Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis", Sheet 8.

Please hand in your solutions on eCampus by Wednesday, June 4, 10 am.

1. (Quadratic variation of stochastic integrals). Let $I_t = \int_0^t H_s \, dB_s$ where (B_t) is a one-dimensional Brownian motion and $(H_t) \in \mathcal{L}^2_a(0, u; B)$ for every $u \in (0, \infty)$.

a) Show that almost surely,

$$[I]_t = \int_0^t H_s^2 \,\mathrm{d}s \quad \text{for all } t \ge 0.$$

- b) Conclude that if $|H_t| = 1$ for all $t \ge 0$ then I is a Brownian motion.
- c) In general, give a representation of I as a time-changed Brownian motion.

2. (Solutions of SDE). Let (B_t) be a one-dimensional Brownian motion with $B_0 = 0$. Show that the following processes solve the corresponding stochastic differential equations:

a) $X_t = B_t/(1+t)$ solves

$$dX_t = -(1+t)^{-1}X_t dt + (1+t)^{-1} dB_t, \qquad X_0 = 0.$$

b) For $t < \inf \{s > 0 : B_s \notin [-\pi/2, \pi/2]\}, X_t = \sin(B_t)$ solves

$$dX_t = -\frac{1}{2}X_t dt + \sqrt{1 - X_t^2} dB_t, \qquad X_0 = 0,$$

c) $(X_t, Y_t) = (t, e^t B_t)$ solves

$$\begin{bmatrix} \mathrm{d}X_t \\ \mathrm{d}Y_t \end{bmatrix} = \begin{bmatrix} 1 \\ Y_t \end{bmatrix} \mathrm{d}t + \begin{bmatrix} 0 \\ e^{X_t} \end{bmatrix} \mathrm{d}B_t \,, \qquad \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \,.$$

d) $(X_t, Y_t) = (\cosh(B_t), \sinh(B_t))$ solves

$$\begin{bmatrix} \mathrm{d}X_t \\ \mathrm{d}Y_t \end{bmatrix} = \frac{1}{2} \begin{bmatrix} X_t \\ Y_t \end{bmatrix} \mathrm{d}t + \begin{bmatrix} Y_t \\ X_t \end{bmatrix} \mathrm{d}B_t, \qquad \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

e) For $x \ge 0, X_t = (x^{1/3} + \frac{1}{3}B_t)^3$ solves

$$dX_t = \frac{1}{3} X_t^{1/3} dt + X_t^{2/3} dB_t, \qquad X_0 = x \,.$$

Is the solution of this SDE unique?

3. (Martingales of Brownian motion). Let (B_t) be a one-dimensional Brownian motion with $B_0 = 0$. Show that the following processes are martingales:

a) $X_t = e^{\frac{1}{2}t}\cos(B_t)$, b) $X_t = e^{\frac{1}{2}t}\sin(B_t)$, c) $X_t = (B_t + t)\exp(-B_t - \frac{1}{2}t)$.

4. (Random rotations: Itō vs. Stratonovich). We consider stochastic differential equations of the form

$$dZ_t = A Z_t dB_t, \qquad Z_0 = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \qquad \text{where } A = \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}$$
(1)

is the antisymmetric matrix generating the unit rotation in \mathbb{R}^2 , (B_t) is a *one-dimensional* Brownian motion, and the solution (Z_t) is a stochastic process taking values in \mathbb{R}^2 .

- a) Write down a time-discretisation of the Itō equation (1), and simulate sample paths of the solution.
- b) What do you observe? Can you explain your observations?
- c) Now consider the Stratonovich equation

$$\circ dZ_t = AZ_t \circ dB_t, \qquad Z_0 = \begin{pmatrix} 1\\ 0 \end{pmatrix}.$$
(2)

/ \

Find a numerical discretisation for the SDE and simulate approximate solutions. What do you observe now?

Hint: Make sure that before starting the implementation, you have transformed the discretisation into an accessible form. Matrix inversion in Python: from scipy import linalg; inversematrix=linalg.inv(matrix)

5. (* Quadratic variation of Brownian motion revisited). Let $(B_t)_{t\geq 0}$ be a Brownian motion on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. The goal of this exercise is to show that for an *arbitrary* sequence of partitions such that $\pi_n \subset \pi_{n+1}$ and $\operatorname{mesh}(\pi_n) \to 0$, the quadratic variation $[B]_t$ exists almost surely. W.l.o.g., we assume $B_0 = 0$.

a) Show that for any $0 \le s \le s'$, the process (B_t) defined by

$$\tilde{B}_t := \begin{cases} B_t & \text{for } t \in [0, s], \\ B_s - (B_t - B_s) & \text{for } t \in [s, s'], \\ B_s - (B_{s'} - B_s) + B_t - B_{s'} & \text{for } t \in [s', \infty), \end{cases}$$

is a Brownian motion, i.e., $(\tilde{B}_t) \sim (B_t)$. Hint: Exercise 1.

b) Now fix $t \ge 0$, and let \mathcal{F}_n denote the σ -algebra generated by the random variables $(B_{s'\wedge t} - B_{s\wedge t})^2$, where s and s' are successive partition points in π_m for some $m \ge n$. Show that

$$\sum_{e \in \pi_n} (B_{s' \wedge t} - B_{s \wedge t})^2 = \mathbb{E} \left[\sum_{s \in \pi_n} (B_{s' \wedge t} - B_{s \wedge t})^2 \mid \mathcal{F}_n \right] = \mathbb{E} \left[B_t^2 \mid \mathcal{F}_n \right].$$

c) Conclude that $\sum_{s \in \pi_n} (B_{s' \wedge t} - B_{s \wedge t})^2$ converges almost surely as $n \to \infty$, and identify the limit.