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Please hand in your solutions on eCampus by Wednesday, June 4, 10 am.

1. (Quadratic variation of stochastic integrals). Let It =
∫ t

0
Hs dBs where (Bt) is

a one-dimensional Brownian motion and (Ht) ∈ L2
a(0, u;B) for every u ∈ (0,∞).

a) Show that almost surely,

[I]t =

∫ t

0

H2
s ds for all t ≥ 0.

b) Conclude that if |Ht| = 1 for all t ≥ 0 then I is a Brownian motion.

c) In general, give a representation of I as a time-changed Brownian motion.

2. (Solutions of SDE). Let (Bt) be a one-dimensional Brownian motion with B0 = 0.
Show that the following processes solve the corresponding stochastic differential equations:

a) Xt = Bt/(1 + t) solves

dXt = −(1 + t)−1Xt dt+ (1 + t)−1 dBt , X0 = 0 .

b) For t < inf {s > 0 : Bs /∈ [−π/2, π/2]}, Xt = sin(Bt) solves

dXt = −1

2
Xt dt+

√
1−X2

t dBt , X0 = 0 ,

c) (Xt, Yt) = (t, etBt) solves[
dXt

dYt

]
=

[
1

Yt

]
dt+

[
0

eXt

]
dBt ,

[
X0

Y0

]
=

[
0

0

]
.

d) (Xt, Yt) = (cosh(Bt), sinh(Bt)) solves[
dXt

dYt

]
=

1

2

[
Xt

Yt

]
dt+

[
Yt

Xt

]
dBt ,

[
X0

Y0

]
=

[
1

0

]
.

e) For x ≥ 0, Xt = (x1/3 + 1
3
Bt)

3 solves

dXt =
1

3
X

1/3
t dt+X

2/3
t dBt , X0 = x .

Is the solution of this SDE unique?
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3. (Martingales of Brownian motion). Let (Bt) be a one-dimensional Brownian
motion with B0 = 0. Show that the following processes are martingales:

a) Xt = e
1
2
t cos(Bt), b) Xt = e

1
2
t sin(Bt), c) Xt = (Bt + t) exp(−Bt − 1

2
t).

4. (Random rotations: Itō vs. Stratonovich). We consider stochastic differential
equations of the form

dZt = AZt dBt, Z0 =

(
1
0

)
, where A =

(
0 −1
1 0

)
(1)

is the antisymmetric matrix generating the unit rotation in R2, (Bt) is a one-dimensional
Brownian motion, and the solution (Zt) is a stochastic process taking values in R2.

a) Write down a time-discretisation of the Itō equation (1), and simulate sample paths
of the solution.

b) What do you observe? Can you explain your observations?

c) Now consider the Stratonovich equation

◦ dZt = AZt ◦ dBt, Z0 =

(
1
0

)
. (2)

Find a numerical discretisation for the SDE and simulate approximate solutions.
What do you observe now?

Hint: Make sure that before starting the implementation, you have transformed the
discretisation into an accessible form. Matrix inversion in Python:
from scipy import linalg; inversematrix=linalg.inv(matrix)

5. (* Quadratic variation of Brownian motion revisited). Let (Bt)t≥0 be a
Brownian motion on a probability space (Ω,A,P). The goal of this exercise is to show
that for an arbitrary sequence of partitions such that πn ⊂ πn+1 and mesh(πn) → 0, the
quadratic variation [B]t exists almost surely. W.l.o.g., we assume B0 = 0.

a) Show that for any 0 ≤ s ≤ s′, the process (B̃t) defined by

B̃t :=


Bt for t ∈ [0, s],

Bs − (Bt −Bs) for t ∈ [s, s′],

Bs − (Bs′ −Bs) +Bt −Bs′ for t ∈ [s′,∞),

is a Brownian motion, i.e., (B̃t) ∼ (Bt). Hint: Exercise 1.

b) Now fix t ≥ 0, and let Fn denote the σ-algebra generated by the random variables
(Bs′∧t −Bs∧t)

2, where s and s′ are successive partition points in πm for some m ≥ n.
Show that∑

s∈πn

(Bs′∧t −Bs∧t)
2 = E

[ ∑
s∈πn

(Bs′∧t −Bs∧t)
2 | Fn

]
= E

[
B2

t | Fn

]
.

c) Conclude that
∑

s∈πn
(Bs′∧t −Bs∧t)

2 converges almost surely as n → ∞, and identify
the limit.
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