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1. (Cox-Ingersoll-Ross model). Let (Bt)t≥0 be a Brownian motion. The Cox-Ingersoll-
Ross model aims to describe, for example, an interest rate process (Rt)t≥0 or a stochastic
volatility process and is given by

dRt = (α− βRt)dt+ σ
√
RtdBt, R0 = x0 > 0,

where α, β, σ > 0. It can be shown that the SDE admits a strong solution.

a) Compute the corresponding scale function and study the asymptotic behaviour of Rt

depending on the parameters α, β and σ.

b) Suppose that 2α ≥ σ2. We study further properties of Rt :

(i) By applying Itō’s formula, show that E[|Rt|p] < ∞ for any t > 0 and p ≥ 1.

(ii) Compute the expectation of Rt. (Hint: Apply Itō’s formula to f(t, x) = eβtx.)

(iii) Proceed in a similar way to compute Var[Rt], and determine lim
t→∞

Var[Rt].

2. (Black-Scholes model). A stock price is modeled by a geometric Brownian Motion
(St)t≥0 with parameters α, σ > 0. We assume that the interest rate is equal to a real
constant r for all times. Let c(t, x) be the value of an option at time t if the stock price at
that time is St = x. Suppose that c(t, St) is replicated by a hedging portfolio, i.e., there is
a trading strategy holding ϕt shares of stock at time t and putting the remaining portfolio
value Vt − ϕtSt in the money market account with fixed interest rate r so that the total
portfolio value Vt at each time t agrees with c(t, St).

“Derive” the Black-Scholes partial differential equation

∂c

∂t
(t, x) + rx

∂c

∂x
(t, x) +

1

2
σ2x2 ∂

2c

∂x2
(t, x) = rc(t, x) (1)

and the delta-hedging rule

ϕt =
∂c

∂x
(t, St) (=: Delta ). (2)

(Hint: Consider the discounted portfolio value Ṽt = e−rtVt and, correspondingly, e
−rtc(t, St).

Compute the Itō differentials, and conclude that both processes coincide if c is a solution
to (1) and ϕt is given by (2).)
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3. (Variation of constants II). We consider nonlinear stochastic differential equations

dXt = f(t,Xt) dt+ c(t)Xt dBt, X0 = x,

where f : R+ × R → R and c : R+ → R are continuous (deterministic) functions.

a) Find an explicit solution Zt of the equation with f ≡ 0.

b) To solve the equation in the general case, use the Ansatz Xt = Ct ·Zt. Show that the
SDE gets the form

dCt(ω)

dt
= f(t, Zt(ω) · Ct(ω))/Zt(ω) , C0 = x. (3)

Note that for each ω ∈ Ω, this is a deterministic differential equation for the function
t 7→ Ct(ω). We can therefore solve (3) with ω as a parameter to find Ct(ω).

c) Apply the method to study the solution of the stochastic differential equation

dXt = Xγ
t dt+Xt dBt , X0 = x > 0 ,

where γ is a constant. For which values of γ does the solution explode in finite time?

4. (Lévy Area). If c(t) = (x(t), y(t)) is a smooth curve in R2 with c(0) = 0, then

A(t) =

∫ t

0

(x(s)y′(s)− y(s)x′(s)) ds =

∫ t

0

x dy −
∫ t

0

y dx

describes the area that is covered by the secant from the origin to c(s) in the interval
[0, t]. Analogously, for a two-dimensional Brownian motion Bt = (Xt, Yt) with B0 = 0, one
defines the Lévy Area

At :=

∫ t

0

Xs dYs −
∫ t

0

Ys dXs .

a) Let α(t), β(t) be C1-functions, p ∈ R, and

Vt = ipAt −
α(t)

2

(
X2

t + Y 2
t

)
+ β(t) .

Show that eVt is a local martingale provided α′(t) = α(t)2 − p2 and β′(t) = α(t).

b) Let t0 ∈ [0,∞). Show that the solutions of the ordinary differential equations for α
and β with α(t0) = β(t0) = 0 are

α(t) =p · tanh(p · (t0 − t)) ,

β(t) =− log cosh(p · (t0 − t)) .

Hence conclude that

E
[
eipAt0

]
=

1

cosh(pt0)
∀ p ∈ R .

c) Show that the distribution of At is absolutely continuous with density

fAt(x) =
1

2t cosh(πx
2t
)
.
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