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The exercises on this page will be discussed in the tutorials during the
first/second week (friday to tuesday). You do not have to submit solutions.

1. (Revision of conditional expectations 1). Let (Ω,A,P) be a probability space,
F ⊂ A a σ-algebra, and X : Ω → R+ a non-negative random variable.

a) Define the conditional expectation E[X|F ].

b) Suppose that there exists a decomposition of Ω into disjoint sets A1, . . . An such that
F = σ({A1, . . . , An}). Show that

E[X|F ] =
∑

i:P[Ai]>0
E[X|Ai] 1Ai

is a version of the conditional expectation of X given F .

2. (Revision of conditional expectations 2). Let X, Y : Ω → R+ be non-negative
random variables. Show that P-almost surely, the following identities hold:

a) For λ ∈ R we have E[λX + Y |F ] = λE[X|F ] + E[Y |F ].

b) E[E[X|F ]] = E[X] and |E[X|F ]| ≤ E[|X| |F ].

c) If σ(X) is independent of F , then E[X|F ] = E[X].

d) Let (S,S) and (T, T ) be measurable spaces. If Y : Ω → S is F -measurable, X : Ω →
T is independent of F and f : S × T → [0,∞) is product-measurable, then

E[f(Y,X)|F ](ω) = E[f(Y (ω), X)] for P-almost every ω ∈ Ω.

3. (Revision of conditional expectations 3). Let X, Y, Z be random variables on a
joint probability space (Ω,A,P). We define

E[X|Y ] := E[X|σ(Y )].

Show the following statements:

a) If X, Y ∈ L1 are independent and identically distributed, then P-almost surely,

E[X|X + Y ] =
1

2
(X + Y ).

b) If Z is independent of the pair (X, Y ), then P-almost surely,

E[X|Y, Z] = E[X|Y ].

Is this statement still true if we only assume that X and Z are independent?
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Please hand in your solutions on eCampus by Tuesday, April 15.

1. (Conditional expectations). Let (Ω,A,P) be a probability space, G ⊆ A a σ-algebra,
and letX, Y, Z be random variables on (Ω,A,P). Suppose that the random variables (X,Z)
and (Y, Z) have the same law (in particular X and Y have common law µ).

a) For A ∈ A, consider the event B = {P[A|G] = 0}. Show that B ⊂ Ac a.s.

b) Show that, if f is a non-negative function then

E[f(X)|Z] = E[f(Y )|Z] a.s.

c) Let g : R → R+ be measurable. Suppose that P-almost surely, E[g(Z)|X] = h1(X)
and E[g(Z)|Y ] = h2(Y ). Show that h1 = h2 µ-a.s.

2. (Paley-Wiener Integral). Let (Bt)t≥0 be a one-dimensional Brownian motion on
(Ω,A,P) with B0 = 0. For a function h ∈ C1([0, 1],R), the stochastic integral of h w.r.t.
B can be defined via the integration by parts identity∫ 1

0

h(s)dBs := h(1)B1 −
∫ 1

0

h′(s)Bs ds.

a) Show that the random variables
∫ 1

0
h(s)dBs are normally distributed with mean 0

and variance
∫ 1

0
h(s)2ds. In particular,

E

[(∫ 1

0

h(s)dBs

)2
]
=

∫ 1

0

h(s)2ds.

b) Use this isometry to define the integral
∫ 1

0
h(s)dBs for an arbitrary h ∈ L2(0, 1).

c) Compute the covariance of two integrals
∫ 1

0
g(s)dBs and

∫ 1

0
h(s)dBs with g, h ∈

L2(0, 1). What do you obtain for g = 1A and h = 1B?

3. (Gaussian martingales). A process (Mn)n=0,1,2,... is called Gaussian if for every n,
the vector (M0, . . . ,Mn) is normally distributed. Let (Mn) be a Gaussian martingale.

a) Show that (Mn) has independent increments, i.e., the random variable Mn+1 − Mn

is independent of the σ-algebra Fn = σ(M0, . . . ,Mn).

b) We set σ2
0 = Var(M0) and σ2

k = Var(Mk −Mk−1) for k ≥ 1. Compute the predictable
increasing process ⟨M⟩n in the Doob decomposition of the submartingale (M2

n).

c) Show that for every θ ∈ R, Zθ
n = eθMn−

1
2
θ2⟨M⟩n is a martingale. Does it converge a.s.?

4. (Martingales, supermartingales and stopping times).

a) Let (Xn) be a supermartingale s.t. E[Xn] is constant. Show that (Xn) is a martingale.

b) Let (Xn) be an integrable process adapted to the filtration (Fn). Show that (Xn) is
a martingale if and only if E[XT ] = E[X0] for every bounded (Fn) stopping time T .
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