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Abstract. We consider the problem of undirected polymers (tied at the endpoints)
in random environment, also known as the unoriented first passage percolation on the
hypercube, in the limit of large dimensions. By means of the multiscale refinement of
the second moment method we obtain a fairly precise geometrical description of optimal
paths, i.e. of polymers with minimal energy. The picture which emerges can be loosely
summarized as follows. The energy of the polymer is, to first approximation, uniformly
spread along the strand. The polymer’s bonds carry however a lower energy than in the
directed setting, and are reached through the following geometrical evolution. Close to
the origin, the polymer proceeds in oriented fashion – it is thus as stretched as possible.
The tension of the strand decreases however gradually, with the polymer allowing for
more and more backsteps as it enters the core of the hypercube. Backsteps, although in-
creasing the length of the strand, allow the polymer to connect reservoirs of energetically
favorable edges which are otherwise unattainable in a fully directed regime. These reser-
voirs lie at mesoscopic distance apart, but in virtue of the high dimensional nature of the
ambient space, the polymer manages to connect them through approximate geodesics
with respect to the Hamming metric: this is the key strategy which leads to an optimal
energy/entropy balance. Around halfway, the mirror picture sets in: the polymer tension
gradually builds up again, until full orientedness close to the endpoint. The approach
yields, as a corollary, a constructive proof of the result by Martinsson [Ann. Appl. Prob.
26 (2016), Ann. Prob. 46 (2018)] concerning the leading order of the ground state.

In memory of Dima Ioffe.
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1. Introduction

We denote by Gn = (Vn, En) the n-dimensional hypercube. Vn = {0, 1}n is thus the
set of vertices, and En the set of edges connecting nearest neighbours. We write 0 =
(0, 0, ..., 0) and 1 = (1, 1, ..., 1) for diametrically opposite vertices. For l ∈ N we let

Π̃n,l ≡ the set of polymers, i.e. paths from 0 to 1 of length l ,

as well as

Π̃n ≡
∞⋃
l=1

Π̃n,l.

For π ∈ Π̃n a polymer going through two vertices v,w of the hypercube, we denote by
lπ(v,w) the length of the connecting substrand, also shortening lπ ≡ lπ(0,1).

Every edge of the n-hypercube is parallel to some unit vector ej ∈ Rn, where ej connects

(0, . . . , 0) and (0, . . . , 0, 1︸︷︷︸
jth−coordinate

, 0, . . . , 0) .

We write e−j ≡ −ej. The quantity πj ∈ {1, n} ∪ {−1,−n} then specifies the direction of
a π-path at step j. A forward step occurs if πj ∈ {1, n}; if πj ∈ {−1,−n} we refer to this
as a backstep.

Remark that the endpoint of the (sub)path π1π2 . . . πi coincides with the vertex given by∑
j≤i eπj . The edge traversed in the j-th step by the π-path will be denoted [π]j.

To each edge we attach independent, standard (mean one) exponential random variables

ξ, the random environment, and assign to a polymer π ∈ Π̃n,l its weight/energy according
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to

Xπ ≡
l∑

j=1

ξ[π]j .

The question we wish to address concerns the ground state of undirected polymers in
random environment1, to wit:

mn ≡ min
π∈Π̃n

Xπ, (1.1)

in the mean field limit n ↑ ∞, and the statistical/geometrical properties of optimal paths.

A first remark is in place: since polymers with loops cannot achieve the ground state
(their energy can always be reduced by removing the loops), we will henceforth focus on
the set of loopless paths of length l ∈ N, denoted Πn,l, and shortening, in full analogy,

Πn ≡
∞⋃
l=1

Πn,l,

for the set of all loopless paths.
Looplessness will be very useful: it guarantees, in particular, that the energy of a poly-

mer of length, say, l, is indeed given by the sum of l independent standard exponentials.
On the other hand, loopless paths are not necessarily directed, see Figure 1 below for a
graphical rendition.

It is clear that a major issue here will be that of path counting. For the hypercube, the
following beautiful formula is available. We denote by Mn,l,d the number of polymers of
length l between two points at Hamming distance d, i.e. points thus disagree in exactly
d coordinates. It then holds :

Mn,l,d =
1

2n

n∑
i=0

d∑
j=0

(
d

j

)(
n− d
i− j

)
(−1)j(n− 2i)l1j≤i. (1.2)

(This formula concerns all paths of given length: loops, in particular, are also allowed).
A proof of this formula, which relies on the classical approach via adjancency matrices,
can be found in the monograph by Stanley [16]. Since we were not able to identify its
first discoverer, we will refer to (1.2) as Stanley’s formula.

No less remarkable is the following Stanley’s identity, relating Mn,l,d to hyperbolic
functions. For x ∈ R, it holds:

∞∑
l=0

Mn,l,d
xl

l!
= sinh(x)dcosh(x)n−d . (1.3)

Assuming the validity of (1.2), the proof of (1.3) only requires the binomial theorem
and elementary Taylor expansions: it will be given in the Appendix for completeness.

1This problem also appears in the literature under the name of unoriented first passage percolation,
FPP for short. In mathematical biology it bears relevance to the issue of fitness landscapes. in which
case it is dubbed accessibility percolation, see [1, 2, 6, 13, 14, 15, 10, 12, 11] and references therein. We
adopt here the polymer terminology since it is arguably more suitable to convey the type of results we
obtain.
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Figure 1. The 10-dim hypercube with two polymers. The blue polymer
is directed: its length coincides with the dimension (l = n = 10), and it is
thus as stretched as possible. The red polymer is undirected: it performs
backsteps, which account for a lower ”tension”, and for the long excursions
(l = 20).

Lightening notations further by setting Mn,l ≡ Mn,l,n for the number of polymers of
length l between two opposite vertices on the hypercube, it thus follows from (1.3) that

∞∑
l=0

Mn,l
xl

l!
= sinh(x)n . (1.4)

This relation will allow for precise asymptotical analysis. Before seeing a first, key ap-
plication, we shall recall yet another technical input concerning tail estimates for the
distribution of the sum of independent standard exponentials as appearing in the prob-
lem at hand: denoting by {ξi}i∈N a family of such random variables and with Xl ≡

∑
i≤l ξi,

it then holds:

P (Xl ≤ x) = (1 +K(x, l))
e−xxl

l!
, (1.5)

for x > 0, and with 0 ≤ K(x, l) ≤ exx/(l+ 1). (The proof is truly elementary, but see e.g.
[8, Lemma 5] for details).

Some notational convention: for an, bn ≥ 0 we write an . bn if an ≤ Cbn for some
numerical constant C > 0 and an ∝ bn if an . bn and bn . an .

Armed with Stanley’s formula and the tail estimates, we are now ready to make the
aforementioned key observation concerning the ground state of undirected polymers: de-
noting by Nn,l,x ≡ #{π ∈ Πn,l, Xπ ≤ x} the number of polymers of length l and energies
at most x, by union bounds and Markov inequality we have

P (mn ≤ x) = P (∪∞l=0{Nn,l,x ≥ 1}) ≤
∞∑
l=0

E(Nn,l,x). (1.6)
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Remark that we are considering polymers with no loops, in which case the energies are
indeed sums of l independent random variables. Furthermore, it clearly holds that #Πn,l ≤
Mn,l, since allowing loops can only increase the cardinality2. All in all, we have

E(Nn,l,x) ≤Mn,lP (Xl ≤ x) .Mn,l
xl

l!
, (1.7)

the second inequality by the tail estimates.
Performing now the sum over all polymer-lengths in (1.6) and then using (1.3), we thus

obtain

P (mn ≤ x) . sinh(x)n . (1.8)

The sinh-function is increasing, therefore, denoting by

E ≡ arcsinh(1) = log(1 +
√

2), (1.9)

we deduce from (1.8), and the Borel-Cantelli lemma, a lower bound to the ground state,
to wit:

P
(

lim
n→∞

mn ≥ E
)

= 1. (1.10)

As it turns out, this bound is tight.

Martinsson’s Theorem [13, 14]. For undirected polymers on the hypercube, it holds

lim
n→∞

mn = E, (1.11)

in probability.

In other words, a ”mean field trivialization” occurs in the limit of large dimensions, and
the model of unoriented polymers in random environment thus falls in the so-called REM
class [7]. Given the simple derivation of the lower bound, which eventually relies on the
Markov inequality only, one is perhaps tempted to tackle the missing upper bound via
the Second Moment Method. This is however not the route taken by Martinsson who, in
fact, has found two rather distinct proofs.

The historically first proof has appeared in [13]. In that paper, Martinsson builds upon
ideas of Durrett [3] and work by Fill and Pemantle [4], and settles the issue of the upper
bound through a delicate comparison with the so-called Branching Translation Process,
BTP for short. The BTP is a hierarchical model amenable to an explicit analysis and
which, crucially, stochastically dominates the model of unoriented polymers.

In the second proof of the above theorem, Martinsson proceeds through some ingenious
use of the FKG inequality, and (related) subadditivity/monotonicity properties of paths
with optimal energies, see [14] for details.

Both proofs naturally come with their own strengths and weaknesses: the first one not
only provides a solution of the problem at hand, but also insights into the structure of
the BTP which are interesting in their own right, whereas the second proof settles the
FPP on Cartesian power graphs, and thus applies in vast generality.

2Here and henceforth we use Stanley’s formula although we will be mostly considering loopless poly-
mers: in hindsight, the error/overshooting will turn out to be negligible. This is course due to the high
dimensionality of the problem at hand.
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It seems however fair to say that, by their own nature, both approaches shed little light
on the physical phenomena which eventually lead to the mean field trivialization. It is the
purpose of this article to fill this gap by providing yet a third proof of the upper bound
for the ground state, and hence of Martinsson’s Theorem.

To this end, we will implement the multiscale refinement of the second moment method
[7], a tool which forces us to identify the mechanisms allowing polymers to reach minimal
energies. (As will become clear in the treatment, the choice of an exponentially distributed
random environment presents no loss of generality). Unfortunately, the formulation of our
main result, Theorem 2 below, requires not a little infrastructure: this will be provided
in the next Section 2. In order the justify (and de-mystify) some otherwise odd look-
ing formulas, concepts, etc. we will proceed gradually, increasing the amount of details
concerning the geometry of optimal paths through simple observations and elementary
computations. The upshot of these findings will be recorded in the form of Insights. A
cautionary note is here due. The computations underlying Insight 1-5 below are rigorous
yet per se not necessarily conclusive: indeed, they all rely on the existence of paths with
the established geometric properties, but this will be, in fact, the content of Theorem 2
itself.

Our new approach leads to a proof of Martinsson’s theorem which is much longer than
those already available. It does however yield a detailed geometrical description of optimal
polymers, and this in turn opens a gateway towards the unsettled issue of fluctuations
and weak limits.

2. Drawing the picture

As we have seen, a reasonable candidate for the ground state eventually follows from
an application of the Markov inequality. Albeit crucial, the ground state encodes however
only some limited information. Another fundamental quantity is of course the length of
an optimal polymer: as it turns out, a simple computation, allows to make an educated
guess.

2.1. A candidate optimal length. Due to the high dimensionality of the problem,
in order to identify the optimal length it seems natural to analyze the asymptotics of
E(Nn,l,x), the expected number of polymers with energies at most x ∈ R+, and prescribed
length l ∈ N. To this end, we recall Stanley’s identity (1.4) which states that

∞∑
l=0

Mn,l
xl

l!
= sinh(x)n. (2.1)

Restricting to x > 0 implies that

Mn,l
xl

l!
≤ sinh(x)n , (2.2)

and therefore, by optimizing, we obtain,

Mn,l ≤ inf
x>0

[
sinh(x)n

l!

xl

]
. (2.3)

Consistently with our terminology, we refer to (2.2) and (2.3) as Stanley’s M-bounds.
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Recall that Nn,l,E is the number of paths of length l between two opposite vertices, and

energy at most E = log(1 +
√

2) as given in (1.9). By the tail estimates, and the above
Stanley’s M-bound, we thus have

E(Nn,l,E) .Mn,l
El

l!
≤ El inf

x>0

sinh(x)n

xl
= El

sinh(x∗)n

x∗l
, (2.4)

where x∗ = x∗(l) is the minimizer of the r.h.s. above; taking the derivative of the target
function, we see that this is the (unique) solution of

x

tanh(x)
=

l

n
. (2.5)

At this point one is perhaps tempted to revert the line of reasoning: with the natural
candidate for the optimal energy in mind, we choose x∗ ≡ E, in which case it follows
from (2.5) that l =

√
2En, as an elementary computation shows. Changing the order of

extremization is of course not quite justified3, but the upshot turns out to be correct:

Insight 1. On the n-dim hypercube, the
(candidate) length of optimal polymers is

√
2En.

