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Please hand in your solutions on eCampus by Wednesday, May 7, 10 am.

1. (Passage probabilities).

a) LetM be a non-negative martingale with continuous sample paths such thatM0 = x > 0.
Assume that Mt → 0 a.s. as t → ∞. Show that, for every y > x,

P
[
sup
t≥0

Mt ≥ y

]
=

x

y
.

b) Show that for a one-dimensional Brownian motion (Bt)t≥0 with B0 = 0 and m > 0,

sup
t≥0

(Bt −mt)

is exponentially distributed with parameter 2m.

c) Compute the passage probabilities of Brownian motion for arbitrary lines t 7→ a+mt
with a,m ∈ R.

2. (Backward martingale convergence and the law of large numbers). Let
(Fn)n∈N be a decreasing sequence of sub-σ-algebras on a probability space (Ω,A,P).

a) Prove that for every random variable X ∈ L1(Ω,A,P), the limitM−∞ of the sequence
M−n := E[X | Fn] as n → ∞ exists almost surely and in L1, and

M−∞ = E[X |
⋂

Fn] almost surely.

Hint: Apply Doob’s upcrossing inequality to the martingales (Mk−n)k=0,1,...n.

b) Now let (Xn) be a sequence of i.i.d. random variables in L1(Ω,A,P), and let
Fn = σ(Sn, Sn+1, . . .), where Sn = X1 + . . .+Xn. Prove that almost surely,

E[X1 | Fn] =
Sn

n
,

and conclude that the strong Law of Large Numbers holds:

Sn

n
−→ E[X1] almost surely.
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3. (Martingale proof of Radon-Nikodym Theorem). Let P and Q be probability
measures on (Ω,A) such that Q is absolutely continuous w.r.t. P, i.e., every P-measure zero
set is also a Q-measure zero set. A relative density of Q w.r.t. P on a sub-σ-algebra F ⊆ A
is an F -measurable random variable Z : Ω → [0,∞) such that

Q[A] =

∫
A

Z dP for any A ∈ F .

The goal of the exercise is to prove that a relative density on the σ-algebra A exists if it
is separable. Hence let A = σ(

⋃
Fn) where (Fn) is a filtration consisting of σ-algebras Fn

that are generated by finitely many disjoints sets Bn,i (i = 1, . . . , kn) such that
⋃

i Bn,i = Ω.

a) Write down explicitly relative densities Zn of Q w.r.t. P on each Fn, and show that
(Zn) is a non-negative martingale under P.

b) Prove that the limit Z∞ = limZn exists both P-almost surely and in L1(Ω,A,P).

c) Conclude that Z∞ is a relative density of Q w.r.t. P on A.

4. (Simulation of Ornstein-Uhlenbeck processes II). A two-dimensional Ornstein-
Uhlenbeck process is a stochastic process (Xt)t≥0 with values in R2 that solves a stochastic
differential equation dXt = AXt dt+ σ dBt, X0 = x0, i.e.

Xt = x0 +

∫ t

0

AXs ds + σ Bt for all t ∈ [0,∞), (1)

where (Bt)t≥0 is a two-dimensional Brownian motion, A is a 2× 2 matrix, and σ ∈ (0,∞)
and the initial value x0 ∈ R2 are given constants.

a) Write down a time-discretization of (1), where t ∈ hZ+ for a given step size h > 0.

b) Simulate a sample path of a general two dimensional Ornstein Uhlenbeck process on
a time interval [0, tmax], and plot the trajectory.

c) Run the simulation for the following choices of A and σ, tmax = 40 and x0 = (1, 0).

(i) Two dimensional Brownian motion: A =

(
0 0
0 0

)
, σ = 1.

(ii) Standard two dimensional OU process: A =

(
−1 0
0 −1

)
, σ = 1.

(iii) Randomly perturbed rotation: A =

(
0 1
−1 0

)
, σ = 0.1 and σ = 1.

(iv) Randomly perturbed rotation with damping: A =

(
−γ 1
−1 −γ

)
, σ, γ ∈ {0.1, 1}.

(v) Damping in one component: A =

(
0 1
−1 −γ

)
, σ, γ ∈ {0.1, 1}.

Hint: It might make sense to choose a higher resolution and thin lines for the plots.
For example in Python if the numerical solution is stored in a 2× steps array sde:
plt.figure(figsize=(7,7), dpi=500)
plt.plot(sde[0],sde[1],linewidth=.2)
plt.show()
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