Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis", Sheet 7.

Please hand in your solutions on eCampus by Wednesday, May 28, 10 am.

1. (Time-dependent Itō formula). Suppose that $X: [0, \infty) \to \mathbb{R}$ is a continuous function with continuous quadratic variation [X] w.r.t. a sequence $(\pi_n)_{n \in \mathbb{N}}$ of partitions s.t. mesh $(\pi_n) \to 0$. Show that for every function $F \in C^2(\mathbb{R}^2)$ and for every $t \in [0, \infty)$, the Itō integral

$$\int_0^t \frac{\partial F}{\partial x}(s, X_s) \, \mathrm{d}X_s = \lim_{n \to \infty} \sum_{s \in \pi_n} \frac{\partial F}{\partial x}(s, X_s) \left(X_{s' \wedge t} - X_{s \wedge t} \right)$$

exists, and the time-dependent Itō formula

$$F(t, X_t) - F(0, X_0) = \int_0^t \frac{\partial F}{\partial s}(s, X_s) \,\mathrm{d}s + \int_0^t \frac{\partial F}{\partial x}(s, X_s) \,\mathrm{d}X_s + \frac{1}{2} \int_0^t \frac{\partial^2 F}{\partial x^2}(s, X_s) \,\mathrm{d}[X]_s$$
(1)

holds.

Hint: You may assume without proof that by Taylor's formula, there exists a function $o: [0, \infty) \to [0, \infty)$ satisfying $o(r)/r \to 0$ as $r \to 0$, such that for any $s, s' \in [0, t]$,

$$F(s', X_{s'}) - F(s, X_s) = \frac{\partial F}{\partial s}(s, X_s) \,\delta s + \frac{\partial F}{\partial x}(s, X_s) \,\delta X_s + \frac{1}{2} \frac{\partial^2 F}{\partial s^2}(s, X_s) \,(\delta s)^2 \\ + \frac{\partial^2 F}{\partial s \partial x}(s, X_s) \,\delta s \,\delta X_s + \frac{1}{2} \frac{\partial^2 F}{\partial x^2}(s, X_s) \,(\delta X_s)^2 + o\left((\delta s)^2 + (\delta X_s)^2\right) \,ds$$

2. (Stochastic integrals w.r.t. Itō processes). Let

$$I_s := \int_0^s H_r \, \mathrm{d}B_r, \qquad 0 \le s \le t,$$

with an (\mathcal{F}_s) -Brownian motion B on $(\Omega, \mathcal{A}, \mathbb{P})$, and a process $H \in \mathcal{L}^2_a(0, t; B)$. Suppose that $(\pi_n)_{n \in \mathbb{N}}$ is a sequence of partitions of [0, t] such that $\operatorname{mesh}(\pi_n) \to 0$. Prove that if G is an (\mathcal{F}_s) -adapted bounded continuous process, then the Riemann sums $\sum_{s \in \pi_n} G_s \cdot (I_{s'} - I_s)$ converge in $L^2(\mathbb{P})$, and

$$\int_0^t G_s \, \mathrm{d} I_s \; = \; \lim_{n \to \infty} \sum_{s \in \pi_n} G_s \cdot (I_{s'} - I_s) \; = \; \int_0^t G_s \, H_s \, \mathrm{d} B_s \; .$$

Hint: Express the Riemann sums as a stochastic integral $\int_0^t \dots dB_s$ *w.r.t. Brownian motion.*

3. (Geometric Brownian motion). Let $(B_s)_{s\geq 0}$ be an (\mathcal{F}_s) -Brownian motion on $(\Omega, \mathcal{A}, \mathbb{P})$ s.t. $B_0 = 0$. A geometric Brownian motion $(X_s)_{s\geq 0}$ with parameters $\mu, \alpha \in \mathbb{R}$ is a solution of the stochastic differential equation (SDE)

$$\mathrm{d}X_t = \mu X_t \,\mathrm{d}t + \alpha X_t \,\mathrm{d}B_t \,,$$

i.e., $(X_s)_{s\geq 0}$ is an almost surely continuous and (\mathcal{F}_s) adapted process such that \mathbb{P} -almost surely,

$$X_t - X_0 = \mu \int_0^t X_s \, \mathrm{d}s + \alpha \int_0^t X_s \, \mathrm{d}B_s \qquad \text{for any } t \ge 0.$$

a) Find a solution of the SDE with initial value $X_0 = x_0$ using the ansatz

$$X_t = x_0 \cdot \exp(aB_t + bt).$$

Here you may assume the time-dependent $It\bar{o}$ formula (1).

- b) What can you say about the asymptotic behaviour of the process as $t \to \infty$?
- c) Compute $\mathbb{E}[X_t]$ and $\operatorname{Cov}[X_s, X_t]$ for $s, t \ge 0$.
- 4. (Progressive measurability). Let $(\mathcal{F}_t)_{t \in [0,\infty)}$ be a filtration.
 - a) Prove that an (\mathcal{F}_t) adapted left-continuous stochastic process $(X_t)_{t \in [0,\infty)}$ is (\mathcal{F}_t) progressively measurable.
 - b) Show that if $(X_t)_{t \in [0,\infty)}$ is a progressively measurable process and $T: \Omega \to [0,\infty]$ is an (\mathcal{F}_t) stopping time then the random variable $X_T \cdot 1_{T < \infty}$ is measurable w.r.t. \mathcal{F}_T .