Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis", Sheet 6.

Please hand in your solutions on eCampus by Wednesday, May 21, 10 am.

- 1. (Local martingales). Let $(\mathcal{F}_t)_{t \in [0,\infty)}$ be a filtration on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.
 - a) Show that if $(M_t)_{t\in[0,\infty)}$ is an (\mathcal{F}_t) martingale on $(\Omega, \mathcal{A}, \mathbb{P})$ and $T : \Omega \to [0,\infty]$ is predictable, then $(M_t)_{t\in[0,T)}$ is a local martingale up to T.

Now suppose conversely that (M_t) is a continuous local martingale up to $T = \infty$.

- b) Show that (M_t) is a martingale if and only if there exists a localizing sequence $(T_k)_{k \in \mathbb{N}}$ such that for every $t \in [0, \infty)$, the family of random variables $\{M_{t \wedge T_k} : k \in \mathbb{N}\}$ is uniformly integrable.
- c) Verify that $T_k := \inf\{t \ge 0 : |M_t| \ge k\}$ is a localizing sequence for which the stopped processes $(M_{t \land T_k})_{t \ge 0}$ are bounded martingales in $\mathcal{M}_c^2([0, \infty))$.

2. (A local martingale that is not a martingale). Let $(B_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R}^3 with initial value $B_0 = x, x \neq 0$. Show that:

- a) $X_t = 1/||B_t||$ is a local martingale up to $T = \inf\{t \ge 0 : B_t = 0\}$.
- b) $T = \infty$ almost surely.
- c) $\{X_s : 0 \le s \le t\}$ is uniformly integrable for all $t \ge 0$.
- d) X_t is not a martingale.

Hint: You may assume without proof the multi-dimensional Itô formula for Brownian motion: If U is an open subset of \mathbb{R}^d , then for $F \in C^2(U)$,

$$F(B_t) - F(B_0) = \sum_{i=1}^d \int_0^t \frac{\partial F}{\partial x^i}(B_s) \, dB_s^i + \frac{1}{2} \int_0^t \Delta F(B_s) \, ds \qquad \forall \ t < T_{U^C}$$

where $T_{U^C} = \inf\{t \ge 0 : B_t \notin U\}$ is the first exit time from U.

3. (Uniqueness of the angle bracket process). Let $(\mathcal{F}_t)_{t \in [0,\infty)}$ be a filtration on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

a) Suppose that (M_t) is a square integrable continuous (\mathcal{F}_t) martingale such that for every $t \in \mathbb{R}_+$, the first variation

$$V_t^{(1)}(M) = \sup_{\pi} \sum_{s \in \pi} |M_{s' \wedge t} - M_{s \wedge t}|$$

is an almost surely bounded random variable. Show that $t \mapsto M_t$ is almost surely constant.

Hint: $\mathbb{E}[(M_t - M_0)^2] = \sum_{s \in \pi} \mathbb{E}[(M_{s' \wedge t} - M_{s \wedge t})^2].$

- b) More generally, prove that a continuous local martingale M with almost surely finite variation paths is almost surely constant.
- c) Conclude that the angle bracket process $\langle M \rangle$ of a continuous local martingale is uniquely determined up to modification on a measure zero set.