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1. (Stochastic oscillator).

a) Let A and σ be d× d–matrices, let a ∈ Rd, and suppose that (Bt)t≥0 is a Brownian
motion in Rd.

(i) Solve the SDE

dZt = (AZt + a) dt + σ dBt , Z0 = z0.

(ii) Show that Zt is a normally distributed random vector with mean vectorm(t) and
covariance matrix C(t) where m and C are solutions of the ordinary differential
equations

ṁ = Am+ a, Ċ = AC + CAT + σσT .

b) Small displacements from equilibrium (e.g. of a pendulum) with stochastic reset force
and friction coefficient γ are described by an SDE of type

dXt = Vt dt

dVt = −Xt dt − γVt dt + dBt

with a one-dimensional Brownian motion (Bt)t≥0.

(i) Solve the SDE with initial conditions X0 = x0, V0 = v0.

(ii) Show that Xt is a normally distributed random variable with mean given by the
solution of the corresponding deterministic equation.

(iii) Show that if γ > 0 and (X0, V0) has an appropriate Gaussian distribution then
(Xt, Vt) is a stationary Gaussian process.

2. (Lévy characterizations and random rotations).

a) Suppose that (M i
t )t≥0, i = 1, . . . , d, are continuous local martingales with covariations

[M i,M j]t = δi,jt. Show thatMt = (M1
t , . . . ,M

d
t ) is a d-dimensional Brownian motion.

Hint: Try to argue similarly as in the one-dimensional case.

b) Let (Bt)t≥0 be a d-dimensional Brownian motion, and suppose that (Ot)t≥0 is a
continuous adapted process taking values in the orthogonal d × d matrices. Prove
that the process

Xt =

∫ t

0

Os dBs

is again a d-dimensional Brownian motion.
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3. (Translations of normal distributions).

a) Let C ∈ Rn×n be a symmetric non-negative definite matrix, and let h ∈ Rn.

(i) Show that if C is non-degenerate then N (h,C) and N (0, C) are mutually ab-
solutely continuous with relative density

dN (h,C)

dN (0, C)
(x) = e(h,x)−

1
2
(h,h) for x ∈ Rn, (1)

where (g, h) := g · C−1h for g, h ∈ Rn.

(ii) Prove that in general, N (h,C) is absolutely continuous w.r.t. N (0, C) if and
only if h is orthogonal to the kernel of C w.r.t. the Euclidean inner product.

b) Now consider the probability measures

P =
∞⊗
i=1

N (ai, 1) and Q =
∞⊗
i=1

N (0, 1)

on RN endowed with the product σ-algebra, where (ai)i∈N is a sequence of real num-
bers. Let Fn = σ(X1, . . . , Xn) where Xk is the evaluation of the k-th coordinate.

(i) Show that P is absolutely continuous w.r.t. Q on Fn with relative density

Zn =
n∏

i=1

exp
(
aiXi − a2i /2

)
.

(ii) Now assume that
∑∞

i=1 a
2
i < ∞. Show that in this case, Mn =

√
Zn/E

[√
Zn

]
is

an L2 bounded martingale and Zn is a uniformly integrable martingale. Conclude
that P is absolutely continuous w.r.t. Q on the product σ-algebra F∞.

(*iii) Conversely, show that P is not absolutely continuous w.r.t. Q if
∑

a2i = ∞.
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