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1. (Local martingales). Let (Ft)t∈[0,∞) be a filtration on a probability space (Ω,A,P).

a) Show that if (Mt)t∈[0,∞) is an (Ft) martingale on (Ω,A,P) and T : Ω → [0,∞] is
predictable, then (Mt)t∈[0,T ) is a local martingale up to T .

Now suppose conversely that (Mt) is a continuous local martingale up to T = ∞.

b) Show that (Mt) is a martingale if and only if there exists a localizing sequence (Tk)k∈N
such that for every t ∈ [0,∞), the family of random variables {Mt∧Tk

: k ∈ N} is
uniformly integrable.

c) Verify that Tk := inf{t ≥ 0 : |Mt| ≥ k} is a localizing sequence for which the stopped
processes (Mt∧Tk

)t≥0 are bounded martingales in M2
c([0,∞)).

2. (A local martingale that is not a martingale). Let (Bt)t≥0 be a Brownian motion
in R3 with initial value B0 = x, x ̸= 0. Show that:

a) Xt = 1/∥Bt∥ is a local martingale up to T = inf{t ≥ 0 : Bt = 0}.

b) T = ∞ almost surely.

c) {Xs : 0 ≤ s ≤ t} is uniformly integrable for all t ≥ 0.

d) Xt is not a martingale.

Hint: You may assume without proof the multi-dimensional Itô formula for Brownian mo-
tion: If U is an open subset of Rd, then for F ∈ C2(U),

F (Bt)− F (B0) =
d∑

i=1

∫ t

0

∂F

∂xi
(Bs) dB

i
s +

1

2

∫ t

0

∆F (Bs) ds ∀ t < TUC ,

where TUC = inf{t ≥ 0 : Bt ̸∈ U} is the first exit time from U .
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3. (Uniqueness of the angle bracket process). Let (Ft)t∈[0,∞) be a filtration on a
probability space (Ω,A,P).

a) Suppose that (Mt) is a square integrable continuous (Ft) martingale such that for
every t ∈ R+, the first variation

V
(1)
t (M) = sup

π

∑
s∈π

|Ms′∧t −Ms∧t|

is an almost surely bounded random variable. Show that t 7→ Mt is almost surely
constant.

Hint: E[(Mt −M0)
2] =

∑
s∈π E[(Ms′∧t −Ms∧t)

2].

b) More generally, prove that a continuous local martingale M with almost surely finite
variation paths is almost surely constant.

c) Conclude that the angle bracket process ⟨M⟩ of a continuous local martingale is
uniquely determined up to modification on a measure zero set.
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