Introduction to Stochastic Analysis, Problem sheet 11

Please hand in your solutions with your names and the name of your tutor before Tuesday 26.01 ., 12 am , at the post-boxes opposite to the maths library.

1. (Feynman and Kac at the stock exchange). The price of a security is modeled by geometric Brownian motion $\left(X_{t}\right)$ with parameters $\alpha, \sigma>0$. At a price x we have a cost $V(x)$ per unit of time. The total cost up to time t is then given by

$$
A_{t}=\int_{0}^{t} V\left(X_{s}\right) d s
$$

Suppose that u is a bounded solution to the PDE

$$
\frac{\partial u}{\partial t}=\mathcal{L} u-\beta V u, \quad \text { where } \quad \mathcal{L}=\frac{\sigma^{2}}{2} x^{2} \frac{d^{2}}{d x^{2}}+\alpha x \frac{d}{d x}
$$

Show that the Laplace transform of A_{t} is given by $E_{x}\left[e^{-\beta A_{t}}\right]=u(t, x)$.
2. (Black-Scholes model). A stock price is modeled by a geometric Brownian Motion $\left(S_{t}\right)$ with parameters $\alpha, \sigma>0$. We assume that the interest rate is equal to a real constant r for all times. Let $c(t, x)$ be the value of an option at time t if the stock price at that time is $S_{t}=x$. Suppose that $c\left(t, S_{t}\right)$ is replicated by a hedging portfolio, i.e., there is a trading strategy holding ϕ_{t} shares of stock at time t and putting the remaining portfolio value $V_{t}-\phi_{t} S_{t}$ in the money market account with fixed interest rate r so that the total portfolio value V_{t} at each time t agrees with $c\left(t, S_{t}\right)$.
"Derive" the Black-Scholes partial differential equation

$$
\begin{equation*}
\frac{\partial c}{\partial t}(t, x)+r x \frac{\partial c}{\partial x}(t, x)+\frac{1}{2} \sigma^{2} x^{2} \frac{\partial^{2} c}{\partial x^{2}}(t, x)=r c(t, x) \tag{1}
\end{equation*}
$$

and the delta-hedging rule

$$
\begin{equation*}
\phi_{t}=\frac{\partial c}{\partial x}\left(t, S_{t}\right) \quad(=: \text { Delta }) \tag{2}
\end{equation*}
$$

Hint: Consider the discounted portfolio value $\tilde{V}_{t}=e^{-r t} V_{t}$ and, correspondingly, $e^{-r t} c\left(t, S_{t}\right)$. Compute the Ito differentials, and conclude that both processes coincide if c is a solution to (1) and ϕ_{t} is given by (2).
3. (Lévy's Arcsine law). State Lévy's Arcsine law for the time $A_{t}=\int_{0}^{t} I_{(0, \infty)}\left(B_{s}\right) d s$ spent by a standard Brownian motion $\left(B_{s}\right)$ in the interval $(0, \infty)$. Prove it by proceeding in the following way :
a) Let $\alpha, \beta>0$. Show that if v is a bounded solution to the equation

$$
\alpha v-\frac{1}{2} v^{\prime \prime}+\beta I_{(0, \infty)} v=1
$$

on $\mathbb{R} \backslash\{0\}$ with $v \in C^{1}(\mathbb{R}) \cap C^{2}(\mathbb{R} \backslash\{0\})$ then

$$
v(x)=E_{x}\left[\int_{0}^{\infty} \exp \left(-\alpha t-\beta A_{t}\right) d t\right] \quad \text { for any } x \in \mathbb{R} .
$$

b) Compute a corresponding solution v and conclude that

$$
\int_{0}^{\infty} e^{-\alpha t} E_{0}\left[e^{-\beta A_{t}}\right] d t=\frac{1}{\sqrt{\alpha(\alpha+\beta)}}
$$

c) Now use the uniqueness of the Laplace inversion to show that the distribution μ_{t} of A_{t} / t under P_{0} is absolutely continuous with density

$$
f_{A_{t} / t}(s)=\frac{1}{\pi \sqrt{s(1-s)}}
$$

Hint: You may use without proof that $\int_{0}^{\infty} t^{-1 / 2} e^{-t} d t=\sqrt{\pi}$.

