Institut für angewandte Mathematik Winter Semester 15/16 Andreas Eberle, Raphael Zimmer

Introduction to Stochastic Analysis, Problem sheet 10

Please hand in your solutions with your names and the name of your tutor before Tuesday 19.01., 12 am, at the post-boxes opposite to the maths library.

1. (Quadratic variation of Itô integrals). Suppose that $X : [0, \infty) \to \mathbb{R}$ is a continuous function with continuous quadratic variation [X] w.r.t. a fixed sequence (π_n) of partitions s.t. $\operatorname{mesh}(\pi_n) \to 0$.

a) Let $F \in C^1(\mathbb{R})$. Show that the quadratic variation of $t \mapsto F(X_t)$ along (π_n) is given by

$$[F(X)]_t = \int_0^t F'(X_s)^2 d[X]_s.$$

b) Conclude that for $f \in C^1(\mathbb{R})$, the Itô integral $I_t = \int_0^t f(X_s) dX_s$ has quadratic variation

$$[I(f)]_t = \int_0^t f(X_s)^2 d[X]_s \, .$$

2. (Complex-valued Brownian motion). A complex-valued Brownian motion is given by $B_t = B_t^1 + i B_t^2$ with independent one-dimensional Brownian motions (B_t^1) and (B_t^2) .

a) Prove that for any holomorphic function F,

$$F(B_t) = F(B_0) + \int_0^t F'(B_s) \, dB_s \; ,$$

where F' denotes the complex derivative of F. Hint: Use the Cauchy-Riemann equations.

b) Solve the complex-valued SDE $dZ_t = \alpha Z_t dB_t$, $\alpha \in \mathbb{C}$.

3. (Heat equation on an interval). Let $V : (a, b) \to [0, \infty)$ be continuous and bounded, and suppose that $u \in C^{1,2}((0,\infty) \times (a,b))$ $(-\infty < a < b < \infty)$ is an up to the boundary continuous and bounded solution of the heat equation

$$\frac{\partial u}{\partial t}(t,x) = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}(t,x) - V(x) u(t,x)$$

with initial and boundary conditions

$$u(0,x) = f(x), \quad u(t,a) = h(t), \quad u(t,b) = k(t).$$

By considering an appropriate martingale show that

$$u(t,x) = E_x \left[f(B_t) \exp\left(-\int_0^t V(B_s) \, ds\right) ; t \le T_a \wedge T_b \right]$$

+ $E_x \left[h(t - T_a) \exp\left(-\int_0^{T_a} V(B_s) \, ds\right) ; T_a < t \wedge T_b \right]$
+ $E_x \left[k(t - T_b) \exp\left(-\int_0^{T_b} V(B_s) \, ds\right) ; T_b < t \wedge T_a \right] .$

4. (Lévy Area). If c(t) = (x(t), y(t)) is a smooth curve in \mathbb{R}^2 with c(0) = 0, then

$$A(t) = \int_0^t (x(s)y'(s) - y(s)x'(s)) \, ds = \int_0^t x \, dy - \int_0^t y \, dx$$

describes the area that is covered by the secant from the origin to c(s) in the interval [0, t]. Analogously, for a two-dimensional Brownian motion $B_t = (X_t, Y_t)$ with $B_0 = 0$, one defines the Lévy Area

$$A_t := \int_0^t X_s \, dY_s - \int_0^t Y_s \, dX_s \, .$$

a) Let $\alpha(t), \beta(t)$ be C^1 -functions, $p \in \mathbb{R}$, and

$$V_t = ipA_t - \frac{\alpha(t)}{2} \left(X_t^2 + Y_t^2\right) + \beta(t).$$

Show that e^{V_t} is a local martingale provided $\alpha'(t) = \alpha(t)^2 - p^2$ and $\beta'(t) = \alpha(t)$.

b) Let $t_0 \in [0, \infty)$. Show that the solutions of the ordinary differential equations for α and β with $\alpha(t_0) = \beta(t_0) = 0$ are

$$\begin{aligned} \alpha(t) &= p \cdot \tanh(p \cdot (t_0 - t)), \\ \beta(t) &= -\log \cosh(p \cdot (t_0 - t)). \end{aligned}$$

Hence conclude that

$$E\left[e^{ipA_{t_0}}\right] = \frac{1}{\cosh(pt_0)} \quad \forall p \in \mathbb{R}.$$

*c) Show that the distribution of A_t is absolutely continuous with density

$$f_{A_t}(x) = \frac{1}{2t \cosh(\frac{\pi x}{2t})}.$$