Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis", Sheet 9.

Please hand in your solutions on eCampus by Wednesday, June 18, 10 am.

1. (Variation of constants). Solve the stochastic differential equation

$$dY_t = r \, dt + \alpha \, Y_t \, dB_t$$

for a one-dimensional Brownian motion (B_t) and constants $r, \alpha \in \mathbb{R}$. Hint: Consider first the case r = 0, then try a variation of constants ansatz.

2. (Itō diffusions). Let (X_t, \mathbb{P}_x) be a solution of the SDE

$$dX_t = b(X_t) dt + dB_t , \qquad X_0 = x \mathbb{P}_x \text{-a.s.},$$

where (B_t) is a one-dimensional Brownian motion and $b \in C_b(\mathbb{R})$. Prove that:

a) Under \mathbb{P}_x , (X_t) solves the *time-dependent martingale problem* for the generator $\mathcal{L} = \frac{1}{2} \frac{d^2}{dx^2} + b(x) \frac{d}{dx}$, i.e., for every $u \in C^2([0,\infty) \times \mathbb{R})$,

$$M_t := u(t, X_t) - u(0, X_0) - \int_0^t \left(\frac{\partial u}{\partial s} + \mathcal{L}u\right)(s, X_s) \, ds$$

is a local martingale.

b) Kolmogorov's forward equation holds, i.e.,

$$\mathbb{E}_x[f(X_t)] = f(x) + \int_0^t \mathbb{E}_x[\mathcal{L}f(X_s)] \, ds \qquad \forall \ f \in C_b^2(\mathbb{R}).$$

c) $\mu_t[A] := \mathbb{P}_x[X_t \in A]$ is a solution of $\frac{\partial \mu_t}{\partial t} = \mathcal{L}^* \mu_t$ in the distributional sense, i.e.,

$$\frac{\partial}{\partial t} \int f \, d\mu_t = \int \mathcal{L}f \, d\mu_t \qquad \forall f \in C_b^2(\mathbb{R}) \,.$$

d) The function $u(t,x) = \mathbb{E}_x[f(X_t)], f \in C_b(\mathbb{R})$, is the unique bounded solution of

$$\frac{\partial u}{\partial t} = \mathcal{L}u , \qquad u(0,x) = f(x) .$$

(You may assume without proof the existence of a solution $u \in C_b^2$, so you only have to prove that such a solution has the stochastic representation stated above)

3. (Recurrence and transience of Brownian motion).

a) Show that for a Brownian motion (B_t) in \mathbb{R}^2 , every non-empty open ball D is recurrent, i.e.,

$$\mathbb{P}[\forall t \ge 0 \; \exists s \ge t : B_s \in D] = 1.$$

- b) Conclude that a typical Brownian trajectory is dense in \mathbb{R}^2 .
- c) Conversely, show that for $d \geq 3$, every ball in \mathbb{R}^d is transient for Brownian motion, i.e., $|B_t| \to \infty$ almost surely as $t \to \infty$.

4. (Local time of Brownian motion). What happens if we try to apply Itō's formula to $g(B_t)$ when $(B_t)_{t\geq 0}$ is a one dimensional Brownian motion and g(x) = |x|? Since g is not differentiable at 0, we consider the smooth approximations

$$g_{\epsilon}(x) := \begin{cases} |x| & \text{if } |x| \ge \epsilon, \\ \frac{1}{2}(\epsilon + \frac{x^2}{\epsilon}) & \text{if } |x| < \epsilon, \end{cases} \quad \text{where } \epsilon > 0.$$

a) Show that almost surely,

$$g_{\epsilon}(B_t) = g_{\epsilon}(B_0) + \int_0^t g'_{\epsilon}(B_s) \, dB_s + \frac{1}{2\epsilon} \, \lambda \left[\{ s \in [0, t] : B_s \in (-\epsilon, \epsilon) \} \right].$$

b) Prove that as $\epsilon \to 0$,

$$\int_0^t g'_{\epsilon}(B_s) \, 1_{(-\epsilon,\epsilon)}(B_s) \, dB_s \to 0$$

in an appropriate sense to be specified.

c) Conclude that almost surely,

$$|B_t| = |B_0| + \int_0^t \operatorname{sign}(B_s) \, dB_s + L_t, \tag{1}$$

where we set sign(x) := -1 for $x \le 0$ (!) and sign(x) := +1 for x > 0, and

$$L_t = \lim_{\epsilon \downarrow 0} \frac{1}{2\epsilon} \lambda \left[\left\{ s \in [0, t] : B_s \in (-\epsilon, \epsilon) \right\} \right].$$

The process L_t is called the *local time* for Brownian motion at 0.