Institut für angewandte Mathematik Winter Semester 15/16 Andreas Eberle, Raphael Zimmer

Introduction to Stochastic Analysis, Problem sheet 2

Please hand in your solutions with your names and the name of your tutor before Tuesday 3.11., 12 am, at the post-boxes opposite to the maths library.

1. (Discretizations of stochastic differential equations). Consider an ordinary differential equation dX/dt = b(X) where $b : \mathbb{R}^d \to \mathbb{R}^d$ is a given vector field. In order to take into account unpredictable effects on a system, one is frequently interested in studying perturbations of the dynamics of type

$$dX_t = b(X_t) dt + \text{``noise''} \quad t \ge 0, \tag{1}$$

with a random noise term. The solution $(X_t)_{t\geq 0}$ of such a stochastic differential equation (SDE) is a stochastic process in continuous time defined on a probability space (Ω, \mathcal{A}, P) where also the random variables describing the noise effects are defined. The vector field b is called the (deterministic) "drift". We will make sense of general SDE later on, but we can already consider time discretizations.

For simplicity let us assume d = 1. Let $b, \sigma : \mathbb{R} \to \mathbb{R}$ be continuous functions, and let $(\eta_i)_{i \in \mathbb{N}}$ be a sequence of independent standard normally distributed random variables describing the noise effects. Given an initial value $x_0 \in \mathbb{R}$ and a fine discretization step size h > 0, we now define a stochastic process $(X_n^{(h)})$ in discrete time by $X_0^{(h)} = x_0$, and

$$X_{k+1}^{(h)} - X_k^{(h)} = b(X_k^{(h)}) \cdot h + \sigma(X_k^{(h)}) \sqrt{h} \eta_{k+1}, \quad \text{for } k = 0, 1, 2, \dots$$
(2)

One should think of $X_k^{(h)}$ as an approximation for the value of the process (X_t) at time $t = k \cdot h$. The equation (2) can be rewritten as

$$X_n^{(h)} = x_0 + \sum_{k=0}^{n-1} b(X_k^{(h)}) \cdot h + \sum_{k=0}^{n-1} \sigma(X_k^{(h)}) \cdot \sqrt{h} \cdot \eta_{k+1}.$$
 (3)

To understand the scaling factors h and \sqrt{h} we note first that if $\sigma \equiv 0$ then (2) respectively (3) is the Euler approximation for the o.d.e. dX/dt = b(X). Furthermore, if $b \equiv 0$ and $\sigma \equiv 1$, then the *diffusive scaling* by a factor \sqrt{h} in the second term ensures that as $h \searrow 0$, the continuous time process $X_{\lfloor t/h \rfloor}^{(h)}, t \in [0, \infty)$, converges in distribution to Brownian motion by the functional central limit theorem (Donsker's invariance principle).

a) Prove that $X^{(h)}$ is a time-homogeneous (\mathcal{F}_n) Markov chain with transition kernel

$$p(x, \bullet) = N(x+b(x)h, \sigma(x)^2h)[\bullet].$$

b) Show that the Doob decomposition $X^{(h)} = M^{(h)} + A^{(h)}$ and the conditional variance process $\langle M^{(h)} \rangle$ of the martingale part are given by

$$A_n^{(h)} = \sum_{k=0}^{n-1} b(X_k^{(h)}) \cdot h, \quad M_n^{(h)} = x_0 + \sum_{k=0}^{n-1} \sigma(X_k^{(h)}) \sqrt{h} \eta_{k+1}, \quad \langle M^{(h)} \rangle_n = \sum_{k=0}^{n-1} \sigma(X_k^{(h)})^2 \cdot h.$$

2. (Ruin problem for the asymmetric random walk). Let $p \in (0,1)$ with $p \neq 1/2$. We consider the random walk $S_n = Y_1 + \cdots + Y_n$, Y_i $(i \ge 1)$ i.i.d. with $P[Y_i = +1] = p$ and $P[Y_i = -1] = q := 1 - p$.

a) Show that the following processes are martingales:

$$M_n := (q/p)^{S_n}, \qquad N_n := S_n - n(p-q).$$

b) For $a, b \in \mathbb{Z}$ with a < 0 < b let $T := \min \{n \ge 0 : S_n \notin (a, b)\}$. Deduce from a) that

$$P[S_T = a] = \frac{1 - (p/q)^b}{1 - (p/q)^{b-a}}, \text{ and } E[T] = \frac{b}{p-q} - \frac{b-a}{p-q} \cdot \frac{1 - (p/q)^b}{1 - (p/q)^{b-a}}.$$

3. (Martingale formulation of Bellman's Optimality Principle). We consider a game consisting of $N \in \mathbb{N}$ rounds. In each round a player can stake an amount C_n satisfying $0 \leq C_n \leq Z_{n-1}$, where Z_{n-1} denotes the player's capital at time n-1 and Z_0 is a given positive constant. Let ε_n indicate the winnings per unit stake in the *n*-th round of the game. Assume that the ε_n are i.i.d. random variables satisfying

$$P[\varepsilon_n = +1] = p$$
, $P[\varepsilon_n = -1] = q := 1 - p$, $\frac{1}{2} .$

Our aim is to maximize the average interest rate $E[\log(Z_N/Z_0)]$. Let

$$M_n := \log Z_n - n\alpha, \qquad \alpha := p \log p + q \log q + \log 2 \qquad (\text{entropy})$$

Show that $(M_n)_{n\in\mathbb{N}}$ is a supermartingale for **any** predictable strategy $(C_n)_{n\in\mathbb{N}}$ and conclude

$$E[\log(Z_N/Z_0)] \le N\alpha.$$

Find a predictable strategy such that M_n is a martingale. What is the optimal strategy?

4. (CRR model of stock market). Let $\Omega = \{1 + a, 1 + b\}^N$ with $-1 < a < r < b < \infty$, $X_i(\omega_1, \ldots, \omega_N) = \omega_i$, $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, and $S_n = S_0 \cdot \prod_{i=1}^n X_i$, $n = 0, 1, \ldots, N$.

a) Completeness: Prove that for any function $F: \Omega \to \mathbb{R}$ there exists a constant V_0 and a predictable sequence $(\Phi_n)_{1 \le n \le N}$ such that $F = V_N := V_0 + (\Phi_{\bullet}S)_N$, or, equivalently,

$$(1+r)^{-N}F = \widetilde{V}_N = V_0 + (\Phi_{\bullet}\widetilde{S})_N$$
 where $\widetilde{S}_n := (1+r)^{-n}S_n$

Hence in the CRR model, any \mathcal{F}_N -measurable function F can be replicated by a predictable trading strategy. Market models with this property are called *complete*.

Hint: Prove inductively that for $n = N, N-1, \ldots, 0, \tilde{F} = F/(1+r)^N$ can be represented as

$$\widetilde{F} = \widetilde{V}_n + \sum_{i=n+1}^{N} \Phi_i \cdot (\widetilde{S}_i - \widetilde{S}_{i-1})$$

with an \mathcal{F}_n -measurable function \widetilde{V}_n and a predictable sequence $(\Phi_i)_{n+1 \leq i \leq N}$.

b) Option pricing: Derive a general formula for the no-arbitrage price of an option with payoff function $F: \Omega \to \mathbb{R}$ in the CRR model. Compute the no-arbitrage price for a European call option with maturity N and strike K explicitly.