Henceforth, we will shorten

L ≡
√

2E , (2.6)

and always assume, without loss of generality, that Ln ∈ N.

2.2. Uniform distribution of the energy. Having found natural candidates for the
minimal energy and optimal length, a further question naturally arises:

how is an E-energy distributed along the polymer?

To formalize, let us consider α ∈ [0, 1], and shorten α ≡ 1− α; furthermore let λ ∈ [0, 1]
and similarly shorten λ = 1− λ. We denote by

Nλ,α
n,Ln := #

π ∈ Πn,Ln :
αLn∑
i=1

ξ[π]i ≤ λE,
Ln∑

i=αLn+1

ξ[π]i ≤ λE

 . (2.7)

the number of polymers with the property that an λ-fraction of the energy E is carried
by an α-fraction of the length (and similarly for the remaining part of the strand).

3One can prove that for all l ∈ N, and x∗ satisfying (2.5), it holds that

sinh(x∗)n
El

x∗l
≤ 1,

with the bound being saturated at x∗ = E. As a matter of fact, we will prove an even stronger statement,
namely that the length of optimal polymers indeed strongly concentrates on Ln, asymptotically in n. As
we will see, this concentration follows from a key property of the power expansion (2.1), when evaluated
at x = E: in this case, the (Ln)th Taylor-term carries virtually the whole ”mass” (whence the saturation).
Such a result also provides intriguing clues about the issue of fluctuations, but since it is not instrumental
for the rest of the discussion, we postpone the precise formulation, see Proposition 3 below.
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Figure 2. A polymer with (λ, α)-distribution of the energy E: the red
strand has lenght αLn and carries an energy λE, whereas the blue strand
has length αLn and carries the remaining energy λE.

Since polymers are loopless, and by independence, we have

E
(
Nλ,α
n,Ln

)
≤Mn,LnP

αLn∑
i=1

ξ[π]i ≤ λE,
Ln∑

i=αLn+1

ξ[π]i ≤ λE


= Mn,LnP

(
αLn∑
i=1

ξ[π]i ≤ λE

)
× P

 Ln∑
i=αLn+1

ξ[π]i ≤ λE


.Mn,Ln

(λE)αLn

(αLn)!
× (λE)αLn

(αLn)!
,

(2.8)

the last inequality by the usual tail estimates. By Stanley’s M-bound (2.2), this time with
x = E, we have

Mn,Ln ≤ sinh(E)n
(Ln)!

ELn
=

(Ln)!

ELn
, (2.9)

the last step since sinh(E) = 1. Using this in (2.8) we thus get

E
(
Nλ,α
n,Ln

)
.

(Ln)!

ELn

(λE)αLn

(αLn)!

(λE)αLn

(αLn)!

=

(
Ln

αLn

)
(λ)αLn(λ)αLn,

(2.10)

where in the last step we have used that EαEα = E, and simplified. By elementary Stirling
approximation (to first order) of the binomial factor in (2.10), and again recalling that
α = 1− α, and similarly for λ, we thus arrive at the inequality

E
(
Nλ,α
n,Ln

)
.

{(
λ

α

)α(
1− λ
1− α

)1−α
}Ln

. (2.11)
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Note that x 7→ xy(1 − x)1−y is strictly concave with a unique critical point at x = y.

Therefore, ENλ,α
n,Ln vanishes exponentially fast as soon as λ 6= α. Borel-Cantelli then

implies the following, loosely formulated summary of the current section:

Insight 2. The energy E is spread uniformly along the polymer.

This insight is of course in complete agreement with the phenomenon of mean field
trivialization, see [7] for more on this issue.

2.3. Length vs. distance: the macroscopic picture. We address here the loosely
formulated question:

at which Hamming distance from the origin
do we find a strand of prescribed length?

It is clear that the answer will yield profound insights into the geometry of optimal
polymers. To formalize, consider as before α ∈ [0, 1]. (We stick to the convention α =
1− α). For d ∈ [0, 1], let dn = bdnc and denote by

Hdn := {v ∈ Vn : d(0,v) = dn} (2.12)

the hyperplane consisting of all vertices at Hamming distance dn from the origin. (Remark
that ]Hdn =

(
n
dn

)
: indeed, in order to specify a point on the hyperplane we simply need

to switch dn coordinates of 0 = (0, 0, . . . , 0) into 1).
For w ∈ Hdn we denote by Πd

αLn[0 → w] the set of paths connecting 0 to w in αLn
steps. In full analogy, Πd

αLn[w → 1] stands for the set of path connecting w to 1 in αLn

steps. Lastly, we denote by Πd,α
Ln [0→ 1] the set of paths of length Ln from 0 to 1, which

are in Hdn after αLn steps. (Note that these paths can cross the hyperplane multiple
times, see Figure 3 below for a graphical rendition).

The goal is now to compute the expected number of these polymers after distributing
the energy, in line with the Insight from the previous section, uniformly along the path.
To this end, introduce the cardinalities

Nd,α
n,Ln[0→ w] = #

{
π ∈ Πd

αLn[0→ w] :
αLn∑
i=1

ξ[π]i ≤ αE

}
,

Nd,α
n,Ln[w → 1] = #

{
π ∈ Πd

αLn[w → 1],

αLn∑
i=1

ξ[π]i ≤ αE

}
,

and

Nd,α
n,Ln[0→ 1] = #

{
π ∈ Πd,α

Ln [0→ 1],
Ln∑
i=1

ξ[π]i ≤ E

}
.
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Figure 3. Path-decomposition with an hyperplane Hdn at Hamming dis-
tance dn from 0. The strand up to the first crossing of the hyperplane has
an α-fraction of length, and carries an α-fraction of energy. The rest of the
strand has length αLn, and carries the remaining α-fraction of energy.

Since polymers are loopless, and by independence, it holds

E
(
Nd,α
n,Ln[0→ 1]

)
=
∑
w∈Hdn

E
(
Nd,α
n,Ln[0→ w]

)
E
(
Nd,α
n,Ln[w → 1]

)
=

(
n

dn

)
E
(
Nd,α
n,Ln[0→ w]

)
E
(
Nd,α
n,Ln[w → 1]

)
.

(
n

dn

)
Mn,αLn,dn

(αE)αLn

(αLn)!
Mn,αLn,n−dn

(αE)αLn

(αLn)!
,

(2.13)

the last inequality by the usual tail estimates.
In full analogy with (2.3), which is a consequence of Stanley’s identity (1.4), the fol-

lowing Stanley’s M-bound is a consequence of Stanley’s identity (1.3): for x > 0, it holds

Mn,l,d ≤ sinh(x)dcosh(x)n−d
l!

xl
. (2.14)

Using this for the r.h.s. of (2.13) we see that for arbitrary y1, y2 > 0, it holds:

E
(
Nd,α
n,Ln[0→ 1]

)
.

(
n

dn

)
sinh(y1)dncosh(y1)n−dn(

y1

αE

)αLn sinh(y2)n−dncosh(y2)dn(
y2

αE

)αLn . (2.15)

Taking y1 = αE and y2 = αE, and by elementary Stirling approximation (to first order),

E
(
Nd,α
n,Ln[0→ 1]

)
.

(
cosh(αE) sinh(αE)

1− dn
n

)n−dn(
sinh(αE) cosh(αE)

dn
n

)dn

. (2.16)
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We will now slightly modify the form of the r.h.s. above. In order to do so, we recall that

1 = sinh(E) = sinh (αE + αE)

= cosh(αE) sinh(αE) + sinh(αE) cosh(αE) ,
(2.17)

the last step by the addition formula for hyperbolic functions, hence

cosh(αE) sinh(αE) = 1− sinh(αE) cosh(αE) (2.18)

This allows to reformulate (2.16) as

E
(
Nd,α
n,Ln[0→ 1]

)
.


(

1− sinh(αE) cosh(αE)

1− dn
n

)1− dn
n
(

sinh(αE) cosh(αE)
dn
n

) dn
n


n

.

(2.19)
One plainly checks that the function

[0, 1] 3 α 7→ sinh(αE) cosh(αE) (2.20)

is bijective, whereas x 7→ (1 − x)1−yxy is strictly concave with a unique critical point
at x = y. It thus steadily follows that the r.h.s. of (2.19) is exponentially small if
dn
n
6= sinh(αE) cosh(αE). We may thus summarize these findings as follows:

Insight 3. After an α-fraction of the total length, an optimal poly-
mer finds itself at a typical (normalized) Hamming distance

d = sinh(αE) cosh((1− α)E) (2.21)

from the origin.

The above Insight is both intriguing and delicate. Indeed, a polymer of length greater
than the dimension can (must) cross multiple times certain hyperplanes, yet the map
α 7→ d(α) as in (2.21) is increasing: for consistency, we must therefore deduce that
excursions can only happen on mesoscopic (if not microscopic) scales. In other words,
and loosely:

Insight 4. Backsteps must be relatively rare, and spread out.

Not surprisingly, this additional Insight will play a key role, and guide us through the
next steps, but before proceeding any further, a comparison with the directed case is
perhaps in place. To better visualize, we re-parametrize in terms of the (normalised)
length of the polymer: with αE ↪→ l, and recalling that L =

√
2E, we see that the

”Hamming depth” dun(l) reached by the unoriented polymer at length l is then given by

l ∈ [0, L] 7→ dun(l) ≡ sinh

(
l√
2

)
cosh

(
L− l√

2

)
. (2.22)

In case of oriented polymers, the Hamming depth as a function of the length is simply

l ∈ [0, 1] 7→ dor(l) ≡ l . (2.23)

The two functions are plotted in Figure 4 below, whereas a rendition of the emerging
picture at the level of the strands is given in Figure 5.
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Figure 4. Hamming-depth as a function of the length: directed (blue) vs.
undirected (red) polymers. For small lengths, the depths are comparable:
close to the origin, the undirected polymer is thus as directed as possible.
The slope of the red curve decreases however gradually as the polymer
approaches the core of the hypercube: the further the polymer goes, the
”loser” it becomes. Due to the inherent symmetry of the hypercube, a
mirror picture sets in, of course, at half-length.

Figure 5. Directed (blue) vs. undirected (red) polymers. The red strand
starts off as stretched as possible, but allows for more and more backsteps
as it approaches the core of the hypercube. The phenomena are ampli-
fied for better visualisation only: in line with Insight 4, backsteps live on
meso/microscopic scale only. In particular, long excursions as in Figure 1
above are, in fact, ruled out.

2.4. Length vs. distance: the mesoscopic picture. As mentioned in the introduc-
tion, our approach will eventually rest on a multiscale analysis: in this section, inspired by
the previous Insights, we introduce the necessary coarse graining [7]. To see how this goes,
we denote by K ∈ N the numbers of ”scales”, and shorten henceforth n̂K ≡ n/K (assum-
ing w.l.o.g. that n̂K ∈ N). We then split the hypercube into K ”slabs”, i.e. hyperplanes
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equidistributed w.r.t. the Hamming distance: for i = 1 . . . K we let

Hi ≡ {v ∈ Vn, d(0, v) = in̂K} . (2.24)

We will refer to these hyperplanes as H-planes. Accordingly, we split a polymer of length
Ln into K substrands of length αiLn, for i = 1 . . . K, with the normalization

∑
i≤K αi = 1.

We shorten α = (α1, α2, ..., αK) ∈ [0, 1]K for such a vector, αi ≡
∑i

j=1 αj for the (fraction

of) length of the strand when the polymer crosses the ith H-plane, and αi ≡ 1−
∑i

j=1 αj
for the length of the remaining strand. A graphical rendition is given in Figure 6 below.

Figure 6. K-levels coarse graining: the Hamming distance between any
two (successive) hyperplanes is n̂K = n/K. Remark that by (2.26)-(2.27),
the length of the substrand from hyperplane to hyperplane is a function of
E and K only.

By the above Insight 3, length of substrands and Hamming-depth must satisfy the
fundamental relation

sinh(αiE) cosh(αiE) =
i

K
, i = 1 . . . K. (2.25)

The function x ∈ [0, 1] 7→ sinh(xE) cosh((1 − x)E) is invertible, and one can even con-
struct explicitely the solutions of the above equation: recalling that arcsinh(x) = log(x+√

1 + x2) one plainly checks that these are given by

αi =
1

2

{
1 +

1

E
arcsinh

(
2
i

K
− 1

)}
. (2.26)

This also uniquely identifies the length of the substrands, to wit:

αi = αi −αi−1 , (2.27)

for i = 1 . . . K, see Figure 7 below for a plot.
In particular, it follows from (2.26) and (2.27) that

αi = αK+1−i, (2.28)
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which is in full agreement with the inherent symmetry of the problem at hand, and∑
j≤K αj = 1. Furthermore, since arcsinh is 1-Lipschitz we also immediately see that

αi ≤
1

KE
. (2.29)

In order to emphasize that the α′s are no longer arbitrary, we will write henceforth
a = a(E, K) for the solutions of the equations (2.26), (2.27).

