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1. (Time-dependent Ito formula).  Suppose that X: [0,00) — R is a continuous
function with continuous quadratic variation [X] w.r.t. a sequence (m,),en of partitions
s.t. mesh(m,) — 0. Show that for every function F € C?(R?) and for every ¢ € [0, 00), the
Ito integral

n—00
SETY,

LOF
i 8x(SX = lim Z@xSX Xont — Xsnt)

exists, and the time-dependent Ito formula
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holds.

Hint: You may assume without proof that by Taylor’s formula, there exists a function
0: [0,00) = [0,00) satisfying o(r)/r — 0 as r — 0, such that for any s, s’ € [0, 1],
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2. (Stochastic integrals w.r.t. Ito processes). Let
~ [ Hap.  o<s<
0

with an (F)-Brownian motion B on (2, A, P), and a process H € £2(0,¢; B). Suppose that
(n)nen is a sequence of partitions of [0,¢] such that mesh(m,) — 0.

Prove that if G is an (F;)-adapted bounded continuous process, then the Riemann sums
> sem, Gs - (Iy — I;) converge in L*(P), and
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Hint: Ezxpress the Riemann sums as a stochastic integral fot ...dBg w.r.t. Brownian motion.



3. (Geometric Brownian motion).  Let (B;)s>0 be an (F;)-Brownian motion on
(Q, A, P) s.t. By = 0. A geometric Brownian motion (Xj)s>¢ with parameters p, o € R is
a solution of the stochastic differential equation (SDE)

dXt = MXtdt + OéXtdBt,

i.e., (Xs)s>0 is an almost surely continuous and (Fs) adapted process such that P-almost
surely,

t t
X — Xy = ,u/ Xsds—i-oz/ X,dB, for any ¢t > 0.
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a) Find a solution of the SDE with initial value X, = z( using the ansatz
Xy = xo-exp(aB; + bt).
Here you may assume the time-dependent Ito formula (1).

b) What can you say about the asymptotic behaviour of the process as t — oo 7

c) Compute E[X;| and Cov[X,, X;| for s,¢ > 0.

4. (Progressive measurability). Let (F;);cp,00) be a filtration.

a) Prove that an (F;) adapted left-continuous stochastic process (X;)ico,00) is (F¢) pro-
gressively measurable.

b) Show that if (X;)ic[,00) is a progressively measurable process and 7: @ — [0, oo] is
an (F;) stopping time then the random variable X7 - 17, is measurable w.r.t. Fr.



