Institut für numerische Simulation Sommersemester 2017

André Uschmajew, Behrend Heeren

13. Übungsblatt "Algorithmische Mathematik 2"

Abgabe bis Mittwoch 26.7., 14Uhr.

1. (Globale Konvergenz des Newton-Verfahrens für konvexe Funktionen)

Sei $f:[a,b]\to\mathbb{R}$ zweimal stetig differenzierbar, f(a)<0, f(b)>0, sowie f'(x)>0 und $f''(x)\geq 0$ für alle $x\in[a,b)$. Zeigen Sie: Dann konvergiert das Newton-Verfahren mit Startwert $x_0=b$ monoton gegen die einzige Nullstelle x^* von f in [a,b].

2. (Verfahren mit kubischer Konvergenz)

Sei $\alpha > 0$. Zur Berechnung von $\sqrt{\alpha}$ sei das Iterationsverfahren

$$x_{k+1} = Ax_k + \frac{B}{x_k} + \frac{C}{x_k^3}$$

gegeben. Bestimmen Sie Koeffizienten $A, B, C \in \mathbb{R}$ so, dass das Verfahren für alle Startwerte $x_0 > \sqrt{\alpha} \ kubisch$ gegen $\sqrt{\alpha}$ konvergiert, d.h., es soll gelten $||x_{k+1} - \sqrt{\alpha}|| \le c||x_k - \sqrt{\alpha}||^3$ für c > 0 und k groß genug.

3. (Modifiziertes Newton-Verfahren)

a) Es sei x^* ein Fixpunkt der stetig differenzierbaren Abbildung $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ und es gelte $\|D\Phi(x^*)\| < 1$ in einer gewissen induzierten Matrixnorm. Zeigen Sie: Es gibt ein $\delta > 0$, so dass die Fixpunktiteration $x^{(k+1)} = \Phi(x^{(k)}$ für jeden Startwert $x^{(0)} \in \mathbb{R}^n$ mit $\|x^{(0)} - x^*\| < \delta$ bezüglich der Norm $\|\cdot\|$ Q-linear gegen x^* konvergiert.

b) Sei $F: \mathbb{R}^n \to \mathbb{R}^n$ eine stetig differenzierbare Abbildung und $DF(x^*)$ sei invertierbar. Zeigen Sie, es gibt eine Umgebung U von x^* , sodass für jeden Startwert $x^{(0)} \in U$ das modifizierte Newton-Verfahren

$$x^{(k+1)} = x^{(k)} - (DF(x^{(0)}))^{-1} F(x^{(k)})$$

wohldefiniert ist und lokal linear gegen x^* konvergiert.

Hinweis: Nach 4(a) ist die Abbildung $X \mapsto X^{-1}$ auf der offenen Menge GL(n) der invertierbaren $n \times n$ Matrizen stetig.

4. (Das Verfahren von Schulz)

- a) Sei $GL(n) = \{X \in \mathbb{R}^{n \times n} : X \text{ invertierbar}\}$ und $G: GL(n) \to GL(n)$ mit $f(X) = X^{-1}$. Zeigen Sie, dass G stetig differenzierbar ist, indem Sie für jedes $X \in GL(n)$ den linearen Operator $DG(X): \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ bestimmen. Ist DG(X) invertierbar? Wenn ja, wie lautet der inverse Operator?
- b) Sei $A \in GL(n)$. Das Verfahren von Schulz ist dient der iterativen Berechnung von A^{-1} und ist gegeben durch

$$X_{k+1} = X_k + X_k (1 - AX_k), \quad X_0 \in \mathbb{R}^{n \times n}.$$

Zeigen Sie, dass diese Folge lokal quadratisch gegen A^{-1} konvergiert. Hinweis: Betrachten Sie das Newton-Verfahren für die Funktion $F(X) = X^{-1} - A$.

P. (Newton-Verfahren) Bearbeiten Sie die sechste Programmieraufgabe (Abgabe im CIP-Pool bis Dienstag, 25.7.2017).