Figure 7. Substrand-length as function of the depth, i ∈ {1, . . . K} 7→ ai.
This plot simply restates the key property of optimal polymers: substrands
between equidistant hyperplanes become longer as the polymer enters the
core of the hypercube.

A straightforward large-K Taylor expansion (with i/K = const.) yields that

ai+1 − ai =
2

K2E

(
1− 2i

K

)
+O

(
1

K3

)
, (2.30)

which is manifestly different from the case of directed polymers, where the differential
would necessarily vanish. Thus a fundamental question immediately arises:

how do substrands of undirected polymers connect
the coarse graining-hyperplanes?

To shed light on this issue we consider d = (d1, d2, ..., dK) ∈ [0, 1]K and introduce

Πdi [v → w] ≡ all loopless paths connecting

two vertices v ∈ Hi−1, w ∈ Hi

which are at Hamming distance d(v,w) = din ,

(2.31)

and
Πd{1...K}[0→ 1] ≡ all loopless paths connecting 0 to 1 ,

and that cover a din-Hamming distance

while connecting the H-hyperplanes, i = 1 . . . K.

(2.32)

A graphical rendition is given in Figure 8 below.
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Figure 8. A polymer between two hyperplanes: the two vertices v and
w are at a Hamming distance d(v,w) = di. Remark that, in particular,
d(Hi−1, Hi) = 1/K ≤ di ≤ lπ(v,w).

For π ∈ Πd{1...K}[0 → 1], and two vertices v ∈ Hi−1,w ∈ Hi (for some i = 1 . . . K), we
furthermore shorten

Xπ(v,w) ≡ energy of the substrand which connects v, w . (2.33)

and denote by

Nd
i [v → w] = #

{
π ∈ Πdi [v → w], Xπ(v,w) ≤ aiE

}
, (2.34)

the number of substrands with energies at most aiE connecting such vertices. Finally, let

Nd
{1...K}[0→ 1] = #

{
π ∈ Πd{1...K}[0→ 1], Xπ(0,1) ≤ E

}
(2.35)

stand for the number of paths with prescribed evolutions4. The goal is to compute the
expectation of this random set, as this will provide fundamental insights into the possible
choices of d, which are the only degrees of freedom left. As we will see shortly, there is
only one reasonable choice. Before that we need however to introduce some key concepts.

Definition 2.1. Let v ∈ Hi−1 and w ∈ Hi.

• The effective forward steps are given by

efi(v,w) ≡ 1

n
# {0′s in v which switch into 1′s in w}

• The effective backsteps are given by

ebi(v,w) ≡ 1

n
# {1′s in v which switch into 0′s in w} .

4We shall perhaps emphasize that the above prescription of the evolution involves the Hamming-depths
and energies, but not the length of the connecting substrands. This is because in (2.34) we are spreading
the energies uniformly along the length of the polymer, very much in line with Insight 2: energies and
optimal lengths are two sides of the same coin.
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• The detours are given by

γπ(v,w) ≡ 1

n
{lπ(v,w)− d(v,w)} .

Some comments concerning the above terminology are perhaps in place: we note that
the effective forward steps encode the fraction of steps forward which are not undone by
backsteps in the reverse direction; similarly, the effective backsteps encode the (fraction
of) backsteps which are not undone by steps forward in the reverse direction (or vice
versa). Finally, the detours capture the amount of forward steps in a path π which are
cancelled by backsteps in the reverse direction (or vice versa): the smaller γπ, the higher
the ”tension” of the substrand. For this reason, we call a substrand stretched if the de-
tours vanish. A stretched path is, in fact, a geodesic.

The above quantities are all intertwined. Indeed, it holds:

di = efi(v,w) + ebi(v,w) and
1

K
= efi(v,w)− ebi(v,w) . (2.36)

In particular, it follows from the above relations that

efi(v,w) =
di
2

+
1

2K
and ebi(v,w) =

di
2
− 1

2K
. (2.37)

In other words, effective forward- and backsteps along a substrand depend on the number
of scales, and the remaining degrees of freedom d (which we are going to identify shortly),
but not on the endpoints. An equally simple line of reasoning shows that detours, as
soon as the polymer-length is specified, do not depend on the specific form of the π-path,
neither: in fact, γi,πn+ din = aiLn.

As mentioned, the goal is to compute the expected number of paths connecting 0 to 1.
Since polymers are loopless, and by independence, it holds:

E
(
Nd
{1...K}[0→ 1]

)
=
∑
(?)

K∏
i=1

ENd
i

[
v(i−1) → v(i)

]
, (2.38)

where the (?)-sum runs over all possible vertices v(i) ∈ Hi, i = 1 . . . K. But by (2.37),
none of the expectations on the r.h.s. depend on the specific v-choice. The cardinality of
(?) is easily computed: shortening

[0,∞) 3 x 7→ ϕ(x) ≡ xx, (2.39)

one plainly checks that

#(?) =
K∏
i=1

(
i−1
K
n

ebin

)((
1− i−1

K

)
n

efin

)

.
K∏
i=1

{
ϕ
(
i−1
K

)
ϕ
(
1− i−1

K

)
ϕ(ebi)ϕ

(
i−1
K
− ebi

)
ϕ (efi)ϕ

(
1− i−1

K
− efi

)}n

,

(2.40)

the last step by elementary Stirling-approximation to first order.
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By the tail estimates, and Stanley’s M-bound (2.14) with x = aiE , it holds

ENd
i

[
v(i−1) → v(i)

]
. sinh(aiE)dincosh(aiE)(1−di)n , (2.41)

for i = 1 . . . K.
Plugging (2.40) and (2.41) into (2.38), and rearranging, we thus get the upperbound

E
(
Nd
{1...K}[0→ 1]

)
. Fa,K(d)n, (2.42)

where we have shortened

Fa,K(d) ≡
K∏
i=1

sinh(aiE)dicosh(aiE)(1−di)ϕ
(
i−1
K

)
ϕ
(
1− i−1

K

)
ϕ(ebi)ϕ

(
i−1
K
− ebi

)
ϕ (efi)ϕ

(
1− i−1

K
− efi

) . (2.43)

Since a = a(E, K) are solutions of (2.26)-(2.27), the d′s appearing in the F -function
are the only degrees of freedom left (By (2.37), we recall that efi and ebi are function of
di). The next result shows that even for these, there is in fact one reasonable choice only.

Theorem 1. (Optimal Hamming distance) Let d = (d1, . . . , dK), with

di ≡ sinh(aiE) cosh((1− ai)E). (2.44)

It then holds:

Fa,K(d) = 1, (2.45)

and

Fa,K(d) < 1, for d 6= d. (2.46)

By (2.42) and (2.46), the expected number of polymers connecting a sequence of pre-
scribed vertices on the H-planes is thus exponentially small, unless the Hamming distance
of the considered vertices satisfies (2.44): of course, the latter will henceforth be the value
of our choice.

Theorem 1 is absolutely crucial for our approach. The proof, which requires a fair
amount of work, is postponed. For the remaining part of this section we dwell rather
informally on some of its far-reaching implications.

We anticipate that we will eventually consider a large (yet finite) number of scales for
the coarse graining, in which case an elementary large-K Taylor expansion (together with
the fact that L =

√
2E) shows that to first approximation, Hamming distance between

two vertices on the H-planes and substrand-legth do, in fact, coincide:

di = sinh(aiE) cosh((1− ai)E) = aiL +O

(
1

K2

)
. (2.47)

A minute’s thought suggests that the above may be reformulated as follows:

Insight 5. Optimal polymers connect the coarse graining H-
planes through essentially stretched paths.



UNDIRECTED POLYMERS IN RANDOM ENVIRONMENT: MEAN FIELD LIMIT 18

This is a somewhat surprising feature, which at first sight may even appear non-sensical.
The devil is however in the details: by (2.26), and large-K Taylor expansions (again with
i/K = const), one can check that

ai =
1

KE
√

1 + ( 2i
K
− 1)2

+O

(
1

K2

)
, (2.48)

which combined with (2.47), and recalling L =
√

2E, leads to

di =

√
2

K
√

1 +
(

2i
K
− 1
)2

+O

(
1

K2

)
. (2.49)

From this we may evince that:

• for small i (say i = sK, and s� 1/2) it holds that

ai =
1

KE
√

2
+O

(
1

K2

)
=

1

KL
+O

(
1

K2

)
, (2.50)

as well as

di =
1

K
+O

(
1

K2

)
= d(Hi−1, Hi) +O

(
1

K2

)
, (2.51)

the latter confirming that close to the origin, unoriented polymers proceed in
almost directed fashion;
• for large i (say i = sK, and s ↑ 1/2) it holds that di ≈

√
2/K � 1/K, which is

much larger than the Hamming distance between two successive H-planes. Sub-
strands of optimal polymers close to the core of the hypercube therefore reach,
through approximate geodesics, vertices which are otherwise unattainable in a fully
directed regime. Although the length of the substrand is increased, this strategy
allows undirected polymers to gain access to a reservoir of energetically favorable
edges. A graphical rendition of this feature, which encodes the key strategy of
optimal polymers, is given in Figure 9 below.

The feature according to which undirected polymers proceed through approximate
geodesics is absolutely fundamental. On the one hand it neatly explains the deeper
mechanisms eventually responsible for the onset of the mean field trivialization. On a
more technical level, this property will lead to a dramatic simplification of some other-
wise daunting combinatorial estimates, eventually enabling us to implement the second
moment method. In fact, in a (fully) stretched regime, a backstep cannot be cancelled
by a forward step (and vice versa). This entails, in particular, a natural representation of
paths connecting say v ∈ Hi−1 to w ∈ Hi in terms of permutations of the v-coordinates
which must be changed in order to obtain w, see in particular Lemma 21 below for a clear
manifestation of this feature.

2.5. Main result. We now specify a subset of polymers with path properties capturing
all Insights gathered so far: our main result, which is at last formulated in this section,
simply states that such a subset is, in fact, non-empty. Towards this goal, some additional
observations/notation is needed.
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Figure 9. The black-shaded cone corresponds to the region where a fully
directed polymer would lie. In virtue of Theorem 1, the optimal, undirected
polymers evolve however in the red-shaded cones, thereby reaching vertices
which are at larger Hamming distance. (Note also that black and red ver-
tical boundaries of these cones are disjunct). For large hyperplane-density,
the substrands (in red) of optimal polymers are, in first approximation,
geodesics.

For arbitrary d = (d1, . . . , dK) ∈ [0, 1)K (the Hamming-depths) and γ = (γ1, . . . , γK) ∈
[0,∞)K (the detours), consider the subset

Pn,K {d,γ} ≡ all paths connecting 0 to 1 ,

and that cover a normalized di-Hamming distance,

with γi detours,

while connecting the H-hyperplanes, i = 1 . . . K .

(2.52)

We now make a specific choice of the free parameters, d and γ, which is naturally justified
by the picture canvassed in the above sections. As a matter of fact, we will force polymers
to reflect an ”extreme” version of the picture. Precisely:

• instead of considering polymers which are essentially directed close to the end-
points (recall in particular Figure 4) we will consider polymers which are fully
directed in these regimes. We will achieve this by fixing a small m = 205� K (as
already mentioned, we will choose K large enough). With d = (d1, . . . , dK) the
optimal Hamming distance as in (2.44) from Theorem 1 we then set

dopt =

1/K, . . . , 1/K︸ ︷︷ ︸
m−times

, dm+1, dm+2, ..., dK−m, 1/K, . . . , 1/K︸ ︷︷ ︸
m−times

 , (2.53)
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• instead of considering polymers which are essentially stretched between the coarse
graining H-planes (recall in particular Insight 5), we will consider polymers which
proceed through exact geodesics; this will be achieved by setting

γopt ≡ (0, . . . , 0) . (2.54)

Denoting by Lopt the normalized length of paths in Pn,K
{
dopt,γopt

}
, it holds that

Lopt = ‖dopt‖1 . (2.55)

We then focus on the ensuing subset Pn,K
{
dopt,γopt

}
⊂ Π̃n,Loptn. A graphical rendition

of these polymers, which are only marginally shorter than L =
√

2E (see (2.59) below for
more on this), is given in Figure 10.

Figure 10. A polymer in Pn,K : the blue substrand is fully directed.
The red substrands connect the H-planes of the coarse graining through
stretched paths, i.e. geodesics.

