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The exercises on this page will be discussed in the tutorials during the
first /second week (friday to tuesday). You do not have to submit solutions.

1. (Revision of conditional expectations 1). Let (2,.4,P) be a probability space,
F C A a g-algebra, and X : Q) — R, a non-negative random variable.

a) Define the conditional expectation E[X|F].

b) Suppose that there exists a decomposition of ) into disjoint sets Ay, ... A, such that
F =0({A,...,A,}). Show that

BIXIF) = 3, EXIA L,

is a version of the conditional expectation of X given F.

2. (Revision of conditional expectations 2). Let X,Y : Q@ — R, be non-negative
random variables. Show that P-almost surely, the following identities hold:

a) For A € R we have E[AX + Y|F] = AE[X|F] + E[Y|F].
b) E[E[X|F]] = E[X] and [E[X|F]| <E[|X]|F].
c) If o(X) is independent of F, then E[X|F] = E[X].

)

d) Let (S,8) and (T, T) be measurable spaces. If Y : ) — S is F-measurable, X : Q —

Let
T is independent of F and f : S x T" — [0, 00) is product-measurable, then
E[f(Y, X)|Fl(w) = E[f(Y(w), X)] for P-almost every w € €.
3. (Revision of conditional expectations 3). Let X,Y,Z be random variables on a
joint probability space (2, A, P). We define
E[X|Y] :=E[X|o(Y)].
Show the following statements:
a) If X,Y € £! are independent and identically distributed, then P-almost surely,

E[X|X +Y] = %(X +Y).

b) If Z is independent of the pair (X,Y'), then P-almost surely,
E[X|Y, Z] = E[X|Y].

Is this statement still true if we only assume that X and Z are independent?
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Please hand in your solutions on eCampus by Tuesday, April 15.

1. (Conditional expectations). Let (€2, .4, P) be a probability space, G C A a g-algebra,
and let XY, Z be random variables on (€2, .4, P). Suppose that the random variables (X, Z)
and (Y, Z) have the same law (in particular X and Y have common law pu).

a) For A € A, consider the event B = {P[A|G] = 0}. Show that B C A° a.s.

b) Show that, if f is a non-negative function then
E[f(X)|2] =E[f(Y)|Z] as.

c) Let g : R — R be measurable. Suppose that P-almost surely, E[¢(Z)|X] = h1(X)
and E[g(2)|Y] = ho(Y). Show that hy = hsy u-a.s.

2. (Paley-Wiener Integral). Let (B;):>0 be a one-dimensional Brownian motion on

(2, A,P) with By = 0. For a function h € C'([0,1],R), the stochastic integral of h w.r.t.
B can be defined via the integration by parts identity

/01 h(s)dB, — 11(1)131_/01 W (s) B, ds.

a) Show that the random variables fo s)dBs are normally distributed with mean 0
and variance fo s)%ds. In particular,

(/01 h(s)dB5)2 _ /01 h(s)2ds.

b) Use this isometry to define the integral fo s)d B for an arbitrary h € L*(0,1).

E

c) Compute the covariance of two integrals fo s)dBs and fo s)dBs with g,h €
L*(0,1). What do you obtain for g = 14 and h = 1B

3. (Gaussian martingales). A process (M, )n—01.2,. is called Gaussian if for every n,
the vector (My, ..., M,) is normally distributed. Let (M,,) be a Gaussian martingale.

a) Show that (M,) has independent increments, i.e., the random variable M, ; — M,
is independent of the o-algebra F,, = (M, ..., M,).

b) We set 02 = Var(My) and o7 = Var(M;, — My_1) for k > 1. Compute the predictable
increasing process (M),, in the Doob decomposition of the submartingale (M?).

1
c¢) Show that for every § € R, Z? = M =30 (M ig o martingale. Does it converge a.s.”

4. (Martingales, supermartingales and stopping times).

a) Let (X,,) be a supermartingale s.t. E[X,,] is constant. Show that (X,,) is a martingale.

b) Let (X,) be an integrable process adapted to the filtration (F,). Show that (X,,) is
a martingale if and only if E[X7| = E[X] for every bounded (F,,) stopping time 7.



