Institute for Applied Mathematics Summer semester 2025 Andreas Eberle, Francis Lörler

"Introduction to Stochastic Analysis" Sheet 0

The exercises on this page will be discussed in the tutorials during the first/second week (friday to tuesday). You do not have to submit solutions.

1. (Revision of conditional expectations 1). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\mathcal{F} \subset \mathcal{A}$ a σ -algebra, and $X : \Omega \to \mathbb{R}_+$ a non-negative random variable.

- a) Define the conditional expectation $\mathbb{E}[X|\mathcal{F}]$.
- b) Suppose that there exists a decomposition of Ω into disjoint sets A_1, \ldots, A_n such that $\mathcal{F} = \sigma(\{A_1, \ldots, A_n\})$. Show that

$$\mathbb{E}[X|\mathcal{F}] = \sum_{i:\mathbb{P}[A_i]>0} \mathbb{E}[X|A_i] \mathbf{1}_{A_i}$$

is a version of the conditional expectation of X given \mathcal{F} .

2. (Revision of conditional expectations 2). Let $X, Y : \Omega \to \mathbb{R}_+$ be non-negative random variables. Show that \mathbb{P} -almost surely, the following identities hold:

- a) For $\lambda \in \mathbb{R}$ we have $\mathbb{E}[\lambda X + Y|\mathcal{F}] = \lambda \mathbb{E}[X|\mathcal{F}] + \mathbb{E}[Y|\mathcal{F}].$
- b) $\mathbb{E}[\mathbb{E}[X|\mathcal{F}]] = \mathbb{E}[X]$ and $|\mathbb{E}[X|\mathcal{F}]| \le \mathbb{E}[|X||\mathcal{F}].$
- c) If $\sigma(X)$ is independent of \mathcal{F} , then $\mathbb{E}[X|\mathcal{F}] = \mathbb{E}[X]$.
- d) Let (S, \mathcal{S}) and (T, \mathcal{T}) be measurable spaces. If $Y : \Omega \to S$ is \mathcal{F} -measurable, $X : \Omega \to T$ is independent of \mathcal{F} and $f : S \times T \to [0, \infty)$ is product-measurable, then

$$\mathbb{E}[f(Y,X)|\mathcal{F}](\omega) = \mathbb{E}[f(Y(\omega),X)] \quad \text{for } \mathbb{P}\text{-almost every } \omega \in \Omega.$$

3. (Revision of conditional expectations 3). Let X, Y, Z be random variables on a joint probability space $(\Omega, \mathcal{A}, \mathbb{P})$. We define

$$\mathbb{E}[X|Y] := \mathbb{E}[X|\sigma(Y)].$$

Show the following statements:

a) If $X, Y \in \mathcal{L}^1$ are independent and identically distributed, then \mathbb{P} -almost surely,

$$\mathbb{E}[X|X+Y] = \frac{1}{2}(X+Y).$$

b) If Z is independent of the pair (X, Y), then \mathbb{P} -almost surely,

$$\mathbb{E}[X|Y,Z] = \mathbb{E}[X|Y].$$

Is this statement still true if we only assume that X and Z are independent?

"Introduction to Stochastic Analysis" Sheet 1

Please hand in your solutions on eCampus by Tuesday, April 15.

1. (Conditional expectations). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, $\mathcal{G} \subseteq \mathcal{A}$ a σ -algebra, and let X, Y, Z be random variables on $(\Omega, \mathcal{A}, \mathbb{P})$. Suppose that the random variables (X, Z) and (Y, Z) have the same law (in particular X and Y have common law μ).

- a) For $A \in \mathcal{A}$, consider the event $B = \{\mathbb{P}[A|\mathcal{G}] = 0\}$. Show that $B \subset A^c$ a.s.
- b) Show that, if f is a non-negative function then

$$\mathbb{E}[f(X)|Z] = \mathbb{E}[f(Y)|Z]$$
 a.s.

c) Let $g : \mathbb{R} \to \mathbb{R}_+$ be measurable. Suppose that \mathbb{P} -almost surely, $\mathbb{E}[g(Z)|X] = h_1(X)$ and $\mathbb{E}[g(Z)|Y] = h_2(Y)$. Show that $h_1 = h_2 \mu$ -a.s.

2. (Paley-Wiener Integral). Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion on $(\Omega, \mathcal{A}, \mathbb{P})$ with $B_0 = 0$. For a function $h \in C^1([0, 1], \mathbb{R})$, the stochastic integral of h w.r.t. B can be defined via the integration by parts identity

$$\int_0^1 h(s) dB_s := h(1) B_1 - \int_0^1 h'(s) B_s ds$$

a) Show that the random variables $\int_0^1 h(s) dB_s$ are normally distributed with mean 0 and variance $\int_0^1 h(s)^2 ds$. In particular,

$$\mathbb{E}\left[\left(\int_0^1 h(s)dB_s\right)^2\right] = \int_0^1 h(s)^2 ds.$$

- b) Use this isometry to define the integral $\int_0^1 h(s) dB_s$ for an arbitrary $h \in L^2(0, 1)$.
- c) Compute the covariance of two integrals $\int_0^1 g(s) dB_s$ and $\int_0^1 h(s) dB_s$ with $g, h \in L^2(0, 1)$. What do you obtain for $g = 1_A$ and $h = 1_B$?

3. (Gaussian martingales). A process $(M_n)_{n=0,1,2,...}$ is called Gaussian if for every n, the vector (M_0, \ldots, M_n) is normally distributed. Let (M_n) be a Gaussian martingale.

- a) Show that (M_n) has independent increments, i.e., the random variable $M_{n+1} M_n$ is independent of the σ -algebra $\mathcal{F}_n = \sigma(M_0, \ldots, M_n)$.
- b) We set $\sigma_0^2 = \operatorname{Var}(M_0)$ and $\sigma_k^2 = \operatorname{Var}(M_k M_{k-1})$ for $k \ge 1$. Compute the predictable increasing process $\langle M \rangle_n$ in the Doob decomposition of the submartingale (M_n^2) .
- c) Show that for every $\theta \in \mathbb{R}$, $Z_n^{\theta} = e^{\theta M_n \frac{1}{2}\theta^2 \langle M \rangle_n}$ is a martingale. Does it converge a.s.?

4. (Martingales, supermartingales and stopping times).

- a) Let (X_n) be a supermartingale s.t. $\mathbb{E}[X_n]$ is constant. Show that (X_n) is a martingale.
- b) Let (X_n) be an integrable process adapted to the filtration (\mathcal{F}_n) . Show that (X_n) is a martingale if and only if $\mathbb{E}[X_T] = \mathbb{E}[X_0]$ for every bounded (\mathcal{F}_n) stopping time T.