Since Hamming-depths and detours are specified, we lighten henceforth notation by

Pn,K ≡ Pn,K
{
dopt,γopt

}
. (2.56)

Let now ε > 0, and consider the subset of polymers

E εn,K ≡ π ∈ Pn,K with energies Xπ ≤ E + ε , (2.57)

namely those paths which i) are fully directed close to the endpoints, ii) connect the
coarse graining H-planes in the core of the hypercube through geodesics, iii) and which
reach an ε-neighborhood of the ground state energy. Our main result states that such
polymers do, in fact, exist:

Theorem 2. (The geometry of optimal polymers). For ε > 0 there exists K = K(ε) ∈ N
such that

lim
n→∞

P
(
# E εn,K ≥ 1

)
= 1. (2.58)
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The proof of Theorem 2, which eventually boils down to an application of the Paley-
Zygmund inequality, is both technically demanding and long, and will be given in the
next sections. Before seeing how this goes, some comments are in order.

First, we remark that the length of the substrands connecting the H-planes (which is
related to the a′s) does not appear explicitely in the statement of Theorem 2, and neither
do the sub-energies. This is again due to the fact that, in line with Insight 2, uniformly
spread lengths/energies will be hiding behind the optimal Hamming-depths.

Second, we point out that Theorem 2, when combined with the simple lower bound
discussed in the Introduction, yields a constructive proof of Martinsson’s Theorem.

Lastly, and with the unsettled issue of fluctuations in mind, we shall dwell on a concep-
tually intricate aspect of the theorem, namely the nature of the parameter K encoding
the density of hyperplanes for the coarse graining. One perhaps expects that larger con-
stants lead to more accurate pictures, but this is only to some extent correct. In fact, too
large hyperplane-density would even lead to inconsistencies: higher and higher densities
”unbend” the strands, ultimately to the point of complete directedness, but this, in turn,
would starkly contradict the crucial feature of optimal polymers, namely that their length
is larger than the dimension. A delicate balance must therefore be met. As we will see
in the course of the second moment implementation, see (6.52), (6.82), (6.87) and (6.134)
below, for the present purpose of analyzing the ground state to leading order, it indeed
suffices to take a large but finite K = max {2× 107,mε−2}. How fast (in the dimension
n) the hyperplane-density can be allowed to grow is an interesting, and important issue,
which unfortunately eludes us.

We conclude this section with the aforementioned result concerning the concentration
of the length of optimal polymers, as it provides a neat round-off of the picture. We
emphasize that this result has first been proved by Martinsson via BTP-comparison [13],
whereas our short proof will rely on Laplace method/saddle point analysis.

To formulate, remark that Theorem 2 involves paths of length Lopt; by a more detailed

study of Taylor’s remainder term in (2.47), (2.50) and (2.51), and recalling that L =
√

2E,
it can be plainly checked that

0 ≤ L− Lopt ≤
m

K
. (2.59)

In other words, for large hyperplane density, the difference between Lopt and L is vanishing.
Our second main result states that the length L is, in fact, optimal:

Theorem 3. (Concentration of the polymer’s length). For ε > 0 and a > E
2

+
√

2E + 1√
2
,

lim
n→∞

P
(

#

{
π ∈ Πn : Xπ ≤ E + ε2,

1

n
|lπ(0,1)− Ln| ≥ aε

}
≥ 1

)
= 0 . (2.60)

Remark 6. The proof of the above Theorem, which is given in Section 8 below, suggests
(albeit feebly) that the (ε2, ε)-scaling in (2.60) is, in fact, optimal, and this in turn suggests
that a central limit theorem applies for the optimal length.

The rest of the paper is organised as follows. In the next Section 3 we will provide a
proof of Theorem 1. In Section 4, and for technical reasons which will become clear in the
course of the treatment, some additional restrictions on the candidate optimal polymers
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will be specified: this will lead to the identification of a subset of Pn,K on which we will
henceforth focus our attention. Specifying these additional requirements will have an
impact on the first moment as controlled in Theorem 1, and these modifications will be
dealt with in Section 5. Section 6 forms the main body of the paper: there we will set up
the second moment approach, postponing, however, the highly technical issues concerning
the required path-counting to Section 7. Finally, the proof of optimality of the length L
is given in Section 8.

3. The optimal Hamming distance: proof of Theorem 1

Recall that ϕ(x) = xx for x ≥ 0, with the convention 00 = 1. We shorten

gj,K(x) ≡
sinh(ajE)xcosh(ajE)(1−x)ϕ

(
j−1
K

)
ϕ
(
1− j−1

K

)
ϕ
(
x
2
− 1

2K

)
ϕ
(
j−1
K
− (x

2
− 1

2K
)
)
ϕ
(
x
2

+ 1
2K

)
ϕ
(
1− j−1

K
− (x

2
+ 1

2K
)
) , (3.1)

in which case, in virtue of (2.37), we may represent the F -function as

Fa,K(d) =
K∏
j=1

gj,K(dj) . (3.2)

Since the terms in the product on the r.h.s. are non-interacting, we clearly have

max
d
{Fa,K(d)} =

K∏
j=1

max
x≥0
{gj,K(x)}. (3.3)

We now claim that
K∏
j=1

max
x≥0
{gj,K(x)} = 1, (3.4)

and
arg max

x≥0
{gj,K(x)} = dj, (3.5)

with dj as in (2.44).

We will prove (3.5) first. We begin with the cases j = 1, K and claim that

arg max
x≥0

g1,K(x) = arg max
x≥0

gK,K(x) =
1

K
, (3.6)

and
1

K
= d1 = dK . (3.7)

In fact, g1,K(x) involves the terms

ϕ

(
x

2
− 1

2K

)
,

ϕ

(
j − 1

K
−
{
x

2
− 1

2K

}) ∣∣∣
j=1

= ϕ

(
1

2K
− x

2

)
,

(3.8)

but for both to be properly defined it must hold

x

2
− 1

2K
≥ 0, and

1

2K
− x

2
≥ 0, (3.9)
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implying x = 1
K

. A similar reasoning applies to gK,K , and (3.6) is settled. Claim (3.7)
follows from (2.25) for the j = 1 case, whereas the j = K case follows by symmetry, see
in particular (2.28).

Concerning the other indices, we fix j ∈ {2, . . . , K − 1} and shorten, for x ≥ 0,

gj,K(x) ≡ Nj,K(x)

Dj,K(x)
, (3.10)

where

Nj,K(x) ≡ sinh(ajE)xcosh(ajE)(1−x)ϕ

(
j − 1

K

)
ϕ

(
1− j − 1

K

)
, (3.11)

and

Dj,K(x) ≡ ϕ

(
x

2
− 1

2K

)
ϕ

(
j

K
− x

2
− 1

2K

)
ϕ

(
x

2
+

1

2K

)
ϕ

(
1− j

K
− x

2
+

1

2K

)
.

(3.12)
Taking the x-derivative, we see that

gj,K(x)′ > 0 ⇐⇒ Nj,K(x)′Dj,K(x) > Nj,K(x)Dj,K(x)′. (3.13)

An elementary computation then yields

Nj,K(x)′ = Nj,K(x) log(tanh(ajE)), (3.14)

and

Dj,K(x)′ =
1

2
Dj,K(x) log

{
(x

2
− 1

2K
)(x

2
+ 1

2K
)

( j
K
− x

2
− 1

2K
)(1− j

K
− x

2
+ 1

2K
)

}
. (3.15)

Combining (3.13), (3.14) and (3.15), we therefore get

gi,K(x)′ > 0 ⇐⇒ tanh(ajE)2 >
(x

2
− 1

2K
)(x

2
+ 1

2K
)

( j
K
− x

2
− 1

2K
)(1− j

K
− x

2
+ 1

2K
)
. (3.16)

Consider now

tanh(ajE)2 =
(x

2
− 1

2K
)(x

2
+ 1

2K
)(

j
K
− x

2
− 1

2K

)
(1− j

K
− x

2
+ 1

2K
)
. (3.17)

This is a quadratic equation (in x), whose unique positive solution is given by

x̂ ≡ −sinh(ajE)2 +

√
sinh(ajE)4 + 4sinh(ajE)2

{
2j − 1

2K
− j(j − 1)

K2

}
+

1

K2
. (3.18)

A straightforward analysis shows that the quotient on the r.h.s. of (3.16) is, in fact,
increasing in x: in other words, the x-derivative g′i,K is positive for x < x̂ and negative for
x > x̂, implying that x̂ is indeed the extremal point. To finish the proof of (3.5) it thus
remains to show that x̂ = dj, i.e. that x̂ = sinh(ajE) cosh((1 − aj)E). In order to do so,
we will avoid the use of the explicit formulation (3.18), but rely rather on the expression
(3.17) and the following
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Lemma 7. Let d ∈ R satisfy

d

2
− 1

2K
= sinh(aj−1E) sinh(ajE) sinh(ajE) . (3.19)

Then the above, and the following relations are all equivalent:

1− j

K
− d

2
+

1

2K
= cosh(aj−1E) cosh(ajE) sinh(ajE), (3.20)

d

2
+

1

2K
= cosh(aj−1E) sinh(ajE) cosh(ajE), (3.21)

j

K
− d

2
− 1

2K
= sinh(aj−1E) cosh(ajE) cosh(ajE). (3.22)

It follows in particular, that for such d it holds d = x̂, and d = dj.

Proof of Lemma 7. We first prove the equivalence of

(3.19) ⇐⇒ (3.20) ⇐⇒ (3.21) ⇐⇒ (3.22), (3.23)

Indeed, by (2.25) and the fact that

sinh(ajE) cosh(ajE) + cosh(ajE) sinh(ajE) = 1, (3.24)

it holds:

sinh(ajE) cosh(ajE) = 1− j

K
(3.25)

for all j = 1 . . . K. Relation (3.19) therefore implies that

1− j

K
− d

2
+

1

2K
= 1− j

K
− sinh(aj−1E) sinh(ajE) sinh(ajE)

= {cosh(ajE)− sinh(aj−1E) sinh(ajE)} sinh(ajE)

= cosh(aj−1E) cosh(ajE) sinh(ajE)

(3.26)

the second equality with (3.25) and the last by the addition formula cosh(a + b) =
cosh(a) cosh(b) + sinh(a) sinh(b). Thus,

(3.19) ⇐⇒ (3.20). (3.27)

A similar computation gives that

(3.21) ⇐⇒ (3.22). (3.28)

It remains to prove that
(3.19) ⇐⇒ (3.21). (3.29)

To see this we note that (3.19) yields

d

2
+

1

2K
= sinh(aj−1E) sinh(ajE) sinh(ajE) +

1

K
(3.30)

but combining the fundamental r.h.s (2.25) and (3.25) gives that

1

K
= sinh(aj−1E) cosh(aj−1E)− sinh(ajE) cosh(ajE) (3.31)

Thus, by (3.31), we see that

(3.30) = sinh(ajE) (sinh(aj−1E) sinh(ajE)− cosh(ajE)) + sinh(aj−1E) cosh(aj−1E)

= − sinh(ajE) cosh(ajE) cosh(aj−1E) + sinh(aj−1E) cosh(aj−1E),
(3.32)
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the last equality again by the addition formula cosh(a+b) = cosh(a) cosh(b)+sinh(a) sinh(b).
Hence

(3.32) =
(
− sinh(ajE) cosh(ajE) + sinh(ajE + ajE)

)
cosh(aj−1E)

= cosh(ajE) sinh(ajE) cosh(aj−1E).
(3.33)

and (3.23) is established.

Let now d satisfy any of the equivalent (3.19)-(3.22). It holds:

(d
2
− 1

2K
)(d

2
+ 1

2K
)

( j
K
− d

2
− 1

2K
)(1− j

K
− d

2
+ 1

2K
)

=

=
sinh(aj−1E) sinh(ajE) sinh(ajE)× cosh(aj−1E) sinh(ajE) cosh(ajE)

sinh(aj−1E) cosh(ajE) cosh(ajE)× cosh(aj−1E) cosh(ajE) sinh(ajE)

= tanh(ajE)2 ,

(3.34)

hence, by uniqueness of the (positive) solution of (3.17), we deduce that d = x̂.

Finally, it holds:

d =
d

2
+

1

2K
+
d

2
− 1

2K
= sinh(aiE) cosh(aj−1E) cosh(ajE) + sinh(aiE) sinh(aj−1E) sinh(ajE) ,

(3.35)

the last equality by (3.19) and (3.21), hence

d = sinh(aiE)×
{

cosh(aj−1E) cosh(ajE) + sinh(aj−1E) sinh(ajE)
}

= sinh(ajE)× cosh((1− aj)E),
(3.36)

by the addition formula for hyperbolic functions (and using that aj−1 + aj = 1 − aj, by
definition), settling the claim that d = dj.

