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1. (Cox-Ingersoll-Ross model). Let (B;);>¢ be a Brownian motion. The Cox-Ingersoll-
Ross model aims to describe, for example, an interest rate process (R;):>o or a stochastic
volatility process and is given by

th = (Oé - ﬁRt)dt -+ g/ thBt, R(] = Xy > 0,
where «, 5,0 > 0. It can be shown that the SDE admits a strong solution.

a) Compute the corresponding scale function and study the asymptotic behaviour of R;
depending on the parameters «, 5 and o.

b) Suppose that 2a > o2, We study further properties of R; :

(i) By applying Ito’s formula, show that E[|R;|P] < oo for any ¢ > 0 and p > 1.
(ii) Compute the expectation of R;. (Hint: Apply Ito’s formula to f(t,z) = e’lz.)

(iii) Proceed in a similar way to compute Var[R;|, and determine tlim Var[Ry|.
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2. (Black-Scholes model). A stock price is modeled by a geometric Brownian Motion
(St)t>0 with parameters «,0 > 0. We assume that the interest rate is equal to a real
constant r for all times. Let ¢(t, z) be the value of an option at time ¢ if the stock price at
that time is Sy = x. Suppose that ¢(t,S;) is replicated by a hedging portfolio, i.e., there is
a trading strategy holding ¢, shares of stock at time ¢ and putting the remaining portfolio
value V; — ¢;S; in the money market account with fixed interest rate r so that the total
portfolio value V; at each time t agrees with ¢(¢, S;).

“Derive” the Black-Scholes partial differential equation
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a—;(t,x) +rxa;(t x) + 02x2—c(t x) = rc(t,x) (1)

2 Ox?
and the delta-hedging rule

b — %(t, S) (= Delta). (2)

(Hint: Consider the discounted portfolio value Vi = e "V, and, correspondingly, e"c(t, Sy).
Compute the Ito differentials, and conclude that both processes coincide if ¢ is a solution
to (1) and ¢y is given by (2).)



3. (Variation of constants IT). We consider nonlinear stochastic differential equations
dXt = f(t, Xt> dt + C(t)Xt dBt, X() =X,
where f: RT xR — R and ¢: RT — R are continuous (deterministic) functions.

a) Find an explicit solution Z; of the equation with f = 0.

b) To solve the equation in the general case, use the Ansatz X; = C; - Z;. Show that the
SDE gets the form

G~ fi 20 C)/a) o= )

Note that for each w € €, this is a deterministic differential equation for the function
t — Cy(w). We can therefore solve (3) with w as a parameter to find Cy(w).

c) Apply the method to study the solution of the stochastic differential equation
dXt:Xt’ydt‘i‘XtdBt, X0:$>0,

where v is a constant. For which values of v does the solution explode in finite time?

4. (Lévy Area). If ¢(t) = (x(t),y(t)) is a smooth curve in R? with ¢(0) = 0, then

a0 = [ @) v as = [vay— [ yas

describes the area that is covered by the secant from the origin to ¢(s) in the interval
0, ¢]. Analogously, for a two-dimensional Brownian motion B; = (X;, Y;) with By = 0, one

defines the Lévy Area
t t
Ay = / X, dY, — / Y,dX,.
0 0

a) Let a(t), B(t) be C'-functions, p € R, and
t
Vi = ipAs - % (XF+Y7) + (1)
Show that €' is a local martingale provided o/(t) = a(t)* — p* and B'(t) = a(t).
b) Let ¢ty € [0,00). Show that the solutions of the ordinary differential equations for «
and  with a(tg) = S(ty) = 0 are
a(t) =p-tanh(p- (to — 1)),
B(t) = —logcosh(p - (ty — t)) .

Hence conclude that

- 1
E [e?M0] = ———— R.
[e] cosh(pty) Vpe

c) Show that the distribution of A; is absolutely continuous with density

1
fa(z) = 2t cosh(Z)



