Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis" Sheet 3

Please hand in your solutions on eCampus by Wednesday, April 30, 10 am.

1. (Martingales and stopping times of Brownian motion).

Let $(B_t)_{t>0}$ be a *d*-dimensional Brownian motion. Show that:

- a) The following processes are martingales w.r.t. each of the filtrations $(\mathcal{F}_t^B)_{t\geq 0}$ and $(\mathcal{F}_t)_{t\geq 0}$, where $\mathcal{F}_t = \bigcap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}^B$ denotes the right continuous filtration:
 - (i) The coordinate processes $B_t^{(i)}$, $1 \le i \le d$,
 - (ii) $B_t^{(i)} B_t^{(j)} t \cdot \delta_{ij}$ for any $1 \le i, j \le d$,
 - (iii) $\exp(\alpha \cdot B_t \frac{1}{2}|\alpha|^2 t)$ for any $\alpha \in \mathbb{R}^d$.
- b) If all sample paths $t \mapsto B_t(\omega)$ are continuous, then for every closed set $A \subset \mathbb{R}^d$, the first hitting time $T_A = \inf\{t \ge 0 : B_t \in A\}$ is a stopping time w.r.t. $(\mathcal{F}_t^B)_{t\ge 0}$.
- c) For an open set $U \subset \mathbb{R}^d$, T_U is a stopping time w.r.t. $(\mathcal{F}_t)_{t\geq 0}$ but not necessarily w.r.t. $(\mathcal{F}_t^B)_{t\geq 0}$.

2. (The Wiener integral as a martingale). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, and let $g \in \mathcal{L}^2_{loc}(0, \infty)$. We consider the stochastic process $(I_t)_{t\in[0,\infty)}$ given by the Wiener integrals

$$I_t = \int_0^t g(s) \, dB_s := \int_0^\infty \mathbb{1}_{[0,t]}(s) g(s) \, dB_s.$$

- a) Show that the following processes are martingales w.r.t. the filtration $(\mathcal{F}_t^B)_{t\geq 0}$:
 - (i) The process I_t itself,
 - (ii) $I_t^2 \int_0^t g(s)^2 \, ds$,
 - (iii) $\exp(\alpha I_t \frac{1}{2}\alpha^2 \int_0^t g(s)^2 ds)$ for any $\alpha \in \mathbb{R}$.
- b) Prove that if g is bounded then for any T > 0, the process $(I_t)_{t \in [0,T]}$ has a modification that is Hölder continuous of order α for any $\alpha \in (0, 1/2)$.

3. (Uniform integrability).

a) For which sequences (a_n) of real numbers are the random variables

$$X_n = a_n \cdot I_{(0,1/n)} , \qquad n \in \mathbb{N},$$

uniformly integrable w.r.t the uniform distribution on the interval (0,1)?

- b) Show that the exponential martingale $M_t = \exp(B_t t/2)$ of a 1-dimensional Brownian motion is not uniformly integrable.
- c) Let $(M_n)_{n \in \mathbb{N}_0}$ be an (\mathcal{F}_n) martingale with $\sup \mathbb{E}[|M_n|^p] < \infty$ for some p > 1. Prove that (M_n) converges almost surely and in L^1 , and $M_n = \mathbb{E}[M_\infty | \mathcal{F}_n]$ for all $n \ge 0$. Hence, conclude that $|M_n - M_\infty|^p$ is uniformly integrable, and $M_n \to M_\infty$ in L^p .

4. (Stopping times). Let $(\mathcal{F}_t)_{t \in [0,\infty)}$ be a filtration on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, and let S and T be (\mathcal{F}_t) stopping times. Show that the following properties hold:

- a) $T \wedge S$, $T \vee S$ and T + S are again (\mathcal{F}_t) stopping times.
- b) \mathcal{F}_T is a σ -algebra, and T is \mathcal{F}_T -measurable.
- c) $S \leq T \Rightarrow \mathcal{F}_S \subseteq \mathcal{F}_T;$
- d) $\mathcal{F}_{S \wedge T} = \mathcal{F}_S \cap \mathcal{F}_T;$
- e) The events $\{S < T\}$, $\{S \le T\}$ and $\{S = T\}$ are all contained in $\mathcal{F}_S \cap \mathcal{F}_T$.

5. (Simulation of Ornstein-Uhlenbeck processes I). An Ornstein-Uhlenbeck process is a solution of a stochastic differential equation $dX_t = -\gamma X_t dt + \sigma dB_t$, $X_0 = x_0$, i.e.,

$$X_t = x_0 - \int_0^t \gamma X_s \, ds + \sigma B_t \quad \text{for all } t \in [0, \infty), \tag{1}$$

where $x_0 \in \mathbb{R}$ and $\gamma, \sigma \in (0, \infty)$ are given constants, and $(B_t)_{t \geq 0}$ is a Brownian motion.

- a) Write down a time-discretization of (1), where $t \in h\mathbb{N}_0$ for a given step size h > 0.
- b) Simulate a given number k of sample paths of an OU process on a time interval $[0, t_{\text{max}}]$, and plot the result. Run the simulation for different values of h, x_0, γ and σ .

Remark on programming exercises: You can use a language of your choice. Model solutions will be provided in Python with Jupyter notebooks. Links to a brief introduction to Python and Jupyter notebooks and some examples can be found on the course homepage.