�

The remaining Claim (3.4) is taken care of by the following Lemma, which tracks the
evolution of the g-product while changing the hyperplane-index.

Lemma 8 (Evolution Lemma). For any i = 1 . . . K, it holds:

i∏
j=1

gj,K(dj) =

[
sinh(aiE)

i
K

] i
K
[

cosh(aiE)

1− i
K

]1− i
K

. (3.37)

Furthermore,
K∏
j=1

gj,K(dj) = 1 . (3.38)

Proof. We will proceed by induction over i. The cases K = 1, 2 are trivial, so let K ≥ 3.
Recalling that d1 = 1

K
, we therefore have that

g1,K(d1) =

[
sinh(a1E)

1
K

] 1
K
[

cosh(a1E)

1− 1
K

]1− 1
K

, (3.39)
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which settles the base case i = 1. We thus assume that (3.37) holds for an i ∈ {1, K− 2},
and show that this implies the validity of the (i+ 1)-case, namely that

[
sinh(aiE)

i
K

] i
K
[

cosh(aiE)

1− i
K

]1− i
K

gi+1,K(di+1) =

[
sinh(ai+1E)

i+1
K

] i+1
K
[

cosh(ai+1E)

1− i+1
K

]1− i+1
K

.

(3.40)
Remark that by (3.17),

sinh(ai+1E)di+1cosh(ai+1E)1−di+1 = tanh(ai+1E)di+1cosh(ai+1E)

=

 (di+1

2
− 1

2K
)(di+1

2
+ 1

2K
)(

i+1
K
− di+1

2
− 1

2K

)
(1− i+1

K
− di+1

2
+ 1

2K
)


di+1

2

cosh(ai+1E) .
(3.41)

By definition of gi+1,K , the above, and simple rearrangements, we thus have

gi+1,K(di+1) =
(di+1

2
− 1

2K
)

1
2K cosh(ai+1E)

(
i
K

) i
K (1− i

K
)
1− i

K

( i+1
K
− di+1

2
− 1

2K
)
i+1
K
− 1

2K (di+1

2
+ 1

2K
)

1
2K (1− i+1

K
− di+1

2
+ 1

2K
)
1− i+1

K
+ 1

2K

.

(3.42)
Thus (3.40) is equivalent to prove that

[
di+1

2
+ 1

2K
di+1

2
− 1

2K

] 1
2K [

i+ 1

K
− di+1

2
− 1

2K

] i+1
K
− 1

2K
[
1− i+ 1

K
− di+1

2
+

1

2K

]1− i+1
K

+ 1
2K

=
sinh(aiE)

i
K cosh(aiE)1− i

K cosh(ai+1E)[
sinh(ai+1E)

i+1
K

] i+1
K
[

cosh(ai+1E)

1− i+1
K

]1− i+1
K

.

(3.43)

We now rewrite the term on the l.h.s. (3.43) as

[
(di+1

2
+ 1

2K
)( i+1

K
− di+1

2
− 1

2K
)

(di+1

2
− 1

2K
)(1− i+1

K
− di+1

2
+ 1

2K
)

] 1
2K

×

[
i+1
K
− di+1

2
− 1

2K

1− i+1
K
− di+1

2
+ 1

2K

] i
K

×
[
1− i+ 1

K
− di+1

2
+

1

2K

]
,

(3.44)
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and the term on the r.h.s. of (3.43) as[( i+1
K

cosh(ai+1E)

(1− i+1
K

) sinh(ai+1E)

)2
] 1

2K

×
[ i+1

K
tanh(aiE) cosh(ai+1E)

(1− i+1
K

) sinh(ai+1E)

] i
K

×
cosh(aiE) cosh(ai+1E)(1− i+1

K
)

cosh(ai+1E)

=

[(
cosh(ai+1E)

sinh(ai+1E)

)2
] 1

2K

×
[

tanh(aiE) cosh(ai+1E)

sinh(ai+1E)

] i
K

× cosh(aiE) cosh(ai+1E) sinh(ai+1E) ,

(3.45)

the last step by (2.25) and (3.25). But by (3.19), (3.20), (3.21) and (3.22), the terms
raised to the same powers in (3.44) and the r.h.s. of (3.45) coincide, settling the induc-
tion step.

We now move to (3.38). It holds:

K∏
j=1

gj,K(dj) =
K−1∏
j=1

gj,K(dj) gK,K(dK)

=

[
sinh(aK−1E)

1− 1
K

]1− 1
K
[

cosh(aK−1E)
1
K

] 1
K

sinh(aKE)
1
K cosh(aKE)1− 1

K

=

[
sinh(aK−1E) cosh(aKE)

1− 1
K

]1− 1
K
[

cosh(aK−1E) sinh(aKE)
1
K

] 1
K

,

(3.46)

the second equality by the induction step, and the third by simple rearrangements. By
the a′s symmetry (2.28), and the normalization

∑K
i=1 ai = 1, it thus holds

(3.46) =

[
sinh(aK−1E) cosh(aK−1E)

1− 1
K

]1− 1
K
[

cosh((1− a1)E) sinh(a1E)
1
K

] 1
K

= 1, (3.47)

the last equality by the fundamental (2.25). �

4. Taming optimal polymers

In order to prove our main result Theorem 2, we will show non-emptiness of a subset
of Pn,K , whose paths satisfy additional properties. As a matter of fact, we will introduce
two additional restrictions: the first one, which is explained in Section 4.1, concerns the
geometry of paths, i.e. their combinatorial properties. The second restriction, explained in
Section 4.2, concerns the way energies are distributed along the paths. Both restrictions
will be of course inspired by/in line with the above Insights. We emphasize that the reason
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Figure 11. The backsteps (five in
total) are spread as evenly as possi-
ble: one for each sublayer H ′.

Figure 12. The five backsteps
are lumped together: this polymer
wouldn’t belong to Pn,K,K′ .

for restricting the candidate polymers further is here chiefly technical: the additional
requirements we are about to introduce will in fact lead to a considerable simplification
of some otherwise daunting combinatorial estimates.

4.1. A sprinckle of microstructure. We introduce yet another coarse graining: for
i = 0 . . . K − 1, we split the region between two consecutive hyperplanes Hi−1 and Hi

further, into K ′ additional slabs:

H ′i,j ≡
{
v ∈ Vn, d(0, v) =

(
i+

j

K ′

)
n̂K

}
, j = 0 . . . K ′ , (4.1)

(remark that H ′i,0 = Hi and H ′i,K′ = Hi+1), and focus henceforth on the subset

Pn,K,K′ ≡ all polymers π ∈ Pn,K which cover

a (normalized) Hamming distance (ef i + ebi) /K
′

while connecting the hyperplanes H ′i,j and H ′i,j+1,

for j = 0 . . . K ′ and i = 1 . . . K − 1.

(4.2)

The subset Pn,K,K′ is of course motivated by Insight 4: adding an additional level of coarse
graining and spreading the backsteps as evenly as possible among the K ′-slabs, allows to
rule out polymers where backsteps tend to accumulate, cfr. Figure 11 and 12 below.

Finally, we render the H-hyperplanes (of the coarser layer) repulsive, i.e. we force paths
to cross them only once. As we will see shortly, see Lemma 9 below, this can be achieved
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by considering the following (sub)subset of polymers:

P rep
n,K,K′ ≡ all polymers π ∈ Pn,K,K′ which connect the hyperplanes H ′i,0 and H ′i,1

by first making (efi n̂K′) steps forward and only then (ebi n̂K′) backsteps,

and which connect the hyperplanes H ′i,K′−1 and H ′i,K′

by first making (ebi n̂K′) backsteps, and only then (efi n̂K′) steps forward ,

for i = 1 . . . K.

(4.3)

Note that P rep
n,K,K′ is still a deterministic set. A graphical rendition is given in Figure 13

below.

Figure 13. A path in P rep
n,K,K′ : red edges correspond to the free evolution

of the path, yellow edges are backsteps, and blue edges are forward steps.

Remark that, by construction,

P rep
n,K,K′ ⊂ Pn,K,K′ ⊂ Pn,K

{
dopt,γopt

}
. (4.4)

Our main Theorem 2 will therefore follow as soon as we prove that one can find polymers
in P rep

n,K,K′ which reach the ground state energy. Before seeing how this goes, here is the
aforementioned result stating that H-hyperplanes are indeed repulsive:

Lemma 9. For K ≥ 1 the following holds true: a polymer π ∈ P rep
n,K,K′ crosses the

hyperplanes H1, . . . , HK only once.

Proof. The statement is trivial in the directed phase, so let i ∈ {m. . .K −m}.
There is of course a certain directivity in the polymers’ evolution: this is captured by

the fact that efi > ebi for all i = 1 . . . K (see in particular the second relation in (2.36)),
and graphically represented by evolutions ”from the left to the right”.

Sticking to this graphical convention, we begin with the case ”to the right of the Hi-
hyperplane”: after crossing this hyperplane, a path π ∈ Pn,K,K′ is bound to first make
(efi n̂K′) steps to the right (forward) and only then to make (ebi n̂K′) steps to the
left (backwards). At this point, and by construction, the polymer will find itself on H ′i,1.
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Continuing its evolution, the polymer will eventually reach from there the next hyperplane
H ′i,2, again through (efi n̂K′) steps to the right, and (ebi n̂K′) steps to the left. Since in
this phase no restriction is imposed on the order of back- and forwardsteps, it could thus
happen that the polymer first performs all available steps to the left, in one fell swoop:
this would increase the proximity of the polymer to Hi, with the hyperplane potentially
even crossed for a second time. However, we claim that even in such worst case scenario,
the polymer will find itself well to the right of Hi. In other words we claim that

efinK′ − 2ebinK′ > 0, (4.5)

or, which is the same, that

efi − 2ebi > 0. (4.6)

Indeed, it follows from (2.37) that

efi − 2ebi =
di
2

+
1

2K
− 2

(
di
2
− 1

2K

)
=

1

K
−
(

di
2
− 1

2K

)
=

1

K
− ebi,

(4.7)

the last step again by (2.37). Our new claim thus states that for large enough K,

1

K
− ebi > 0. (4.8)

To see this, we recall that by (3.19), the number of effective backsteps between hyperplanes
in the stretched phase satisfies

ebi = sinh(ai−1E) sinh(aiE) sinh(aiE). (4.9)

Real analysis shows that

arg max
y∈[0,1]

sinh(yE) sinh((1− y)E) =
1

2
. (4.10)

Furthermore, by (2.29),

aiE ≤
1

K
, (4.11)

which, together with an elementary large-K Taylor expansion, implies that

sinh(aiE) = aiE +
(aiE)3

6
≤ 1

K
+

1

6K3
≤ 2

K
, (4.12)

for K ≥ 1. Using (4.12) in (4.9) we get

ebi ≤ sinh(aiE) sinh(aiE)× 2

K

≤ sinh

(
E

2

)2

× 2

K
.

(4.13)
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the second inequality by (4.10). The first term on the r.h.s. above can be easily estimated:

sinh

(
E

2

)2

=
1

4

(
eE/2 − e−E/2

)2
=

1

4

(
eE − 2 + e−E

)
=

1

2
(cosh(E)− 1) =

1

2

(√
1 + sinh2(E)− 1

)
=

1

2

(√
2− 1

)
,

(4.14)

the step before last by the Pythagorean’s identity for hyperbolic functions, and the last
since sinh(E) = 1 by definition. In particular, we see that

sinh

(
E

2

)2

≤ 1

4
. (4.15)

Using this in (4.13) we thus get ebi ≤ 1
2K

, hence

1

K
− ebi ≥

1

2K
> 0, (4.16)

settling claim (4.8), and therefore (4.6).

Summarizing the upshot of these considerations, we thus see that after crossing an H-
plane for the first time, the polymer will forever remain ”to its right”. But by symmetry, a
similar line of reasoning holds also for the case ”to the left”, i.e. for paths making (ebin̂K′)
steps to the left, and then (efin̂K′) steps to the right before reaching such hyperplane.
Lemma 9 is therefore established. �

Remark 10. Polymers in P rep
n,K,K′ are, in fact, loopless: this follows from Lemma 9, and

the property that paths make no detours between H-planes.

4.2. Partitioning the energy. We will eventually implement the multiscale refinement
of the second moment method [7], a procedure which involves a number of steps. The
first, and key, step is to break the self-similarity of the underlying random field: this
can be achieved here by allowing the first and last edges of the polymers to carry an
unusually large fraction of the energy, and handling these on different footing. This
procedure has already been succesfully implemented for the problem of (directed) first
passage percolation in [8], see also Remark 13 below for more on this issue.

