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1. (Variation of constants). We consider nonlinear stochastic differential equations

dXt = f(t,Xt) dt+ c(t)Xt dBt, X0 = x,

where f : R+ × R → R and c : R+ → R are continuous (deterministic) functions.

a) Find an explicit solution Zt of the equation with f ≡ 0.

b) To solve the equation in the general case, use the Ansatz Xt = Ct · Zt. Show that the
SDE gets the form

dCt(ω)

dt
= f(t, Zt(ω) · Ct(ω))/Zt(ω) , C0 = x. (1)

Note that for each ω ∈ Ω, this is a deterministic differential equation for the function
t 7→ Ct(ω). We can therefore solve (1) with ω as a parameter to find Ct(ω).

c) Apply this method to solve the stochastic differential equation

dXt =
1

Xt
dt+ αXt dBt , X0 = x > 0 , α ∈ R.

d) Apply the method to study the solution of the stochastic differential equation

dXt = Xγ
t dt+ αXt dBt , X0 = x > 0 ,

where α and γ are constants. For which values of γ do we get explosion?

2. (Stochastic oscillator).

a) Let A and σ be d × d–matrices, and suppose that (Bt) is a Brownian motion in R
d.

Solve the SDE
dZt = AZt dt + σ dBt , Z0 = z0.

(First consider σ = 0, then apply variation of constants)

b) Small displacements from equilibrium (e.g. of a pendulum) with stochastic reset force
are described by an SDE of type

dXt = Vt dt

dVt = −Xt dt + dBt

with a one-dimensional Brownian motion (Bt). In complex notation:

dZt = −iZt dt + i dBt, where Zt = Xt + iVt.
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(i) Solve the SDE with initial conditions X0 = x0, V0 = v0.

(ii) Show that Xt is a normally distributed random variable with mean given by the
solution of the corresponding deterministic equation.

(iii) Compute the asymptotic variance limt→∞
1

t
Var [Xt] .

3. (Cox-Ingersoll-Ross model). Let (Bt) be a Brownian motion. The Cox-Ingersoll-Ross
model aims to describe for example an interest rate process (Rt) or a stochastic volatility
process and is given by

dRt = (α− βRt)dt+ σ
√

RtdBt, R0 = x0 > 0,

where α, β, σ > 0. It can be shown that the SDE admits a strong solution.

a) Compute the corresponding scale function and study the asymptotic behaviour of Rt

depending on the parameters α, β and σ.

b) Suppose that 2α ≥ σ2. We study further properties of Rt :

(i) By applying Itô’s formula, show that E[|Rt|
p] < ∞ for any t > 0 and p ≥ 1.

(ii) Compute the expectation of Rt. Hint: Apply Itô’s formula to f(t, x) = eβtx.

(iii) Proceed in a similar way to compute Var[Rt], and determine lim
t→∞

Var[Rt].

4. (Diffusions in R
n). We consider stochastic differential equations in R

n of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = x ∈ R
n,

where b : R+×R
n → R

n and σ : R+×R
n → R

n×d are continuous and Bt is a d-dim. Brownian
motion for some d ∈ N. We assume the existence of a strong solution Xt = (X1

t , ...,X
n
t ).

a) Show that the processes

M i
t = Xi

t −Xi
0 −

∫ t

0

bi(s,Xs)ds, 1 ≤ i ≤ n,

are local martingales with covariations

[M i,M j ]s = ai,j(s,Xs) for any s ≥ 0, P -almost surely,

where a(t, x) = (σσT )(t, x) ∈ R
n×n.

b) Assume that b and σ are bounded. Determine

lim
t↓0

1

t
E
[

Xi
t − xi

]

and lim
t↓0

1

t
E
[

(Xi
t − xi)(Xj

t − xj)
]

.

c) Show that Xt solves the time-dependent martingale problem w.r.t (∂t + L ), where

(L F )(t, x) =
1

2

n
∑

i,j=1

ai,j(t, x)
∂2F

∂xi∂xj
(t, x) +

n
∑

i=1

bi(t, x)
∂F

∂xi
(t, x),

i.e. show that for any F ∈ C1,2(R+ × R
n) the following process is a local martingale :

Mt = F (t,Xt)− F (0,X0)−

∫ t

0

(

∂F

∂t
+ L F

)

(s,Xs) ds.
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