Institut für numerische Simulation Sommersemester 2017

André Uschmajew, Behrend Heeren

11. Übungsblatt "Algorithmische Mathematik 2"

Abgabe bis Mittwoch 12.7., 14Uhr.

1. (Banachscher Fixpunktsatz)

Sei $M \subseteq \mathbb{R}^d$ abgeschlossen und $\Phi: M \to \mathbb{R}^d$ eine Abbildung mit $\Phi(M) \subseteq M$.

a) Zeigen Sie: Ist für ein $m \in \mathbb{N}$ die m-fache Verkettung $\Phi^m(x) := (\Phi \circ \ldots \circ \Phi)(x)$ eine Kontraktion, so besitzt Φ genau einen Fixpunkt $x^* \in M$ und die Fixpunktiteration

$$x^{(k+1)} = \Phi(x^{(k)})$$

konvergiert für jeden Startwert $x^{(0)} \in M$ gegen x^* .

b) Sei $M = [0, 1]^2$ und

$$\Phi: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{4}e^{-y} \\ x^2 \end{pmatrix}.$$

Zeigen Sie: Bzgl. der Maximumsnorm ist $\Phi:M\to M$ keine Kontraktion, $\Phi\circ\Phi$ hingegen schon.

Hinweis: Warum reicht es zu zeigen, dass $||D(\Phi \circ \Phi)(x,y)||_{\infty} < 1$ für alle $(x,y) \in M$?

2. (Zeilensummen- und Spaltensummennorm)

Sei $A \in \mathbb{R}^{n \times n}$ mit $A = (a_{ij})_{i,j=1,\dots,n}$. Zeigen Sie:

a) Die durch die Maximumsnorm $\|.\|_{\infty}$ induzierte Matrixnorm ist gegeben durch

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

b) Die durch die l_1 -Norm $\|.\|_1$ induzierte Matrixnorm ist gegeben durch

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|.$$

3. (Spektralradius)

Mit $\rho(T)$ seid der Spektralradius einer Matrix $T \in \mathbb{R}^{n \times n}$ bezeichnet.

a) Zeigen Sie:

$$\rho(T) < 1 \iff (I - T)^{-1} = \sum_{k=0}^{\infty} T^k$$
 (Neumannsche Reihe).

Hinweis: Wie üblich bezeichnet $\sum_{k=0}^{\infty} T^k$ den Grenzwert $\lim_{K\to\infty} \sum_{k=0}^K T^k$.

b) Sei $\rho(T) > 1$. Zeigen Sie, dass es dann Vektoren $f, x^{(0)} \in \mathbb{R}^n$ gibt, für welche die lineare Fixpunktiteration

$$x^{(k+1)} = Tx^{(k)} + f$$

divergiert.

Hinweis: Setzen Sie nicht voraus, dass es einen eindeutigen Fixpunkt gibt (sonst folgt die Behauptung aus einem Satz der Vorlesung).

4. (Eigenwerte der Finite-Differenzen-Diskretisierung)

Die Steifigkeitsmatrix für Finite Differenzen auf dem Interval I = [0, 1] mit n + 1 Stützstellen $x_i = ih, i = 0, ..., n$ und Gitterweite h = 1/n ist gegeben durch

$$L_h = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix} \in \mathbb{R}^{n-1 \times n-1}.$$

Zeigen Sie, dass für $k=1,\dots,n-1$ die Vektoren $v^k\in\mathbb{R}^{n-1}$ mit Komponenten

$$v_i^k = \sqrt{2} \sin(k\pi h i), \quad i = 1, \dots, n - 1,$$

Eigenvektoren von L_h zu den Eigenwerten $\lambda_k = 4h^{-2} \sin^2(\frac{k\pi h}{2})$ sind.

Hinweis: Benutzen Sie $1 - \cos(a) = 2\sin^2(a/2)$ und weitere Additionstheoreme.

P. (Iterative Löser) Bearbeiten Sie die fünfte Programmieraufgabe (Abgabe im CIP-Pool).