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Introduction to Stochastic Analysis, Problem sheet 11

Please hand in your solutions with your names and the name of your tutor
before Tuesday 26.01., 12 am, at the post-boxes opposite to the maths library.

1. (Feynman and Kac at the stock exchange). The price of a security is modeled by
geometric Brownian motion (Xt) with parameters α, σ > 0. At a price x we have a cost V (x)
per unit of time. The total cost up to time t is then given by

At =

t
∫

0

V (Xs)ds .

Suppose that u is a bounded solution to the PDE

∂u

∂t
= Lu − βV u , where L =

σ2

2
x2

d2

dx2
+ αx

d

dx
.

Show that the Laplace transform of At is given by Ex

[

e−βAt

]

= u(t, x) .

2. (Black-Scholes model). A stock price is modeled by a geometric Brownian Motion (St)
with parameters α, σ > 0. We assume that the interest rate is equal to a real constant r for all
times. Let c(t, x) be the value of an option at time t if the stock price at that time is St = x.
Suppose that c(t, St) is replicated by a hedging portfolio, i.e., there is a trading strategy
holding φt shares of stock at time t and putting the remaining portfolio value Vt−φtSt in the
money market account with fixed interest rate r so that the total portfolio value Vt at each
time t agrees with c(t, St).

“Derive” the Black-Scholes partial differential equation

∂c

∂t
(t, x) + rx

∂c

∂x
(t, x) +

1

2
σ2x2

∂2c

∂x2
(t, x) = rc(t, x) (1)

and the delta-hedging rule

φt =
∂c

∂x
(t, St) (=: Delta ). (2)

Hint: Consider the discounted portfolio value Ṽt = e−rtVt and, correspondingly, e−rtc(t, St).
Compute the Ito differentials, and conclude that both processes coincide if c is a solution to
(1) and φt is given by (2).
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3. (Lévy’s Arcsine law). State Lévy’s Arcsine law for the time At =
∫ t
0 I(0,∞)(Bs)ds spent

by a standard Brownian motion (Bs) in the interval (0,∞). Prove it by proceeding in the
following way :

a) Let α, β > 0. Show that if v is a bounded solution to the equation

αv − 1

2
v′′ + βI(0,∞)v = 1

on R \ {0} with v ∈ C1(R) ∩ C2(R \ {0}) then

v(x) = Ex





∞
∫

0

exp(−αt− βAt)dt



 for any x ∈ R.

b) Compute a corresponding solution v and conclude that

∞
∫

0

e−αtE0

[

e−βAt

]

dt =
1

√

α(α + β)
.

c) Now use the uniqueness of the Laplace inversion to show that the distribution µt of
At/t under P0 is absolutely continuous with density

fAt/t(s) =
1

π
√

s(1− s)
.

Hint: You may use without proof that
∫

∞

0 t−1/2e−tdt =
√
π.
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