Institut für angewandte Mathematik Winter Semester 15/16 Andreas Eberle, Raphael Zimmer

Introduction to Stochastic Analysis, Problem sheet 11

Please hand in your solutions with your names and the name of your tutor before Tuesday 26.01., 12 am, at the post-boxes opposite to the maths library.

1. (Feynman and Kac at the stock exchange). The price of a security is modeled by geometric Brownian motion (X_t) with parameters $\alpha, \sigma > 0$. At a price x we have a cost V(x) per unit of time. The total cost up to time t is then given by

$$A_t = \int_0^t V(X_s) ds \; .$$

Suppose that u is a bounded solution to the PDE

$$\frac{\partial u}{\partial t} = \mathcal{L}u - \beta V u$$
, where $\mathcal{L} = \frac{\sigma^2}{2} x^2 \frac{d^2}{dx^2} + \alpha x \frac{d}{dx}$

Show that the Laplace transform of A_t is given by $E_x \left[e^{-\beta A_t} \right] = u(t, x)$.

2. (Black-Scholes model). A stock price is modeled by a geometric Brownian Motion (S_t) with parameters $\alpha, \sigma > 0$. We assume that the interest rate is equal to a real constant r for all times. Let c(t, x) be the value of an option at time t if the stock price at that time is $S_t = x$. Suppose that $c(t, S_t)$ is replicated by a hedging portfolio, i.e., there is a trading strategy holding ϕ_t shares of stock at time t and putting the remaining portfolio value $V_t - \phi_t S_t$ in the money market account with fixed interest rate r so that the total portfolio value V_t at each time t agrees with $c(t, S_t)$.

"Derive" the Black-Scholes partial differential equation

$$\frac{\partial c}{\partial t}(t,x) + rx\frac{\partial c}{\partial x}(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 c}{\partial x^2}(t,x) = rc(t,x)$$
(1)

and the *delta-hedging rule*

$$\phi_t = \frac{\partial c}{\partial x}(t, S_t)$$
 (=: Delta). (2)

Hint: Consider the discounted portfolio value $\tilde{V}_t = e^{-rt}V_t$ and, correspondingly, $e^{-rt}c(t, S_t)$. Compute the Ito differentials, and conclude that both processes coincide if c is a solution to (1) and ϕ_t is given by (2). 3. (Lévy's Arcsine law). State Lévy's Arcsine law for the time $A_t = \int_0^t I_{(0,\infty)}(B_s) ds$ spent by a standard Brownian motion (B_s) in the interval $(0,\infty)$. Prove it by proceeding in the following way :

a) Let $\alpha, \beta > 0$. Show that if v is a bounded solution to the equation

$$\alpha v - \frac{1}{2}v'' + \beta I_{(0,\infty)}v = 1$$

on $\mathbb{R} \setminus \{0\}$ with $v \in C^1(\mathbb{R}) \cap C^2(\mathbb{R} \setminus \{0\})$ then

$$v(x) = E_x \left[\int_{0}^{\infty} \exp(-\alpha t - \beta A_t) dt \right]$$
 for any $x \in \mathbb{R}$.

b) Compute a corresponding solution v and conclude that

$$\int_{0}^{\infty} e^{-\alpha t} E_0 \left[e^{-\beta A_t} \right] dt = \frac{1}{\sqrt{\alpha(\alpha+\beta)}} .$$

c) Now use the uniqueness of the Laplace inversion to show that the distribution μ_t of A_t/t under P_0 is absolutely continuous with density

$$f_{A_t/t}(s) = \frac{1}{\pi \sqrt{s(1-s)}}$$
.

Hint: You may use without proof that $\int_0^\infty t^{-1/2} e^{-t} dt = \sqrt{\pi}$.