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1. (Variation of constants). Solve the stochastic differential equation

dYt = r dt+ αYt dBt

for a one-dimensional Brownian motion (Bt) and constants r, α ∈ R.
Hint: Consider first the case r = 0, then try a variation of constants ansatz.

2. (Itō diffusions). Let (Xt,Px) be a solution of the SDE

dXt = b(Xt) dt + dBt , X0 = x Px–a.s.,

where (Bt) is a one-dimensional Brownian motion and b ∈ Cb(R). Prove that:

a) Under Px, (Xt) solves the time-dependent martingale problem for the generator
L = 1

2
d2

dx2 + b(x) d
dx
, i.e., for every u ∈ C2([0,∞)× R),

Mt := u(t,Xt)− u(0, X0)−
∫ t

0

(
∂u

∂s
+ Lu

)
(s,Xs) ds

is a local martingale.

b) Kolmogorov’s forward equation holds, i.e.,

Ex[f(Xt)] = f(x) +

∫ t

0

Ex[Lf(Xs)] ds ∀ f ∈ C2
b (R).

c) µt[A] := Px[Xt ∈ A] is a solution of ∂µt

∂t
= L∗µt in the distributional sense, i.e.,

∂

∂t

∫
f dµt =

∫
Lf dµt ∀ f ∈ C2

b (R) .

d) The function u(t, x) = Ex[f(Xt)], f ∈ Cb(R), is the unique bounded solution of

∂u

∂t
= Lu , u(0, x) = f(x) .

(You may assume without proof the existence of a solution u ∈ C2
b , so you only have

to prove that such a solution has the stochastic representation stated above)
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3. (Recurrence and transience of Brownian motion).

a) Show that for a Brownian motion (Bt) in R2, every non-empty open ball D is recur-
rent, i.e.,

P[∀ t ≥ 0 ∃ s ≥ t : Bs ∈ D] = 1.

b) Conclude that a typical Brownian trajectory is dense in R2.

c) Conversely, show that for d ≥ 3, every ball in Rd is transient for Brownian motion,
i.e., |Bt| → ∞ almost surely as t → ∞.

4. (Local time of Brownian motion). What happens if we try to apply Itō’s formula
to g(Bt) when (Bt)t≥0 is a one dimensional Brownian motion and g(x) = |x| ?
Since g is not differentiable at 0, we consider the smooth approximations

gϵ(x) :=

{
|x| if |x| ≥ ϵ,
1
2
(ϵ+ x2

ϵ
) if |x| < ϵ,

where ϵ > 0.

a) Show that almost surely,

gϵ(Bt) = gϵ(B0) +

∫ t

0

g′ϵ(Bs) dBs +
1

2ϵ
λ [{s ∈ [0, t] : Bs ∈ (−ϵ, ϵ)}] .

b) Prove that as ϵ → 0, ∫ t

0

g′ϵ(Bs) 1(−ϵ,ϵ)(Bs) dBs → 0

in an appropriate sense to be specified.

c) Conclude that almost surely,

|Bt| = |B0| +
∫ t

0

sign(Bs) dBs + Lt, (1)

where we set sign(x) := −1 for x ≤ 0 (!) and sign(x) := +1 for x > 0, and

Lt = lim
ϵ↓0

1

2ϵ
λ [{s ∈ [0, t] : Bs ∈ (−ϵ, ϵ)}] .

The process Lt is called the local time for Brownian motion at 0.
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