We need some additional notation: since a path π ∈ P rep
n,K,K′ consists of a set of edges

which uniquely characterises the vertices visited by the polymer, by a a slight abuse of
notation we will denote by π ∩Hi the vertices that lie both in Hi and between two edges
of the π-path.

For a polymer π ∈ P rep
n,K,K′ , we begin by writing its energy as

Xπ = Fπ +

{
Xm(π) +

[
K−m∑
j=m+1

Xj−1,j(π)

]
+XK−m+1(π)

}
+ Lπ , (4.17)

with the following notational conventions:

• Fπ ≡ X[π]1 is the energy of the first edge of the path;
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• Xm(π) ≡
∑mn̂K

j=2 ξ[π]j is the energy of the substrand connecting the second visited

vertex to the mth-hyperplane, i.e. 0 to the mth-hyperplane, but with the first edge
excluded;
• For i = m+ 1 . . . K −m,

Xi−1,i(π) ≡ Xπ(π ∩Hi−1, π ∩Hi) (4.18)

is the energy of the substrand connecting consecutive H-hyperplanes;
• XK−m+1(π) is the energy of the substrand connecting the (K −m)th-hyperplane

to 1, but with the last edge excluded;
• Lπ is the energy of the last edge of the path.

For ε > 0, recalling {ai}Ki=1 solutions of (2.26) and the convention am =
∑

i≤m ai, we set

ãm,ε ≡ am
(

E +
ε

5

)
+
ε

5
, (4.19)

and

ãK−m+1,ε ≡ ãm,ε , (4.20)

and for i = m+ 1 . . . K −m,

ai,ε ≡ ai
(

E +
ε

5

)
. (4.21)

We then introduce the following subsets of polymers:

E1,ε
n,K,K′ ≡ π ∈ P rep

n,K,K′ such that Fπ, Lπ ≤ ε/5. (4.22)

E2,ε
n,K,K′ ≡ π ∈ P rep

n,K,K′ such that

Xm(π), XK−m+1(π) ≤ ãm,ε,

Xi−1,i(π) ≤ ai,ε for i = m+ 1 . . . K −m.

(4.23)

Recalling that am +
∑K−m

i=m+1 ai + aK−m = 1, we emphasize that the newly constructed
subset consists of polymers with sub-energies

X
K−m+1

m (π) ≡ Xm(π) +

[
K−m∑
j=m+1

Xj−1,j(π)

]
+XK−m+1(π) ≤ E +

3

5
ε , (4.24)

and with first resp. last edges carrying unusually large an energy (potentially up to ε/5).
At last, we consider the sub-subset

E εn,K,K′ ≡ E
1,ε
n,K,K′ ∩ E

2,ε
n,K,K′ . (4.25)

Thus, by definition, the polymers in E εn,K,K′ have energies less than E + ε. A graphical
rendition of this set is given in Figure 14 below.
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Figure 14. Distributing the energy in the first half of the hypercube.
The first edge (red) has energy less than ε/5. The blue strand is in the
directed phase, and corresponds to Xm(π) ≤ am. The yellow strand is in
the stretched phase, it connects two consecutive H-hyperplanes with sub-
energy less than ai,ε. For the second half of the hypercube, an analogous
(mirror) picture holds.

4.3. Connecting first and last region. By definition, and recalling the inclusions (4.4),
it clearly holds that

E εn,K,K′ ⊂ E εn,K . (4.26)

In particular, non-emptiness of E εn,K,K′ will immediately yield our main Theorem 2, and
this is indeed the route we take. Precisely, we will show that one can connect the first and
last edges through polymers satisfying the energy requirements in the directed/stretched
phases. To see how this goes, we begin with the observation that

P
(
#E εn,K,K′ ≥ 1

)
≥ P

(
#E εn,K,K′ ≥ 1, #E1,ε

n,K,K′ ≥

⌊
E#E1,ε

n,K,K′

2

⌋)

= P

(
#E εn,K,K′ ≥ 1

∣∣∣∣∣#E1,ε
n,K,K′ ≥

⌊
E#E1,ε

n,K,K′

2

⌋)
P

(
#E1,ε

n,K,K′ ≥

⌊
E#E1,ε

n,K,K′

2

⌋)
.

(4.27)
By independence, it clearly holds that

E#E1,ε
n,K,K′ = P

(
Fπ ≤

ε

5

)
P
(
Lπ ≤

ε

5

)
#P rep

n,K,K′ = C(ε)2#P rep
n,K,K′ , (4.28)

where

C(ε) ≡ 1− exp(−ε/5) . (4.29)

We now claim that

lim
n→∞

P

(
#E1,ε

n,K,K′ ≥

⌊
E#E1,ε

n,K,K′

2

⌋)
= 1. (4.30)
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Indeed, by Chebycheff’s inequality, and for δ > 0,

P

(∣∣∣∣∣ #E1,ε
n,K,K′

E(#E1,ε
n,K,K′)

− 1

∣∣∣∣∣ ≥ δ

)
≤ 1

δ2

E
(

#E1,ε
n,K,K′

2
)

E
(
#E1,ε

n,K,K′

)2 − 1

 . (4.31)

Let now π ∈ P rep
n,K,K′ and denote by

fπ(n, k) ≡ the number of paths in P rep
n,K,K′ sharing k weigthed edges with π. (4.32)

Since for paths in E1,ε
n,K,K′ only the first and the last edges are weighted,

E
(

#E1,ε
n,K,K′

2
)
≤ E

(
#E1,ε

n,K,K′

)2
+ #P rep

n,K,K′

{
C(ε)3fπ(n, 1) + C(ε)2fπ(n, 2)

}
, (4.33)

the first term on the r.h.s. corresponding to the case of k = 0 shared edges. Using that
C(ε) ≤ 1 and that fπ(n, 2) ≤ fπ(n, 1), the above becomes

E
(

#E1,ε
n,K,K′

2
)
≤ E

(
#E1,ε

n,K,K′

)2
+ 2#P rep

n,K,K′fπ(n, 1) . (4.34)

Therefore, for the r.h.s. of (4.31) we have

E
(

#E1,ε
n,K,K′

2
)

E
(
#E1,ε

n,K,K′

)2 − 1 ≤
2#P rep

n,K,K′fπ(n, 1)

E
(
#E1,ε

n,K,K′

)2 =
2

C(ε)4

fπ(n, 1)

#P rep
n,K,K′

. (4.35)

Let now f lπ(n, 1) be the number of paths which share one edge with π on the left of the
hypercube. Clearly, f lπ(n, 1) = 2fπ(n, 1), hence

fπ(n, 1)

#P rep
n,K,K′

= 2
f lπ(n, 1)

#P rep
n,K,K′

≤ 2
(mn̂K − 1)!

(mn̂K)!
=

(
2K

m

)
1

n
, (4.36)

where for the key inequality we have used that there are (mn̂K)! possibilities to reach
a given (admissible) vertex on the Hm-plane, but specifying the first edge reduces such
possibilities to (mn̂K − 1)!. Using (4.36) in (4.35) and then (4.31) we thus obtain

P

(∣∣∣∣∣ #E1,ε
n,K,K′

E(#E1,ε
n,K,K′)

− 1

∣∣∣∣∣ ≥ δ

)
.

1

n
−→ 0 , (4.37)

as n ↑ ∞, which settles claim (4.30). Using the latter in (4.27) then yields

P
(
#E εn,K,K′ ≥ 1

)
≥ P

(
#E εn,K,K′ ≥ 1

∣∣∣∣∣#E1,ε
n,K,K′ ≥

⌊
E#E1,ε

n,K,K′

2

⌋)
− on(1). (4.38)

Now, for any J ≤ #P rep
n,K,K′ , it holds that

P
(
#E εn,K,K′ ≥ 1

∣∣#E1,ε
n,K,K′ ≥ J

)
≥ P

(
#E εn,K,K′ ≥ 1

∣∣#E1,ε
n,K,K′ = J

)
, (4.39)

since the more paths survive the ”thinning procedure” via the energy condition on first
and last edge, the higher the chance to find at least a connecting polymer which satisfies
the imposed energy requirements. See Figure 15 for a graphical rendition.

Using (4.39) with

J ≡

⌊
E#E1,ε

n,K,K′

2

⌋
, (4.40)
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Figure 15. The first and last edges carrying an energy less than ε/5 (hence
surviving the thinning procedure) are drawn in red. The continuous blue
strand manages to connect these edges while satisfying the energy con-
straints, whereas the dashed strand does not.

and by the Paley-Zygmund inequality, we thus get

P
(
#E εn,K,K′ ≥ 1

∣∣#E1,ε
n,K,K′ = J

)
≥

E
(
#E εn,K,K′

∣∣#E1,ε
n,K,K′ = J

)2

E
(

#E εn,K,K′
2
∣∣∣#E1,ε

n,K,K′ = J
) . (4.41)

Consider now any deterministic set J ⊂ P rep
n,K,K′ with cardinality #J = J, and the subset

E εn,K,K′ ≡ E
2,ε
n,K,K′ ∩ J , (4.42)

which is obtained from E2,ε
n,K,K′ via thinning procedure. We shorten #E εn,K,K′ ≡ N ε

n,K,K′ .
By independence of the sigma algebras issued from first and last edges, and the sigma
algebra involving all other edges, we clearly have that

E
(
#E εn,K,K′

∣∣#E1,ε
n,K,K′ = J

)
= E

(
N ε
n,K,K′

)
(4.43)

and
E
(

#E εn,K,K′
2
∣∣∣#E1,ε

n,K,K′ = J
)

= E
(
N ε
n,K,K′

2
)
. (4.44)

Using (4.43) and (4.44) in (4.41), and by (4.38), we see that

P
(
#E εn,K,K′ ≥ 1

)
≥

E
(
N ε
n,K,K′

)2

E
(
N ε
n,K,K′

2
) − on(1). (4.45)

Therefore, our main result Theorem 2, will be an immediate consequence of

Theorem 2′. For ε > 0 there exists K = K(ε) ∈ N such that

lim
n→∞

E
(
N ε
n,K,K′

)2

E
(
N ε
n,K,K′

2
) = 1, (4.46)

for any K ′ > 2 log(2)LK2.
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5. Π vs. P, and a lower bound to the first moment

In Sections 4.1-4.2 we have altered the path-properties derived in Section 2, and this
of course has relevant consequences. The following result precisely quantifies the changes
to the first moment as given in Theorem 1 (which has been instrumental to all our
considerations so far) once these modifications have been taken into account.

Theorem 1′. For ε > 0, shorten

εE ≡
ε

5E
, εm,E ≡

ε

5E
+

ε

5amE
. (5.1)

Let furthermore

Sn,K,m ≡ exp−n

(
1√
2K

+

√
2m(m− 1)

K2

)
, Rn,K ≡ exp

(
− n

K2

)
, (5.2)

and set

Cn,K,m ≡ Rn,K × Sn,K,m . (5.3)

Then for any K ′ > 2 log(2)LK2,

E
(
N ε
n,K,K′

)
≥ Cn,K,m(1 + εE)

∑K−m
i=m+1 ndi(1 + εm,E)2mn̂KQn

Pn
, (5.4)

where Qn and Pn are finite degree polynomials.

Remark 11. It will become clear in the course of the proof that the S-term in Theorem 1′

encodes the entropic cost for stretching the paths in Π in order to construct Pn,K, whereas
the R-term relates to the entropic cost for rendering the H-planes repulsive, i.e. in order
to construct P rep

n,K,K′ out of Pn,K.

Proof of Theorem 1′. We begin by computing the cardinality of Pn,K . To do so, we recall
that paths in this set are directed in the m first (and last) H-planes: since there are (mn̂K)!
ways to reach a vertex on the mth-hyperplane starting from 0, and(

n

mn̂K

)
(5.5)

vertices on such hyperplane, we have, altogether,

(mn̂K)!

(
n

mn̂K

)
(5.6)

subpaths connecting 0 to Hm. Furthermore, there are are

(mn̂K)! (5.7)

subpaths connecting a given vertex in HK−m to 1.
As for the stretched phase, we will heavily rely on the fact already mentioned in Figure

10, namely that a natural representation of paths in terms of permutations is available.
First we remark that for any two vertices v,w of the hypercube,

# stretched paths between v and w = (nd(v,w))! , (5.8)
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and therefore, by definition of Pn,K ,

#Pn,K = (mn̂K)!

(
n

mn̂K

)
︸ ︷︷ ︸

directed

∑
(?m)

K−m∏
i=m+1

(ndi)!


