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1. (Complex-valued Brownian motion). A complex-valued Brownian motion is
given by Bt = B1

t + iB2
t with independent one-dimensional Brownian motions B1 and B2.

a) Prove that for any holomorphic function F ,

F (Bt) = F (B0) +

∫ t

0

F ′(Bs) dBs ,

where F ′ denotes the complex derivative of F .
Hint: Use the Cauchy-Riemann equations.

b) Solve the complex-valued SDE dZt = αZt dBt, α ∈ C .

2. (Heat equation on an interval). Let V : (a, b) → [0,∞) be continuous and
bounded, and suppose that u ∈ C1,2([0,∞) × (a, b)) (−∞ < a < b < ∞) is an up to the
boundary continuous and bounded solution of the heat equation

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x) − V (x)u(t, x)

with initial and boundary conditions

u(0, x) = f(x), u(t, a) = h(t), u(t, b) = k(t).

By considering an appropriate martingale show that

u(t, x) = Ex

[
f(Bt) exp

(
−
∫ t

0

V (Bs) ds

)
; t ≤ Ta ∧ Tb

]
+Ex

[
h(t− Ta) exp

(
−
∫ Ta

0

V (Bs) ds

)
; Ta < t ∧ Tb

]
+Ex

[
k(t− Tb) exp

(
−
∫ Tb

0

V (Bs) ds

)
; Tb < t ∧ Ta

]
.
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3. (Feynman and Kac at the stock exchange). The price of a security is modeled
by geometric Brownian motion (Xt) with parameters α, σ > 0. At a price x we have a cost
V (x) per unit of time. The total cost up to time t is then given by

At =

∫ t

0

V (Xs)ds .

Suppose that u is a bounded solution to the PDE

∂u

∂t
= Lu − βV u , where L =

σ2

2
x2 d2

dx2
+ αx

d

dx
.

Show that the Laplace transform of At is given by Ex

[
e−βAt

]
= u(t, x) .

4. (Quadratic variation of Itō integrals). Suppose that X : [0,∞) → R is a
continuous function with continuous quadratic variation [X] w.r.t. a fixed sequence (πn)
of partitions such that mesh(πn) → 0.

a) Let F ∈ C1(R). Show that the quadratic variation of t 7→ F (Xt) along (πn) is given
by

[F (X)]t =

∫ t

0

F ′(Xs)
2 d[X]s.

b) Conclude that for f ∈ C1(R), the Itō integral It =
∫ t

0
f(Xs) dXs has quadratic

variation

[I(f)]t =

∫ t

0

f(Xs)
2 d[X]s .
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