Institute for Applied Mathematics Summer semester 2025

Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis", Sheet 4.

Please hand in your solutions on eCampus by Wednesday, May 7, 10 am.

1. (Passage probabilities).

a) Let M be a non-negative martingale with continuous sample paths such that $M_0 = x > 0$. Assume that $M_t \to 0$ a.s. as $t \to \infty$. Show that, for every y > x,

$$\mathbb{P}\left[\sup_{t>0} M_t \ge y\right] = \frac{x}{y}.$$

b) Show that for a one-dimensional Brownian motion $(B_t)_{t\geq 0}$ with $B_0=0$ and m>0,

$$\sup_{t\geq 0}(B_t-mt)$$

is exponentially distributed with parameter 2m.

c) Compute the passage probabilities of Brownian motion for arbitrary lines $t \mapsto a + mt$ with $a, m \in \mathbb{R}$.

2. (Backward martingale convergence and the law of large numbers). Let $(\mathcal{F}_n)_{n\in\mathbb{N}}$ be a decreasing sequence of sub- σ -algebras on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

a) Prove that for every random variable $X \in \mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$, the limit $M_{-\infty}$ of the sequence $M_{-n} := \mathbb{E}[X \mid \mathcal{F}_n]$ as $n \to \infty$ exists almost surely and in L^1 , and

$$M_{-\infty} = \mathbb{E}[X \mid \bigcap \mathcal{F}_n]$$
 almost surely.

Hint: Apply Doob's upcrossing inequality to the martingales $(M_{k-n})_{k=0,1,...n}$.

b) Now let (X_n) be a sequence of i.i.d. random variables in $\mathcal{L}^1(\Omega, \mathcal{A}, \mathbb{P})$, and let $\mathcal{F}_n = \sigma(S_n, S_{n+1}, \ldots)$, where $S_n = X_1 + \ldots + X_n$. Prove that almost surely,

$$\mathbb{E}[X_1 \mid \mathcal{F}_n] = \frac{S_n}{n},$$

and conclude that the strong Law of Large Numbers holds:

$$\frac{S_n}{n} \longrightarrow \mathbb{E}[X_1]$$
 almost surely.

3. (Martingale proof of Radon-Nikodym Theorem). Let \mathbb{P} and \mathbb{Q} be probability measures on (Ω, \mathcal{A}) such that \mathbb{Q} is absolutely continuous w.r.t. \mathbb{P} , i.e., every \mathbb{P} -measure zero set is also a \mathbb{Q} -measure zero set. A relative density of \mathbb{Q} w.r.t. \mathbb{P} on a sub- σ -algebra $\mathcal{F} \subseteq \mathcal{A}$ is an \mathcal{F} -measurable random variable $Z: \Omega \to [0, \infty)$ such that

$$\mathbb{Q}[A] = \int_A Z \, d\mathbb{P} \quad \text{for any } A \in \mathcal{F}.$$

The goal of the exercise is to prove that a relative density on the σ -algebra \mathcal{A} exists if it is separable. Hence let $\mathcal{A} = \sigma(\bigcup \mathcal{F}_n)$ where (\mathcal{F}_n) is a filtration consisting of σ -algebras \mathcal{F}_n that are generated by finitely many disjoints sets $B_{n,i}$ $(i = 1, ..., k_n)$ such that $\bigcup_i B_{n,i} = \Omega$.

- a) Write down explicitly relative densities Z_n of \mathbb{Q} w.r.t. \mathbb{P} on each \mathcal{F}_n , and show that (Z_n) is a non-negative martingale under \mathbb{P} .
- b) Prove that the limit $Z_{\infty} = \lim Z_n$ exists both \mathbb{P} -almost surely and in $L^1(\Omega, \mathcal{A}, \mathbb{P})$.
- c) Conclude that Z_{∞} is a relative density of \mathbb{Q} w.r.t. \mathbb{P} on \mathcal{A} .
- **4.** (Simulation of Ornstein-Uhlenbeck processes II). A two-dimensional Ornstein-Uhlenbeck process is a stochastic process $(X_t)_{t\geq 0}$ with values in \mathbb{R}^2 that solves a stochastic differential equation $dX_t = AX_t dt + \sigma dB_t$, $X_0 = x_0$, i.e.

$$X_t = x_0 + \int_0^t A X_s \, \mathrm{d}s + \sigma B_t \quad \text{for all } t \in [0, \infty), \tag{1}$$

where $(B_t)_{t\geq 0}$ is a two-dimensional Brownian motion, A is a 2×2 matrix, and $\sigma\in(0,\infty)$ and the initial value $x_0\in\mathbb{R}^2$ are given constants.

- a) Write down a time-discretization of (1), where $t \in h\mathbb{Z}_+$ for a given step size h > 0.
- b) Simulate a sample path of a general two dimensional Ornstein Uhlenbeck process on a time interval $[0, t_{\text{max}}]$, and plot the trajectory.
- c) Run the simulation for the following choices of A and σ , $t_{\text{max}} = 40$ and $x_0 = (1, 0)$.
 - (i) Two dimensional Brownian motion: $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \ \sigma = 1.$
 - (ii) Standard two dimensional OU process: $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $\sigma = 1$.
 - (iii) Randomly perturbed rotation: $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\sigma = 0.1$ and $\sigma = 1$.
 - $(iv) \ \textit{Randomly perturbed rotation with damping: } A = \begin{pmatrix} -\gamma & 1 \\ -1 & -\gamma \end{pmatrix}, \ \sigma, \gamma \in \{0.1, 1\}.$
 - (v) Damping in one component: $A = \begin{pmatrix} 0 & 1 \\ -1 & -\gamma \end{pmatrix}, \ \sigma, \gamma \in \{0.1, 1\}.$

Hint: It might make sense to choose a higher resolution and thin lines for the plots. For example in Python if the numerical solution is stored in a $2 \times \text{steps}$ array sde: plt.figure(figsize=(7,7), dpi=500) plt.plot(sde[0],sde[1],linewidth=.2) plt.show()