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1. (Time-dependent Itō formula). Suppose that X : [0,∞) → R is a continuous
function with continuous quadratic variation [X] w.r.t. a sequence (πn)n∈N of partitions
s.t. mesh(πn) → 0. Show that for every function F ∈ C2(R2) and for every t ∈ [0,∞), the
Itō integral ∫ t

0

∂F

∂x
(s,Xs) dXs = lim

n→∞

∑
s∈πn

∂F

∂x
(s,Xs) (Xs′∧t −Xs∧t)

exists, and the time-dependent Itō formula

F (t,Xt)−F (0, X0) =

∫ t

0

∂F

∂s
(s,Xs) ds +

∫ t

0

∂F

∂x
(s,Xs) dXs +

1

2

∫ t

0

∂2F

∂x2
(s,Xs) d[X]s (1)

holds.

Hint: You may assume without proof that by Taylor’s formula, there exists a function
o : [0,∞) → [0,∞) satisfying o(r)/r → 0 as r → 0, such that for any s, s′ ∈ [0, t],

F (s′, Xs′)− F (s,Xs) =
∂F

∂s
(s,Xs) δs +

∂F

∂x
(s,Xs) δXs +

1

2

∂2F

∂s2
(s,Xs) (δs)

2

+
∂2F

∂s∂x
(s,Xs) δs δXs +

1

2

∂2F

∂x2
(s,Xs) (δXs)

2 + o
(
(δs)2 + (δXs)

2
)
.

2. (Stochastic integrals w.r.t. Itō processes). Let

Is :=

∫ s

0

Hr dBr, 0 ≤ s ≤ t,

with an (Fs)-Brownian motion B on (Ω,A,P), and a process H ∈ L2
a(0, t;B). Suppose that

(πn)n∈N is a sequence of partitions of [0, t] such that mesh(πn) → 0.

Prove that if G is an (Fs)-adapted bounded continuous process, then the Riemann sums∑
s∈πn

Gs · (Is′ − Is) converge in L2(P), and∫ t

0

Gs dIs = lim
n→∞

∑
s∈πn

Gs · (Is′ − Is) =

∫ t

0

Gs Hs dBs .

Hint: Express the Riemann sums as a stochastic integral
∫ t

0
. . . dBs w.r.t. Brownian motion.
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3. (Geometric Brownian motion). Let (Bs)s≥0 be an (Fs)-Brownian motion on
(Ω,A,P) s.t. B0 = 0. A geometric Brownian motion (Xs)s≥0 with parameters µ, α ∈ R is
a solution of the stochastic differential equation (SDE)

dXt = µXt dt + αXt dBt ,

i.e., (Xs)s≥0 is an almost surely continuous and (Fs) adapted process such that P-almost
surely,

Xt −X0 = µ

∫ t

0

Xs ds+ α

∫ t

0

Xs dBs for any t ≥ 0.

a) Find a solution of the SDE with initial value X0 = x0 using the ansatz

Xt = x0 · exp(aBt + bt) .

Here you may assume the time-dependent Itō formula (1).

b) What can you say about the asymptotic behaviour of the process as t → ∞ ?

c) Compute E[Xt] and Cov[Xs, Xt] for s, t ≥ 0.

4. (Progressive measurability). Let (Ft)t∈[0,∞) be a filtration.

a) Prove that an (Ft) adapted left-continuous stochastic process (Xt)t∈[0,∞) is (Ft) pro-
gressively measurable.

b) Show that if (Xt)t∈[0,∞) is a progressively measurable process and T : Ω → [0,∞] is
an (Ft) stopping time then the random variable XT · 1T<∞ is measurable w.r.t. FT .
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