Institut für Angewandte Mathematik Sommersemester 2023

Andreas Eberle, Stefan Oberdörster

10. Übungsblatt "Algorithmische Mathematik 2"

Abgabe der Lösungen bis Dienstag 20.6.

1. (Zeilensummen- und Spaltensummennorm) Die (ℓ_p, ℓ_p) -Operatornorm einer Matrix $A = (a_{ij}) \in \mathbb{R}^{d \times d}$ ist für $p \in [1, \infty]$ gegeben durch

$$||A||_p := ||A||_{p,p} = \sup_{v \neq 0} \frac{||Av||_p}{||v||_p}.$$

Zeigen Sie die folgenden Aussagen:

- a) $||A||_{\infty} = \max_{1 \le i \le d} \sum_{j=1}^{d} |a_{ij}|,$
- b) $||A||_1 = \max_{1 \le j \le d} \sum_{i=1}^d |a_{ij}|.$

2. (Erweiterung des Banachschen Fixpunktsatzes)

a) Sei $\Phi:[0,1]^2\to[0,1]^2$ gegeben durch

$$\Phi\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{4}e^{-y} \\ x^2 \end{pmatrix}.$$

Zeigen Sie, dass Φ bezüglich der Maximumsnorm $\|\cdot\|_{\infty}$ keine Kontraktion ist, $\Phi \circ \Phi$ hingegen schon. *Hinweis: Betrachten Sie* $\|D(\Phi \circ \Phi)\|_{\infty}$.

b) Allgemein sei nun $M \subseteq \mathbb{R}^d$ abgeschlossen, $\Phi : M \to \mathbb{R}^d$ eine Abbildung mit $\Phi(M) \subseteq M$, und $\Phi^m(x) = (\Phi \circ \cdots \circ \Phi)(x)$ die m-fache Verkettung. Zeigen Sie:

Existieren ein $m \in \mathbb{N}$, $p \in [1, \infty]$, und ein $L \in (0, 1)$ mit

$$\|\Phi^m(x) - \Phi^m(y)\|_p \leq L \|x - y\|_p \quad \text{ für alle } x, y \in M,$$

dann hat Φ genau einen Fixpunkt $x^* \in M$, und die Fixpunktiteration

$$x^{(k+1)} = \Phi(x^{(k)})$$

konvergiert für jeden Startwert $x^{(0)} \in M$ gegen x^* .

c) Beweisen Sie eine Fehlerabschätzung für den Approximationsfehler nach n Schritten. Welche Abschätzung erhalten Sie im Beispiel aus a)?

1

3. (Fixpunktiteration mit Rundungsfehlern) Sei $\phi: \mathbb{R}^d \to \mathbb{R}^d$ eine Abbildung, welche die Voraussetzungen des Banachschen Fixpunktsatzes mit einer Kontraktionskonstanten L < 1 erfülle. Bei der numerischen Implementierung führen in der Regel Rundungsfehler dazu, dass die Fixpunktiteration $x^{(k)} = \phi(x^{(k-1)})$ nicht exakt ausgewertet werden kann. Statt $\phi(x)$ betrachten wir daher den gestörten Funktionswert $\phi(x) + r(x)$, wobei eine positive Konstante δ existiere mit $|r(x)| \leq \delta$ für alle $x \in \mathbb{R}^d$. Zeigen Sie, dass für die durch

$$\tilde{x}^{(0)} = x^{(0)}, \qquad \tilde{x}^{(k)} = \phi(\tilde{x}^{(k-1)}) + r(\tilde{x}^{(k-1)})$$

definierte Iteration gilt, dass

$$|\tilde{x}^{(k)} - x^*| \le \frac{\delta}{1 - L} + L^k \left(|x^{(0)} - x^*| - \frac{\delta}{1 - L} \right)$$

für alle $k \geq 0$, wobei x^* der eindeutige Fixpunkt von ϕ ist.

4. (Konvergenz des Newton-Verfahrens I)

a) Diskutieren Sie die Konvergenz des Newton-Verfahrens für die Funktion

$$f(x) = x e^{-x}$$

für alle (zulässigen) positiven Startwerte x_0 .

- b) Sei $f:[a,b]\to\mathbb{R}$ zweimal stetig differenzierbar mit $f(a)<0,\ f(b)>0$, sowie f'(x)>0 und $f''(x)\geq0$ für alle $x\in[a,b]$. Zeigen Sie, dass das Newton-Verfahren mit Startwert $x_0=b$ monoton gegen die einzige Nullstelle x^* von f in [a,b] konvergiert.
- 5. (Konvergenz des Newton-Verfahrens II) Sei $f : \mathbb{R} \to \mathbb{R}$ eine beliebige dreimal stetig differenzierbare Funktion mit einfacher Nullstelle x^* .
 - a) Zeigen Sie, dass das Newton-Verfahren für alle Startwerte aus einer Umgebung von x^* quadratisch gegen x^* konvergiert.
 - b) Zeigen Sie weiter, dass das Iterationsverfahren

$$y_n = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad x_{n+1} = y_n - \frac{f(y_n)}{f'(x_n)}$$

lokal gegen x^* konvergiert, und mindestens die Konvergenzordnung 3 besitzt.

P. (Newton-Verfahren; Abgabe bis 27.6.)

Bearbeiten Sie die fünfte Programmieraufgabe auf der Homepage.