Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis" Sheet 2

Please hand in your solutions on eCampus by Wednesday, April 23, 10 am.

1. (Wiener integral revisited). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. In this exercise, we give an alternative definition of the Wiener integral

$$I(g) = \int_0^\infty g(s) \, dB_s.$$

a) Suppose first that $g:[0,\infty)\to\mathbb{R}$ is a step function, i.e.,

$$g(s) = \sum_{i=0}^{n-1} a_i \, \mathbf{1}_{(t_i, t_{i+1}]}(s)$$

for some $n \in \mathbb{N}$, $0 \le t_0 < t_1 < \ldots < t_n$, and $a_1, \ldots, a_n \in \mathbb{R}$. Then we define

$$I(g) = \sum_{i=0}^{n-1} a_i \cdot \left(B_{t_{i+1}} - B_{t_i} \right).$$

Show that $g \mapsto I(g)$ is a linear isometry from the subspace of step functions in $L^2(0,\infty)$ to $L^2(\Omega, \mathcal{A}, \mathbb{P})$.

- b) Use this isometry to define I(g) for any $g \in L^2(0,\infty)$.
- c) Now suppose that $g \mapsto W(g)$ is a white noise on $[0, \infty)$. It has been shown in the lecture, that there exists a Brownian motion $(B_t)_{t\geq 0}$ such that for any $t \geq 0$, $B_t = W((0, t])$ almost surely. Show that for this Brownian motion and $g \in L^2(0, \infty)$,

$$\int_0^\infty g(s) \, dB_s = W(g) \quad \text{almost surely.}$$

2. (Brownian bridge). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion with $B_0 = 0$ on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, and let

$$X_t = B_t - tB_1, \quad t \in [0, 1].$$

- a) Show that $(X_t)_{t \in [0,1]}$ is a centred Gaussian process and compute its covariance function $C(s,t) = \text{Cov}(X_s, X_t)$.
- b) Show that for $0 < t_1 < \ldots < t_n < 1$, the joint law of X_{t_1}, \ldots, X_{t_n} has density

$$f(x_1,\ldots,x_n) = \sqrt{2\pi} \varphi_{t_1}(x_1) \varphi_{t_2-t_1}(x_2-x_1) \cdots \varphi_{t_n-t_{n-1}}(x_n-x_{n-1}) \varphi_{1-t_n}(-x_n),$$

where φ_t denotes the density of the normal distribution N(0,t).

- c) Explain why the law of $(X_{t_1}, \ldots, X_{t_n})$ can be interpreted as the conditional law of $(B_{t_1}, \ldots, B_{t_n})$ given $B_1 = 0$ (that is, $(X_t)_{t \in [0,1]}$ is a Brownian bridge from 0 to 0).
- d) Verify that the two processes $(X_t)_{t \in [0,1]}$ and $(X_{1-t})_{t \in [0,1]}$ have the same distribution on $C([0,1],\mathbb{R})$ (that is, the law is *invariant under time reversal*).

3. (Brownian sheet). Suppose that $g \mapsto W(g)$ is a white noise on $[0, \infty) \times [0, \infty)$ (endowed with Lebesgue measure).

a) Show that there exists a *continuous* two-parameter process $(B_{s,t})_{s,t\in[0,\infty)}$ such that for any $s,t \ge 0$,

$$B_{s,t} = W((0,s] \times (0,t])$$
 almost surely.

Verify that B is a centred two-parameter continuous Gaussian process with covariance function

 $\operatorname{Cov} \left(B_{s,t}, B_{u,v} \right) = \min(s, u) \cdot \min(t, v) \, .$

Such a process is called a *Brownian sheet*.

- b) Show that for a fixed s, the process $(B_{s,t})_{t\geq 0}$ is a multiple of a Brownian motion.
- c) Prove that for any a, b > 0, the rescaled process $\frac{1}{ab}B_{a^2s,b^2t}$ is again a Brownian sheet.