Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis", Sheet 12.

Please hand in your solutions on eCampus by Wednesday, July 9, 10 am.

1. (Stochastic oscillator).

- a) Let A and σ be $d \times d$ -matrices, let $a \in \mathbb{R}^d$, and suppose that $(B_t)_{t \ge 0}$ is a Brownian motion in \mathbb{R}^d .
 - (i) Solve the SDE

$$dZ_t = (AZ_t + a) dt + \sigma dB_t , \qquad Z_0 = z_0.$$

(ii) Show that Z_t is a normally distributed random vector with mean vector m(t) and covariance matrix C(t) where m and C are solutions of the ordinary differential equations

$$\dot{m} = Am + a, \qquad \dot{C} = AC + CA^T + \sigma\sigma^T.$$

b) Small displacements from equilibrium (e.g. of a pendulum) with stochastic reset force and friction coefficient γ are described by an SDE of type

$$dX_t = V_t dt$$

$$dV_t = -X_t dt - \gamma V_t dt + dB_t$$

with a one-dimensional Brownian motion $(B_t)_{t\geq 0}$.

- (i) Solve the SDE with initial conditions $X_0 = x_0, V_0 = v_0$.
- (ii) Show that X_t is a normally distributed random variable with mean given by the solution of the corresponding deterministic equation.
- (iii) Show that if $\gamma > 0$ and (X_0, V_0) has an appropriate Gaussian distribution then (X_t, V_t) is a stationary Gaussian process.

2. (Lévy characterizations and random rotations).

- a) Suppose that $(M_t^i)_{t\geq 0}$, i = 1, ..., d, are continuous local martingales with covariations $[M^i, M^j]_t = \delta_{i,j}t$. Show that $M_t = (M_t^1, ..., M_t^d)$ is a d-dimensional Brownian motion. Hint: Try to argue similarly as in the one-dimensional case.
- b) Let $(B_t)_{t\geq 0}$ be a *d*-dimensional Brownian motion, and suppose that $(O_t)_{t\geq 0}$ is a continuous adapted process taking values in the orthogonal $d \times d$ matrices. Prove that the process

$$X_t = \int_0^t O_s \, dB_s$$

is again a d-dimensional Brownian motion.

3. (Translations of normal distributions).

- a) Let $C \in \mathbb{R}^{n \times n}$ be a symmetric non-negative definite matrix, and let $h \in \mathbb{R}^n$.
 - (i) Show that if C is non-degenerate then $\mathcal{N}(h, C)$ and $\mathcal{N}(0, C)$ are mutually absolutely continuous with relative density

$$\frac{d\mathcal{N}(h,C)}{d\mathcal{N}(0,C)}(x) = e^{(h,x) - \frac{1}{2}(h,h)} \quad \text{for } x \in \mathbb{R}^n,$$
(1)

where $(g,h) := g \cdot C^{-1}h$ for $g,h \in \mathbb{R}^n$.

- (ii) Prove that in general, $\mathcal{N}(h, C)$ is absolutely continuous w.r.t. $\mathcal{N}(0, C)$ if and only if h is orthogonal to the kernel of C w.r.t. the Euclidean inner product.
- b) Now consider the probability measures

$$\mathbb{P} = \bigotimes_{i=1}^{\infty} \mathcal{N}(a_i, 1) \text{ and } \mathbb{Q} = \bigotimes_{i=1}^{\infty} \mathcal{N}(0, 1)$$

on $\mathbb{R}^{\mathbb{N}}$ endowed with the product σ -algebra, where $(a_i)_{i \in \mathbb{N}}$ is a sequence of real numbers. Let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ where X_k is the evaluation of the k-th coordinate.

(i) Show that \mathbb{P} is absolutely continuous w.r.t. \mathbb{Q} on \mathcal{F}_n with relative density

$$Z_n = \prod_{i=1}^n \exp(a_i X_i - a_i^2/2).$$

- (ii) Now assume that $\sum_{i=1}^{\infty} a_i^2 < \infty$. Show that in this case, $M_n = \sqrt{Z_n} / \mathbb{E} \left[\sqrt{Z_n} \right]$ is an L^2 bounded martingale and Z_n is a uniformly integrable martingale. Conclude that \mathbb{P} is absolutely continuous w.r.t. \mathbb{Q} on the product σ -algebra \mathcal{F}_{∞} .
- (*iii) Conversely, show that \mathbb{P} is not absolutely continuous w.r.t. \mathbb{Q} if $\sum a_i^2 = \infty$.