(0, \infty)$  is absolutely continuous with density

$$f_{T_a}(t) = a \cdot (2\pi t^3)^{-1/2} \cdot \exp(-a^2/2t).$$

## 3. (Wiener-Lévy Representation of Brownian Motion).

The Schauder functions  $e_{n,k} \in C([0,1])$  are defined in the following way :

$$e_{0,1}(t) := \min(t, 1-t),$$
  

$$e_{n,k}(t) := \begin{cases} 2^{-n/2} \cdot e_{0,1}(2^n t - k) & \text{for } t \in [k2^{-n}, (k+1)2^{-n}] \\ 0 & \text{otherwise}, \end{cases}$$

 $n \in \mathbb{N}, k = 0, 1, 2, \dots, 2^n - 1$ . For  $x \in C([0, 1])$  with x(0) = 0 let

$$a_{n,k} := 2^{n/2} \cdot \Delta_{n,k} x$$
 with  $\Delta_{n,k} x := 2 \cdot (x(m_{n,k}) - \bar{x}_{n,k}),$ 

where  $m_{n,k}$  denotes the midpoint of the dyadic interval  $[k2^{-n}, (k+1)2^{-n}]$ , and

$$\bar{x}_{n,k} := (x((k+1) \cdot 2^{-n}) + x(k \cdot 2^{-n}))/2.$$

a) Show that the sequence

$$x_m(t) := x(1) \cdot t + \sum_{n=0}^{m} \sum_{k=0}^{2^n - 1} a_{n,k} \cdot e_{n,k}(t), \qquad m \in \mathbb{N},$$

converges to x(t) uniformly for  $t \in [0,1]$ . (*Hint* : Verify that  $x_m$  is the polygonal approximation of x w.r.t. the m-th dyadic partition of the interval [0,1])

b) Prove that w.r.t. Wiener measure  $\mu_0$  on  $\Omega = C([0,1])$ , the random variables

$$X_1(\omega)$$
 and  $Y_{n,k}(\omega) := 2^{n/2} \cdot \Delta_{n,k} X(\omega)$   $(n \ge 0, 0 \le k < 2^n),$ 

are independent and standard normally distributed, and the  $Wiener-L\acute{e}vy\ representation$ 

$$X_t(\omega) = X_1(\omega) \cdot t + \sum_{n=0}^{\infty} \sum_{k=0}^{2^n - 1} Y_{n,k}(\omega) \cdot e_{n,k}(t) \quad \text{holds for any } \omega \in \Omega.$$

c) How can this be used in order to simulate sample paths of Brownian motion ?

4. (Bin Packing). Let  $(X_n)_{n \in \mathbb{N}}$  be a sequence of i.i.d. random variables taking values in [0,1]. How many bins of size 1 are needed to pack *n* objects of sizes  $X_1, X_2, \ldots, X_n$ ? Let  $B_n$  be the minimal number of bins and set

$$M_k := E[B_n | \sigma(X_1, \dots, X_k)], \qquad 0 \le k \le n .$$

Show that  $|M_k - M_{k-1}| \leq 1$  and conclude that

$$P[|B_n - E[B_n]| \ge \varepsilon] \le 2 \cdot e^{-\frac{\varepsilon^2}{2n}}.$$

Remark: One can show that asymptotically,  $E[B_n]$  is growing linearly in n.