Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis", Sheet 11.

Please hand in your solutions on eCampus by Wednesday, July 2, 10 am.

1. (Cox-Ingersoll-Ross model). Let $(B_t)_{t\geq 0}$ be a Brownian motion. The Cox-Ingersoll-Ross model aims to describe, for example, an interest rate process $(R_t)_{t\geq 0}$ or a stochastic volatility process and is given by

$$dR_t = (\alpha - \beta R_t)dt + \sigma \sqrt{R_t}dB_t, \qquad R_0 = x_0 > 0,$$

where $\alpha, \beta, \sigma > 0$. It can be shown that the SDE admits a strong solution.

- a) Compute the corresponding scale function and study the asymptotic behaviour of R_t depending on the parameters α , β and σ .
- b) Suppose that $2\alpha \geq \sigma^2$. We study further properties of R_t :
 - (i) By applying Itō's formula, show that $\mathbb{E}[|R_t|^p] < \infty$ for any t > 0 and $p \ge 1$.
 - (ii) Compute the expectation of R_t . (Hint: Apply Itō's formula to $f(t, x) = e^{\beta t} x$.)
 - (iii) Proceed in a similar way to compute $\operatorname{Var}[R_t]$, and determine $\lim \operatorname{Var}[R_t]$.

2. (Black-Scholes model). A stock price is modeled by a geometric Brownian Motion $(S_t)_{t\geq 0}$ with parameters $\alpha, \sigma > 0$. We assume that the interest rate is equal to a real constant r for all times. Let c(t, x) be the value of an option at time t if the stock price at that time is $S_t = x$. Suppose that $c(t, S_t)$ is replicated by a hedging portfolio, i.e., there is a trading strategy holding ϕ_t shares of stock at time t and putting the remaining portfolio value $V_t - \phi_t S_t$ in the money market account with fixed interest rate r so that the total portfolio value V_t at each time t agrees with $c(t, S_t)$.

"Derive" the Black-Scholes partial differential equation

$$\frac{\partial c}{\partial t}(t,x) + rx\frac{\partial c}{\partial x}(t,x) + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 c}{\partial x^2}(t,x) = rc(t,x)$$
(1)

and the *delta-hedging rule*

$$\phi_t = \frac{\partial c}{\partial x}(t, S_t)$$
 (=: Delta). (2)

(Hint: Consider the discounted portfolio value $\tilde{V}_t = e^{-rt}V_t$ and, correspondingly, $e^{-rt}c(t, S_t)$. Compute the Itō differentials, and conclude that both processes coincide if c is a solution to (1) and ϕ_t is given by (2).)

3. (Variation of constants II). We consider nonlinear stochastic differential equations $dX_t = f(t, X_t) dt + c(t)X_t dB_t, \qquad X_0 = x,$

where $f : \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$ and $c : \mathbb{R}^+ \to \mathbb{R}$ are continuous (deterministic) functions.

- a) Find an explicit solution Z_t of the equation with $f \equiv 0$.
- b) To solve the equation in the general case, use the Ansatz $X_t = C_t \cdot Z_t$. Show that the SDE gets the form

$$\frac{dC_t(\omega)}{dt} = f(t, Z_t(\omega) \cdot C_t(\omega))/Z_t(\omega) , \qquad C_0 = x.$$
(3)

Note that for each $\omega \in \Omega$, this is a *deterministic* differential equation for the function $t \mapsto C_t(\omega)$. We can therefore solve (3) with ω as a parameter to find $C_t(\omega)$.

c) Apply the method to study the solution of the stochastic differential equation

$$dX_t = X_t^{\gamma} dt + X_t dB_t , \qquad X_0 = x > 0 ,$$

where γ is a constant. For which values of γ does the solution explode in finite time?

4. (Lévy Area). If c(t) = (x(t), y(t)) is a smooth curve in \mathbb{R}^2 with c(0) = 0, then $A(t) = \int_0^t (x(s)y'(s) - y(s)x'(s)) \, ds = \int_0^t x \, dy - \int_0^t y \, dx$

describes the area that is covered by the secant from the origin to c(s) in the interval [0, t]. Analogously, for a two-dimensional Brownian motion $B_t = (X_t, Y_t)$ with $B_0 = 0$, one defines the Lévy Area

$$A_t := \int_0^t X_s \, dY_s - \int_0^t Y_s \, dX_s \, dX_s$$

a) Let $\alpha(t), \beta(t)$ be C^1 -functions, $p \in \mathbb{R}$, and

$$V_t = ipA_t - \frac{\alpha(t)}{2} (X_t^2 + Y_t^2) + \beta(t)$$

Show that e^{V_t} is a local martingale provided $\alpha'(t) = \alpha(t)^2 - p^2$ and $\beta'(t) = \alpha(t)$.

b) Let $t_0 \in [0, \infty)$. Show that the solutions of the ordinary differential equations for α and β with $\alpha(t_0) = \beta(t_0) = 0$ are

$$\alpha(t) = p \cdot \tanh(p \cdot (t_0 - t)),$$

$$\beta(t) = -\log \cosh(p \cdot (t_0 - t)).$$

Hence conclude that

$$\mathbb{E}\left[e^{ipA_{t_0}}\right] = \frac{1}{\cosh(pt_0)} \qquad \forall \ p \in \mathbb{R}$$

c) Show that the distribution of A_t is absolutely continuous with density

$$f_{A_t}(x) = \frac{1}{2t\cosh(\frac{\pi x}{2t})}$$