Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis", Sheet 10.

Please hand in your solutions on eCampus by Wednesday, June 25, 10 am.

1. (Complex-valued Brownian motion). A complex-valued Brownian motion is given by $B_t = B_t^1 + iB_t^2$ with independent one-dimensional Brownian motions B^1 and B^2 .

a) Prove that for any holomorphic function F,

$$F(B_t) = F(B_0) + \int_0^t F'(B_s) dB_s$$

where F' denotes the complex derivative of F. Hint: Use the Cauchy-Riemann equations.

b) Solve the complex-valued SDE $dZ_t = \alpha Z_t dB_t, \quad \alpha \in \mathbb{C}$.

2. (Heat equation on an interval). Let $V : (a, b) \to [0, \infty)$ be continuous and bounded, and suppose that $u \in C^{1,2}([0, \infty) \times (a, b))$ $(-\infty < a < b < \infty)$ is an up to the boundary continuous and bounded solution of the heat equation

$$\frac{\partial u}{\partial t}(t,x) = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}(t,x) - V(x) u(t,x)$$

with initial and boundary conditions

$$u(0,x) = f(x), \quad u(t,a) = h(t), \quad u(t,b) = k(t).$$

By considering an appropriate martingale show that

$$u(t,x) = \mathbb{E}_x \left[f(B_t) \exp\left(-\int_0^t V(B_s) \, ds\right) ; t \le T_a \wedge T_b \right] \\ + \mathbb{E}_x \left[h(t-T_a) \exp\left(-\int_0^{T_a} V(B_s) \, ds\right) ; T_a < t \wedge T_b \right] \\ + \mathbb{E}_x \left[k(t-T_b) \exp\left(-\int_0^{T_b} V(B_s) \, ds\right) ; T_b < t \wedge T_a \right]$$

3. (Feynman and Kac at the stock exchange). The price of a security is modeled by geometric Brownian motion (X_t) with parameters $\alpha, \sigma > 0$. At a price x we have a cost V(x) per unit of time. The total cost up to time t is then given by

$$A_t = \int_0^t V(X_s) ds \; .$$

Suppose that u is a bounded solution to the PDE

$$\frac{\partial u}{\partial t} = \mathcal{L}u - \beta V u$$
, where $\mathcal{L} = \frac{\sigma^2}{2} x^2 \frac{d^2}{dx^2} + \alpha x \frac{d}{dx}$.

Show that the Laplace transform of A_t is given by $\mathbb{E}_x\left[e^{-\beta A_t}\right]=u(t,x)$.

4. (Quadratic variation of Itō integrals). Suppose that $X : [0, \infty) \to \mathbb{R}$ is a continuous function with continuous quadratic variation [X] w.r.t. a fixed sequence (π_n) of partitions such that $\operatorname{mesh}(\pi_n) \to 0$.

a) Let $F \in C^1(\mathbb{R})$. Show that the quadratic variation of $t \mapsto F(X_t)$ along (π_n) is given by

$$[F(X)]_t = \int_0^t F'(X_s)^2 d[X]_s.$$

b) Conclude that for $f \in C^1(\mathbb{R})$, the Itō integral $I_t = \int_0^t f(X_s) dX_s$ has quadratic variation

$$[I(f)]_t = \int_0^t f(X_s)^2 d[X]_s$$