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1. (Quadratic variation of Itô integrals). Suppose that X : [0,∞) → R is a continuous
function with continuous quadratic variation [X] w.r.t. a fixed sequence (πn) of partitions s.t.
mesh(πn) → 0.

a) Let F ∈ C1(R). Show that the quadratic variation of t 7→ F (Xt) along (πn) is given by

[F (X)]t =

∫ t

0

F ′(Xs)
2 d[X]s.

b) Conclude that for f ∈ C1(R), the Itô integral It =
∫ t

0
f(Xs) dXs has quadratic variation

[I(f)]t =

∫ t

0

f(Xs)
2 d[X]s .

2. (Complex-valued Brownian motion). A complex-valued Brownian motion is given
by Bt = B1

t + iB2
t with independent one-dimensional Brownian motions (B1

t ) and (B2
t ).

a) Prove that for any holomorphic function F ,

F (Bt) = F (B0) +

∫ t

0

F ′(Bs) dBs ,

where F ′ denotes the complex derivative of F . Hint: Use the Cauchy-Riemann equations.

b) Solve the complex-valued SDE dZt = αZt dBt , α ∈ C .

3. (Heat equation on an interval). Let V : (a, b) → [0,∞) be continuous and bounded,
and suppose that u ∈ C1,2((0,∞) × (a, b)) (−∞ < a < b < ∞) is an up to the boundary
continuous and bounded solution of the heat equation

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) − V (x)u(t, x)

with initial and boundary conditions

u(0, x) = f(x), u(t, a) = h(t), u(t, b) = k(t).

1



By considering an appropriate martingale show that

u(t, x) = Ex

[

f(Bt) exp

(

−

∫ t

0

V (Bs) ds

)

; t ≤ Ta ∧ Tb

]

+ Ex

[

h(t− Ta) exp

(

−

∫ Ta

0

V (Bs) ds

)

; Ta < t ∧ Tb

]

+ Ex

[

k(t− Tb) exp

(

−

∫ Tb

0

V (Bs) ds

)

; Tb < t ∧ Ta

]

.

4. (Lévy Area). If c(t) = (x(t), y(t)) is a smooth curve in R
2 with c(0) = 0, then

A(t) =

∫ t

0

(x(s)y′(s)− y(s)x′(s)) ds =

∫ t

0

x dy −

∫ t

0

y dx

describes the area that is covered by the secant from the origin to c(s) in the interval [0, t].
Analogously, for a two-dimensional Brownian motion Bt = (Xt, Yt) with B0 = 0, one defines
the Lévy Area

At :=

∫ t

0

Xs dYs −

∫ t

0

Ys dXs .

a) Let α(t), β(t) be C1-functions, p ∈ R, and

Vt = ipAt −
α(t)

2

(

X2

t + Y 2

t

)

+ β(t) .

Show that eVt is a local martingale provided α′(t) = α(t)2 − p2 and β′(t) = α(t).

b) Let t0 ∈ [0,∞). Show that the solutions of the ordinary differential equations for α and
β with α(t0) = β(t0) = 0 are

α(t) = p · tanh(p · (t0 − t)) ,

β(t) = − log cosh(p · (t0 − t)) .

Hence conclude that

E
[

eipAt0

]

=
1

cosh(pt0)
∀ p ∈ R .

*c) Show that the distribution of At is absolutely continuous with density

fAt
(x) =

1

2t cosh(πx
2t
)
.

2


