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1. (Itō and Stratonovich integrals). Let (Bt)t≥0 be a one-dimensional Brownian
motion starting at 0 on a probability space (Ω,A,P), and let πn = {k2−n : k ∈ N0} be the
n-th dyadic partition of [0,∞).

a) Show that for any t ≥ 0,

lim
n→∞

∑
s∈πn

(Bs′∧t −Bs∧t)
2 = lim

n→∞

∑
s∈πn

(s′ ∧ t− s ∧ t) = t in L2(P) ,

and for p > 2,

lim
n→∞

∑
s∈πn

|Bs′∧t −Bs∧t|p = 0 in L2(P) .

b) The Stratonovich integral of a process (Hs) w.r.t. (Bs) over [0, t] is defined by∫ t

0

Hs ◦ dBs := lim
n→∞

∑
s∈πn

1

2
(Hs′∧t +Hs∧t) · (Bs′∧t −Bs∧t)

if the limit exists in L2(P). Show that∫ t

0

Bs ◦ dBs =
1

2
B2

t and

∫ t

0

Bs dBs =
1

2
B2

t −
1

2
t .

c) More generally, prove that for every m ∈ N \ {1},

Bm
t = m

∫ t

0

Bm−1
s ◦ dBs = m

∫ t

0

Bm−1
s dBs +

1

2
m(m− 1)

∫ t

0

Bm−2
s ds.

Hint: You can use the identity

(x+ h)m − xm = mxm−1h+

(
m

2

)
xm−2h2 +O(|h|3).
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2. (Stieltjes integrals).

a) State the definition of the Lebesgue-Stieltjes integral∫ t

0

f(s) dg(s)

of a locally bounded measurable function f : [0,∞) → R w.r.t. a non-decreasing
continuous function g : [0,∞) → R.

b) The variation of a function g : [0,∞) → R on the interval [0, t] is defined by

V (1)(t) := sup
π

∑
s∈π

|g(s′ ∧ t)− g(s ∧ t)| ,

where the supremum is taken over all partitions of [0,∞). Show that for continuous
functions g with finite variation, both V (1) and V (1) − g are non-decreasing and
continuous. Use this fact to extend the definition of the Lebesgue-Stieltjes integral
to continuous integrators g of finite variation.

c) Let (πn) be a sequence of partitions of [0,∞) with mesh(πn) → 0, and suppose that
f, g : [0,∞) → R are continuous functions. Show that if g has finite variation, then
the Riemann-Stieltjes integral∫ t

0

g(s) df(s) := lim
n→∞

∑
s∈πn

g(s) (f(s′ ∧ t)− f(s ∧ t))

exists, and the integration by parts identity∫ t

0

f(s) dg(s) = f(t)g(t) − f(0)g(0) −
∫ t

0

g(s) df(s)

holds. In particular,
∫
g df is independent of the choice of the partition sequence.

3. (Simulation of stochastic integrals). Let (Bt) be a one-dimensional Brownian
motion starting at 0 on a probability space (Ω,A,P).

a) Use Riemann sum approximations to simulate the stochastic processes

It =

∫ t

0

Bs dBs and Ît =

∫ t

0

Bs d̂Bs for t ∈ [0, 1].

Here the first integral is an Itō integral, and the second integral is a backward Itō
integral.

b) Plot the graphs of samples from the difference process Ît − It. What do you observe?
State a conjecture.

c) Can you prove your conjecture?
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