Institut für angewandte Mathematik Sommersemester 2009

Andreas Eberle, Nikolaus Schweizer

3. Programmierprojekt zur AlMa II

Abgabe bis 9.7. im CIP-Pool

P. (Gradienten- und cg-Verfahren für die Poissongleichung)

Ziel dieses Projekts ist der Vergleich von Iterationsverfahren zur Lösung der diskreten Poissongleichung auf einem Quadrat im \mathbb{Z}^2 . Sei

$$D = \{1, 2, \dots, n\} \times \{1, 2, \dots, n\}, \quad n \in \mathbb{N}.$$

Gesucht ist eine Funktion $u: D \to \mathbb{R}$, $u = (u_{i,i})_{1 \le i,j \le n}$ mit

$$-u_{i+1,j} + 2u_{i,j} - u_{i-1,j} - u_{i,j+1} + 2u_{i,j} - u_{i,j-1} = g_{i,j} \quad \text{für } 2 \le i, j \le n-1,$$

$$u_{i,j} = 0 \quad \text{für } i = 1, n \text{ bzw. } j = 1, n.$$

Mit anderen Worten: u löst die Gleichung $-\Delta_{\mathbb{Z}^2}u=g$ auf dem Inneren von D, und u verschwindet auf dem Rand von D. Hierbei ist $g=(g_{i,j})$ eine vorgegebene Funktion auf $\{2,\ldots,n-1\}\times\{2,\ldots,n-1\}$.

Das lineare Gleichungssystem läßt sich auch kompakt in der Form

$$Au = b$$

mit Vektoren $u = (u_{i,j})_{1 \le i,j \le n}$ und $b = (b_{i,j})_{1 \le i,j \le n}$ der Dimension $d = n^2$, und einer $n^2 \times n^2$ Matrix A schreiben. **Beachten Sie:** Wenn Sie das Problem implementieren, bietet es sich an, die Vektoren u und b als zweidimensionale Felder zu interpretieren!

Aufgabe:

- a) Geben Sie die Koeffizienten $b_{i,j}$ und $(Au)_{i,j}$ der Vektoren b und Au an. Definieren Sie Mathematica-Funktionen, die b und Au aus g bzw. u berechnen.
- b) Schreiben Sie Mathematica-Funktionen, die je einen Iterationsschritt des Gradientenverfahrens und des cg-Verfahrens für das Gleichungssystem Au = b ausführen.
- c) Führen Sie das Gradienten- und das cg-Verfahren durch zum Beispiel für n=10. Wählen Sie dabei g unter anderem so, dass die exakte Lösung u durch $u_{i,j}=1$ für $2 \le i, j \le n-1$, u=0 auf dem Rand, gegeben ist. Stellen Sie die im Iterationsverfahren erhaltenen Vektoren/Arrays $\left(u_{i,j}^{(k)}\right)_{i,j}$ für $k=0,1,2,\ldots$ graphisch dar (z.B. mit ListPointPlot3D oder ListPlot3D).
- d) Plotten Sie für beide Verfahren die ℓ^2 -Norm des Residuums $r^{(k)}$ als Funktion von k, und vergleichen Sie die Verfahren.