Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis", Sheet 5.

Please hand in your solutions on eCampus by Wednesday, May 14, 10 am.

1. (Itō and Stratonovich integrals). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion starting at 0 on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, and let $\pi_n = \{k2^{-n} : k \in \mathbb{N}_0\}$ be the *n*-th dyadic partition of $[0, \infty)$.

a) Show that for any $t \ge 0$,

$$\lim_{n \to \infty} \sum_{s \in \pi_n} (B_{s' \wedge t} - B_{s \wedge t})^2 = \lim_{n \to \infty} \sum_{s \in \pi_n} (s' \wedge t - s \wedge t) = t \quad \text{in } L^2(\mathbb{P}),$$

and for p > 2,

$$\lim_{n \to \infty} \sum_{s \in \pi_n} |B_{s' \wedge t} - B_{s \wedge t}|^p = 0 \quad \text{in } L^2(\mathbb{P}) \,.$$

b) The Stratonovich integral of a process (H_s) w.r.t. (B_s) over [0, t] is defined by

$$\int_0^t H_s \circ \mathrm{d}B_s := \lim_{n \to \infty} \sum_{s \in \pi_n} \frac{1}{2} (H_{s' \wedge t} + H_{s \wedge t}) \cdot (B_{s' \wedge t} - B_{s \wedge t})$$

if the limit exists in $L^2(\mathbb{P})$. Show that

$$\int_0^t B_s \circ dB_s = \frac{1}{2}B_t^2 \quad \text{and} \quad \int_0^t B_s dB_s = \frac{1}{2}B_t^2 - \frac{1}{2}t.$$

c) More generally, prove that for every $m \in \mathbb{N} \setminus \{1\}$,

$$B_t^m = m \int_0^t B_s^{m-1} \circ dB_s = m \int_0^t B_s^{m-1} dB_s + \frac{1}{2}m(m-1) \int_0^t B_s^{m-2} ds.$$

Hint: You can use the identity

$$(x+h)^m - x^m = mx^{m-1}h + \binom{m}{2}x^{m-2}h^2 + O(|h|^3).$$

2. (Stieltjes integrals).

a) State the definition of the Lebesgue-Stieltjes integral

$$\int_0^t f(s) \, \mathrm{d}g(s)$$

of a locally bounded measurable function $f: [0, \infty) \to \mathbb{R}$ w.r.t. a non-decreasing continuous function $g: [0, \infty) \to \mathbb{R}$.

b) The variation of a function $g: [0, \infty) \to \mathbb{R}$ on the interval [0, t] is defined by

$$V^{(1)}(t) := \sup_{\pi} \sum_{s \in \pi} |g(s' \wedge t) - g(s \wedge t)|,$$

where the supremum is taken over all partitions of $[0, \infty)$. Show that for continuous functions g with finite variation, both $V^{(1)}$ and $V^{(1)} - g$ are non-decreasing and continuous. Use this fact to extend the definition of the Lebesgue-Stieltjes integral to continuous integrators g of finite variation.

c) Let (π_n) be a sequence of partitions of $[0, \infty)$ with mesh $(\pi_n) \to 0$, and suppose that $f, g: [0, \infty) \to \mathbb{R}$ are continuous functions. Show that if g has finite variation, then the Riemann-Stieltjes integral

$$\int_0^t g(s) \, \mathrm{d}f(s) \ := \ \lim_{n \to \infty} \ \sum_{s \in \pi_n} g(s) \left(f(s' \wedge t) - f(s \wedge t) \right)$$

exists, and the integration by parts identity

$$\int_0^t f(s) \, \mathrm{d}g(s) = f(t)g(t) - f(0)g(0) - \int_0^t g(s) \, \mathrm{d}f(s)$$

holds. In particular, $\int g \, df$ is independent of the choice of the partition sequence.

3. (Simulation of stochastic integrals). Let (B_t) be a one-dimensional Brownian motion starting at 0 on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

a) Use Riemann sum approximations to simulate the stochastic processes

$$I_t = \int_0^t B_s \, \mathrm{d}B_s$$
 and $\hat{I}_t = \int_0^t B_s \, \hat{\mathrm{d}}B_s$ for $t \in [0, 1]$

Here the first integral is an Itō integral, and the second integral is a backward Itō integral.

- b) Plot the graphs of samples from the difference process $I_t I_t$. What do you observe? State a conjecture.
- c) Can you prove your conjecture?