︸ ︷︷ ︸

stretched

(mn̂K)!︸ ︷︷ ︸
directed

, (5.9)

where the (?m)-sum runs over all possible vertices v ∈ Hi. By definition, the subpaths
in Pn,K going through a given vertex of the Hi−1-plane can reach the same number of
vertices on the Hi-plane as the subpaths in Πd{1...K}[0→ 1]: the (?m)-sum thus runs over

the same vertices as the (?)-sum in (2.40), hence

#(?m) =
K−m∏
i=m+1

(
i−1
K
n

ebin

)((
1− i−1

K

)
n

efin

)
. (5.10)

Combining (5.9) and (5.10) thus yields

#Pn,K = (mn̂K)!2
(

n

mn̂K

) K−m∏
i=m+1

(
i−1
K
n

ebin

)((
1− i−1

K

)
n

efin

)
(ndi)! . (5.11)

We now quantify the difference in cardinality between Pn,K and Pn,K,K′ , and then, in a
second step, between Pn,K,K′ and P rep

n,K,K′ . To do so, the following observation is helpful:
in the stretched phase, since by (2.36) it holds that ebi + efi = di, we may re-write the
r.h.s. of (5.8) as

(ndi)! = (nebi)!(nefi)!

(
ndi
nebi

)
. (5.12)

This elementary algebraic identity can be given an interpretation which proves useful for
the purpose of computing the cardinality of Pn,K,K′ . To see this, let us assume that each
step of the polymer is a ball which is both coloured and labeled: backsteps are red whereas
forward steps are blue; the labels correspond to which coordinate switches its value during
the considered step: there are thus (nebi) labels for the red balls, and (nefi) labels for the
blue balls. The first factorial on the r.h.s. of (5.12) then stands for the number of possible
ways of listing the red balls while discriminating according to the labels, and similarly
for the second factorial corresponding to the blue balls. Finally, the binomial factor on
the r.h.s. of (5.12) accounts for the number of ways to place the red and blue balls, but
without discriminating among labels.

Now, the subset Pn,K,K′ is constructed out of Pn,K by adding an additional layer of
coarse graining, and modifying the order of appearance of balls while discriminating ac-
cording to their colors, but disregarding the labels. Adapting the interpretation of (5.12)
discussed in the previous paragraph, it is clear that there are now

(nebi)!(nefi)!

(
din̂K′

ebin̂K′

)K′
. (5.13)

subpaths in Pn,K,K′ connecting two vertices in Hi−1 and Hi at Hamming distance ndi.
The subset P rep

n,K,K′ differs from Pn,K,K′ in that the order of backsteps and forward
steps between Hi−1 and H ′i−1,1, and between H ′i−1,K′−1 and Hi, is totally specified. This
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evidently reduces the cardinality: instead of (5.13), there are only

(nebi)!(nefi)!

(
din̂K′

ebin̂K′

)K′−2

. (5.14)

subpaths between any two given vertices connecting the Hi−1 and Hi hyperplanes.
To compare quantitatively the cardinality of all these sets we write

#Pn,K
#P rep

n,K,K′
=

#Pn,K
#Pn,K,K′

× #Pn,K,K′
#P rep

n,K,K′
. (5.15)

By (5.13), it holds that

#Pn,K
#Pn,K,K′

=
K−m∏
i=m+1

(ndi)!

(nebi)!(nefi)!

(
din̂K′

ebin̂K′

)K′

=
K−m∏
i=m+1

(nebi)!(nefi)!

(
ndi
nebi

)
(nebi)!(nefi)!

(
din̂K′

ebin̂K′

)K′
.

K−m∏
i=m+1

√
2πndi√

2πnebi
√

2πnefi

(√
2πebin̂K′

√
2πefin̂K′√

2πdin̂K′

)K′
,

(5.16)

the last step by elementary Stirling approximation (this time including the lower order,
polynomial terms). The r.h.s. of (5.16) is, up to irrelevant numerical constant, at most

(5.16) .
K−m∏
i=m+1

n
K′−1

2 = n
(K′−1)(K−2m)

2 . (5.17)

Furthermore, one has

#Pn,K,K′
#P rep

n,K,K′
=

K−m∏
i=m+1

(
din̂K′

ebin̂K′

)2

.

{
K−m∏
i=m+1

(
1− efi

di

)di−efi (efi
di

)efi
}−2n̂K′ K−m∏

i=m+1

K ′di
2πnebiefi

,

(5.18)

the last inequality again by Stirling approximation. Since the term in the curly bracket
is raised to a negative power, we will use the following lower bound

K−m∏
i=m+1

{(
1− efi

di

)1− efi
di

(
efi
di

) efi
di

}di

≥
K−m∏
i=m+1

(
1

2

)di

≥
(

1

2

)L

, (5.19)

where the second inequality holds true since the function x 7→ (1−x)1−xxx is convex, and
attains its minimal value 1/2 in x = 1/2, as can be plainly checked. Plugging the bound
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(5.19) in (5.18) then yields

#Pn,K,K′
#P rep

n,K,K′
. n−(K−2m) exp

(
Ln

K ′
2 log 2

)
. (5.20)

Remark that for any K ′ > 2K2L log 2, it holds that

exp

(
Ln

K ′
2 log 2

)
≤ exp

( n

K2

)
. (5.21)

Combining (5.15), (5.17), (5.20) and (5.21) therefore implies that the entropic cost for
rendering the hyperplanes repulsive is

#Pn,K
#P rep

n,K,K′
. n(K

′−1
2
−1)(K−2m) × exp

( n

K2

)
. (5.22)

Using (5.11) in (5.22) then yields

#P rep
n,K,K′ & (mn̂K)!2

(
n

mn̂K

) K−m∏
i=m+1

(ndi)!

(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)
× Rn,K

Pn
, (5.23)

where we have shortened

Pn ≡ n(K
′−1
2
−1)(K−2m), Rn,K ≡ exp

(
− n

K2

)
. (5.24)

Recall that by Remark 10, polymers in P rep
n,K,K′ are loopless: this property, the ensuing

independence of the sub-energies, and (5.23) thus yield

E(#E2,ε
n,K,K′) & (mn̂K)!P (Xm(π) ≤ am,ε)

(
n

mn̂K

)
×

K−m∏
i=m+1

(ndi)!P (Xi−1,i ≤ ai,ε)

(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)
× (mn̂K)!P (XK−m+1 ≤ am,ε)

Rn,K

Pn
.

(5.25)

Further, recalling that by the thinning procedure, it holds

E
(
N ε
n,K,K′

)
=
C(ε)2

2
E(#E2,ε

n,K,K′) , (5.26)

and by the usual tail estimates, we thus see that

E(N ε
n,K,K′) &

K−m∏
i=m+1

(ai,ε)
ndi

(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)(
n

mn̂K

)
am,ε

2mn̂K−2(mn̂K)2Rn,K

Pn
.

(5.27)
But since (mn̂K)2am,ε

−2 > 1 for n large enough, we have, altogether, that

E
(
N ε
n,K,K′

)
&

K−m∏
i=m+1

(aiE)ndi
(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)
×

×
(

n

mn̂K

)
(amE)2mn̂K (1 + εE)

∑K−m
i=m+1 ndi(1 + εm,E)2mn̂KRn,K

Pn
.

(5.28)
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The first term on the r.h.s. of (5.28) is reminiscent of the expression appearing in
Theorem 1, but contrary to the latter, we are facing here a product which runs over the
indeces i = m + 1 . . . K −m only. The natural idea is thus to modify and then extend
this partial product to a full product in order to exploit the control already established in
Theorem 1. To do so we first note that, since on the positive axis it holds that x ≥ tanh(x),

(aiE)ndi ≥ tanh(aiE)ndi , and (amE)2mn̂K ≥ tanh(amE)2mn̂K . (5.29)

Using this in (5.28) yields

E
(
N ε
n,K,K′

)
&

K−m∏
i=m+1

tanh(aiE)ndi
(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)
×
(

n

mn̂K

)
tanh(amE)2mn̂K (1 + εE)

∑K−m
i=m+1 ndi(1 + εm,E)2mn̂KRn,K

Pn
.

(5.30)
The new (partial) product is closer yet not quite the same as that appearing in Theorem
1, so we artificially introduce some cosh-terms which however leave the r.h.s. above as a
whole unaltered. Precisely, we rewrite (5.30) as

E
(
N ε
n,K,K′

)
&

K−m∏
i=m+1

tanh(aiE)ndi
(

cosh(aiE)

cosh(aiE)

)n( i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)
×

×
(

n

mn̂K

)
tanh(amE)2mn̂K

(
cosh(amE)

cosh(amE)

)2n

(1 + εE)
∑K−m
i=m+1 ndi(1 + εm,E)2mn̂KRn,K

Pn
;

(5.31)
We can now move to the aforementioned procedure of extending the product to all indeces
i = 1 . . . K. This naturally requires a good control of the missing terms, i.e. for i ≤ m (a
case which is referred to below as First), and for i ≥ K −m+ 1 (Second case).

First case. We begin noting that by the Evolution Lemma 8,[
m∏
i=1

gi,K(di)

]n
=

(
sinh(amE)

m
K

)mn̂K(cosh(amE)

1− m
K

)n−mn̂K
= tanh(amE)mn̂K cosh(amE)n

nn

(mn̂K)mn̂K (n−mn̂K)n−mn̂K
,

(5.32)

the second equality by elementary rearrangement. But by ”reverse” Stirling-approximation,

nn

(mn̂K)mn̂K (n−mn̂K)n−mn̂K
∝
√
n

(
n

mn̂K

)
, (5.33)

and therefore [
m∏
i=1

gi,K(di)

]n
∝
√
ntanh(amE)mn̂Kcosh(amE)n

(
n

mn̂K

)
. (5.34)
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Furthermore, by definition of the g-functions, and taking into account the lower orders in
the Stirling approximation of the binomial factors, one also plainly checks that[

m∏
i=1

gi,K(di)

]n
∝
√
nnm−1

m∏
i=1

tanh(aiE)ndicosh(aiE)n
(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)
. (5.35)

Equating (5.34) and (5.35) therefore yields the asymptotic identity

tanh(amE)mn̂Kcosh(amE)n
(

n

mn̂K

)
∝ nm−1

m∏
i=1

tanh(aiE)ndicosh(aiE)n
(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)
.

(5.36)

Remark, in particular, that what lies behind the l.h.s. above (these are terms contributing
to (5.31)) are thus the first m-terms (up to irrelevant, for our purposes below) polynomial
factors, of the product analysed in Theorem 1.

Second case. Again by the Evolution Lemma 8 it holds that

1 =
K−m∏
i=1

gi,K(di)×
K∏

i=K−(m−1)

gi,K(di) , (5.37)

and therefore

K∏
i=K−(m−1)

gi,K(di) =

[
K−m∏
i=1

gi,K(di)

]−1

=

(sinh(aK−mE)
K−m
K

)K−m
K
(

cosh(aK−mE)

1− K−m
K

)1−K−m
K

−1

,

(5.38)

the second equality in virtue of (3.37). In order to get a handle on the r.h.s. above we
use the fundamental relation (2.25) which states that

sinh (aK−mE) cosh
(
aK−mE

)
=
K −m
K

, (5.39)

implying, in particular, that(sinh(aK−mE)
K−m
K

)K−m
K

−1

= cosh(aK−mE)
K−m
K . (5.40)

Furthermore, the following ”mirror” version of (5.39) holds in virtue of the addition
formula for hyperbolic functions (see (3.24) for the detailed derivation):

cosh (aK−mE) sinh
(
aK−mE

)
= 1− K −m

K
, (5.41)
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hence (cosh(aK−mE)

1− K−m
K

)1−K−m
K

−1

= sinh(aK−mE)1−K−m
K . (5.42)

Using (5.40) and (5.42) in (5.38) we thus have

K∏
i=K−(m−1)

gi,K(di) = cosh(aK−mE)
K−m
K sinh(aK−mE)1−K−m

K

= cosh(amE)
K−m
K sinh(amE)1−K−m

K ,

(5.43)

the second identity since
∑K

i=1 ai = 1 and by symmetry of the a′s. Raising (5.43) to the
nth- power, and by simple rearrangement, we thus see that K∏

i=K−(m−1)

gi,K(di)

n = tanh(amE)mn̂Kcosh(amE)n . (5.44)

Again by the definition of the g-functions, and taking into account the lower orders in the
Stirling approximation of the binomial factors, one plainly checks that K∏
i=K−(m−1)

gi,K(di)

n ∝ nm−1

K∏
i=K−(m−1))

tanh(aiE)ndicosh(aiE)n
(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)
,

(5.45)
and therefore, equating (5.44) and (5.45), we also obtain the following asymptotic equiv-
alence

tanh(amE)mn̂Kcosh(amE)n

∝ nm−1

K∏
i=K−(m−1)

tanh(aiE)ndicosh(aiE)n
(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)
.

