

Introduction to Stochastic Analysis, Problem sheet 3

Please hand in your solutions with your names and the name of your tutor before Tuesday 10.11., 12 am, at the post-boxes opposite to the maths library.

1. (Integrability of stopping times). [Murphy's law: Everything that has a realistic chance to happen, will happen — in fact rather earlier than later.]

a) Prove that the expectation E[T] of a stopping time T is finite if there exist constants $k \in \mathbb{N}$ and $\varepsilon > 0$ such that

$$P[T \le n+k | \mathcal{F}_n] \ge \varepsilon$$
 P -a.s. for any $n \ge 0$.

b) Let $S_n = \eta_1 + \eta_2 + \cdots + \eta_n$ be a random walk in \mathbb{R}^1 with non-constant i.i.d. increments η_i satisfying $E[\eta_i] = 0$. Prove that the mean exit time of (S_n) from a bounded interval is finite.

2. (Hitting times for the 2-dimensional random walk). Let Z_n be the random walk on \mathbb{Z}^2 starting in z_0 and making a step in one of the four directions with equal probability.

- a) Show that $|Z_n|^2 n$ is a martingale.
- b) For $r > |z_0|$ let

$$T := \inf \{n \ge 0 : |Z_n|^2 \ge r^2\}$$

be the exit time from the circle around 0 with radius r. Prove that

$$r^{2} - |z_{0}|^{2} \leq E[T] \leq (r+1)^{2} - |z_{0}|^{2}$$

3. (Random signs). Let (a_n) be a sequence of real numbers with $\sum a_n^2 = \infty$, and let

$$M_n = \sum_{k=1}^n \varepsilon_k a_k$$
, ε_k i.i.d. with $P[\varepsilon_k = \pm 1] = 1/2$.

- a) Determine the conditional variance process $\langle M \rangle_n$.
- b) For c > 0 let $T_c := \inf \{ n \ge 0 : |M_n| \ge c \}$. Show that $P[T_c = \infty] = 0$.
- c) Conclude that almost surely, the process (M_n) has unbounded oscillations:

$$P[\limsup M_n = +\infty] = 1 = P[\liminf M_n = -\infty].$$

4. (Star Trek I). The control system on the star-ship *Enterprise* has gone wonky. All that one can do is to set a distance to be travelled. The spaceship will then move that distance in a randomly chosen direction, then stop. The object is to get into the Solar System, a ball of radius r. Initially, the *Enterprise* is at a distance $R_0(>r)$ from the Sun.

Let R_n be the distance from Sun to *Enterprise* after *n* 'space-hops'.

a) Show that, for any strategy which always sets a distance not greater than that from the Sun to the *Enterprise*, $1/R_n$ is a martingale.

Hint: Use the mean-value property of harmonic functions (Proof?): If $\Delta f = 0$ on a ball $B(x, \mathcal{R}) \subset \mathbb{R}^3$, then the average of f on the sphere $\partial B(x, \mathcal{R})$ is equal to f(x).

- b) Deduce that $P[Enterprise \text{ gets into Solar System}] \leq r/R_0$.
- c) For each $\varepsilon > 0$, you can choose a strategy which makes this probability greater than $r/R_0 \varepsilon$. What kind of strategy will that be?

Hint: You may use without proof that a bounded martingale converges almost surely to a finite limit.