(5.46)

In full analogy to (5.36), we therefore see that behind the l.h.s. above (these are also terms
contributing to (5.31)) hide in fact the last m-terms of the product analysed in Theorem 1.

Thanks to both (5.36) and (5.46), we may now replace the corresponding terms on the
r.h.s. of (5.31): this indeed allows to extend the product to all indeces i = 1, . . . , K, and
seamlessly leads to the lower bound

E
(
N ε
n,K,K′

)
&

K∏
i=1

tanh(aiE)ndicosh(aiE)n
(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)

× QnRn,K

Pn cosh(amE)2n

K−m∏
i=m+1

1

cosh(aiE)
(1 + εE)

∑K−m
i=m+1 ndi(1 + εm,E)2mn̂K ,

(5.47)

where Qn ≡ n2(m−1) is yet another polynomial term.
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The full product in the first line of the r.h.s. of (5.47) is easily taken care of. In fact,
by elementary rearrangement, it holds that

K∏
i=1

tanh(aiE)ndicosh(aiE)n
(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)

=
K∏
i=1

sinh(aiE)ndicosh(aiE)n(1−di)
(
i−1
K
n

ebin

)(
(1− i−1

K
)n

efin

)
,

(5.48)

and by Stirling approximation to second order, the r.h.s. of (5.48) equals

K∏
i=1

{
sinh(aiE)dicosh(aiE)1−diϕ

(
i−1
K

)
ϕ
(
1− i−1

K

)
ϕ(ebi)ϕ

(
i−1
K
− ebi

)
ϕ (efi)ϕ

(
1− i−1

K
− efi

)}n

× Sn,K , (5.49)

where Sn,K corresponds to the lower order (polynomial) terms in the approximation. But
by Theorem 1, the first term of (5.49), i.e. the full product, equals unity, whereas an
elementary inspection of the polynomial terms further shows that

Sn,K &
1√

2πn
K

(1− 1
K

)

K−1∏
i=2

(
(2πn)2( i−1

K
)(1− i−1

K
)

(2πn)4ebi(
i
K
− efi)efi(1− i

K
− ebi)

) 1
2

&
1

nK−2+ 1
2

.

(5.50)

Using all this in (5.47) yields

E
(
N ε
n,K,K′

)
≥ QnRn,K

Pn cosh(amE)2n

K−m∏
i=m+1

1

cosh(aiE)n
(1 + εE)

∑K−m
i=m+1 ndi(1 + εam,E)2mn̂K ,

(5.51)

where Pn ≡ Pnn
K−2+ 1

2 is yet another polynomial term.

It thus remains to control the cosh-terms in (5.51). To see how this goes we observe
that by Taylor expanding the cosh-function to second order,

cosh(amE)−1 = exp [− log cosh(amE)]

≥ exp− log

{
1 +

(amE)2 cosh(amE)

2

}
≥ exp

(
−(amE)2

√
2

)
,

(5.52)

the second inequality since log(1 + x) ≤ x, and using that cosh(amE) ≤ cosh(E) =
√

2.
Moreover, by (2.29) it holds that aiE ≤ 1

K
: summing over i = 1 . . .m thus leads to

amE ≤ m
K

, which combined with (5.52) yields

cosh(amE)−1 ≥ exp

(
− m2

√
2K2

)
. (5.53)
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A similar reasoning evidently yields

cosh(aiE)−1 ≥ exp

(
− 1√

2K2

)
, (5.54)

for any i = 1 . . . K. By (5.53) and (5.54) we thus have that

1

cosh(amE)2n
×

K−m∏
i=m+1

1

cosh(aiE)n
≥ exp

{
− n√

2K
− 2nm(m− 1)√

2K2

}
, (5.55)

which we recognize as the Sn,K,m-term announced in (5.2): the entropic cost for stretching
the paths. Using (5.55) in (5.51) finally yields

E
(
N ε
n,K,K′

)
≥ (1 + εE)

∑K−m
i=m+1 ndi(1 + εam,E)2mn̂K Sn,K,mRn,KQn

Pn
, (5.56)

and Theorem 1′ is thus settled. �

6. The second moment, and proof of Theorem 2′

The goal of this section is to provide a proof of Therem 2′. We begin with a technical
input, concerning tail estimates for the probability of two correlated sums of exponentials.

Lemma 12 (Overlap probability). Consider independent standard exponentials {ξi}, and

let Xl ≡
∑l

i=1 ξi. Denote by X ′l the sum of l such ξ-exponentials, and assume that X ′l
shares exactly k edges with Xl. Then for x > 0, it holds:

P (Xl ≤ x,X ′l ≤ x) ∝ x2l−k

(l − k)!l!
g

(
k

l

)l
. (6.1)

where

γ ∈ [0, 1] 7→ g(γ) ≡ {4(1− γ)}1−γ

{2− γ}2−γ . (6.2)

In particular, ‖g‖∞ ≤ 1.

Proof. Without loss of generality we may write

X ′l =
k∑
i=1

ξi +
l∑

i=k+1

ξ′i , (6.3)

for independent ξ′’s, which are also independent of the ξ-family. Remark that the first
sum, the common trunk, is a Γ(k, 1)-distributed r.v., whereas the second sum is Γ(l−k, 1)-
distributed. By conditioning on the common trunk, and by independence, it thus holds:

P (Xl ≤ x,X ′l ≤ x) =

∫ +∞

0

P (t+Xl−k ≤ x)2 P(Xk ∈ dt)

=

∫ +∞

0

P (Xl−k ≤ x− t)2 t
k−1e−t

(k − 1)!
dt

∝ 1

(l − k)!2(k − 1)!

∫ x

0

(x− t)2(l−k)tk−1dt ,

(6.4)
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the last step by the standard tail-estimates. Integration by parts then yields∫ x

0

(x− t)2(l−k)tk−1dt =
(k − 1)!(2(l − k))!

(2l − k)!
x2l−k , (6.5)

and therefore

P (Xl ≤ x,X ′l ≤ x) ∝ (2(l − k))!

(2l − k)!(l − k)!2
x2l−k

∝ x2l−k

(l − k)!l!

l!(2(l − k))!

(2l − k)!(l − k)!
.

∝ x2l−k

(l − k)!l!

(1− k
l
)l−k

2k(1− k
2l

)2l−k
,

(6.6)

the last inequality by Stirling approximation.
Remark that with γ ≡ k/l ∈ [0, 1], the second factor in the last term above can be

written as

(1− k
l
)l−k

2k(1− k
2l

)2l−k
=

{
(4(1− γ))(1−γ)

(2− γ)(2−γ)

}l

≡ g(γ)l , (6.7)

and using this in (6.6) yields

P (Xl ≤ x,X ′l ≤ x) ∝ x2l−k

(l − k)!l!
g

(
k

l

)l
, (6.8)

concluding the proof of the estimate for the overlap probability. �

We now address the second moment of N ε
n,K,K′ , as required for a proof of Theorem 2′.

For this, some notation is needed: recall from (4.42) that J is a deterministic subset of
polymers with cardinality #J = J =

⌊
E#E1,ε

n,K,K′/2
⌋
. Given a path π ∈ J , we shorten:

Jπ(n, k) ≡ all paths π′ ∈ J
which share k edges with π,

whithout considering the first and the last edge,

(6.9)

and for its cardinality

fπ(n, k) ≡ #Jπ(n, k) . (6.10)

Analogously we shorten

J (d)
π (n, k) ≡ all paths π′ ∈ J which share k edges with

π only in the directed phase, i.e between

0 and Hm or HK−m and 1,

but without considering first and last edge,

(6.11)

and let

f (d)
π (n, k) ≡ #J (d)

π (n, k) , (6.12)

denote its cardinality.
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And finally,

J (s)
π (n, k) ≡ number of paths π′ ∈ J which share k edges with

π with at least one common edge in the stretched

phase, i.e between Hm and HK−m,

but without considering first and last edge,

(6.13)

analogously shortening for its cardinality

f (s)
π (n, k) ≡ ]J (s)

π (n, k) . (6.14)

Remark that
fπ(n, k) = f (d)

π (n, k) + f (s)
π (n, k) . (6.15)

We will also need the ”worst case scenarios”
f(n, k) ≡ sup

π∈J
fπ(n, k) ,

f (d)(n, k) ≡ sup
π∈J

f (d)
π (n, k) ,

f (s)(n, k) ≡ sup
π∈J

f (s)
π (n, k) .

(6.16)

in which case it holds, in particular, that

f(n, k) ≤ f (d)(n, k) + f (s)(n, k). (6.17)

For i = m+ 1 . . . K −m, and two polymers π, π′ ∈ J , we shorten

Pi(π) ≡ P (Xi−1,i(π) ≤ ai,ε) , (6.18)

and
Pi(π, π′) ≡ P (Xi−1,i(π) ≤ ai,ε, Xi−1,i(π

′) ≤ ai,ε) . (6.19)

Furthermore, we shorten

Pm(π) ≡ P (Xm(π) ≤ am,ε) ,

PK−m+1(π) ≡ P (XK−m+1(π) ≤ aK−m+1,ε) ,
(6.20)

and
Pm(π, π′) ≡ P (Xm(π), Xm(π′) ≤ am,ε)

PK−m+1(π, π′) ≡ P (XK−m+1(π), XK−m+1(π′) ≤ aK−m+1,ε) ,
(6.21)

as well as

P(π) ≡ P
(
Xm(π) ≤ am,ε, Xi−1,i(π) ≤ ai,ε i = m+ 1 . . . K −m, XK−m+1(π) ≤ aK−m+1,ε

)
,

(6.22)
and

P(π, π′) ≡P(Xm(π), Xm(π′) ≤ am,ε, Xi−1,i(π), Xi−1,i(π
′) ≤ ai,ε for

i = m+ 1 . . . K −m, XK−m+1(π), XK−m+1(π′) ≤ aK−m+1,ε) .
(6.23)

Remark that for loopless paths the substrand-energies are independent, hence, and with
the above notation,

P(π) =
K−m+1∏
i=m

Pi(π), P(π, π′) =
K−m+1∏
i=m

Pi(π, π′) , (6.24)
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In particular, it holds that

E
(
N ε
n,K,K′

)
= JP(π) = J

K−m+1∏
i=m

Pi(π) . (6.25)

Concerning the second moment, we write

E
(
N ε
n,K,K′

2
)

=
∑
π,π′∈J

P(π, π′)

=
∑
π∈J

Loptn−2∑
k=0

∑
π′∈Jπ(n,k)

P(π, π′) ,

(6.26)

by arranging the sum according to the possible overlap-regimes.

The case k = 0 is both crucial and easily taken care of by the following observations:
first remark that the distribution of the energies of a pair of polymers depends solely on
the number of common edges; furthermore the number of pairs of polymers with zero
common edges is at most J2. Therefore, for any (π̂, π̃) ∈ (J ,Jπ̂(n, 0)) it holds:∑

π∈J

∑
π′∈Jπ(n,0)

P(π, π′) ≤ J2P(π̂, π̃) = J2P(π̂)2 , (6.27)

the last equality holding true since in case of non-overlapping paths, the π̂, π̃-energies are
independent and identically distributed. Using (6.25) in (6.27) therefore yields∑

π∈J

∑
π′∈Jπ(n,0)

P(π, π′) ≤ E
(
N ε
n,K,K′

)2
, (6.28)

This settles the k = 0 regime.

Remark 13. Recovering the first moment squared as in (6.28) is absolutely crucial for the
whole approach, and the main reason for treating first and last edge on different footing.
Without such different treatment, one would get the first moment squared up to a constant
only, and this would nullify the proof of Theorem 2. This feature is common to virtually
all models in the REM-class, see [7] for more on this delicate issue.

As for the remaining overlap-regimes, we will distinguish between

• 1 ≤ k ≤ 200n̂K : this corresponds to the case of weak correlations (the overlap
between the two polymers is small);
• k > 200n̂K : this corresponds to the case of strong correlations (the two polymers

strongly overlap).

We now rearrange the second moment according to the above dichotomy. Henceforth,

given π ∈ J , and with k ∈ N, we denote by π
(d)
k ∈ J (d)

π (n, k) a polymer which shares

k edges with π, and in full analogy for π
(s)
k ∈ J

(s)
π (n, k) and πk ∈ Jπ(n, k). With this

notation, again using that specifying the number of common edges fixes the distribution
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of the pair of paths, and by (6.28), we thus have

E
(
N ε
n,K,K′

2
)
≤ E

(
N ε
n,K,K′

)2
+

+ J

200n̂K∑
k=1

f (d)(n, k)P
(
π, π

(d)
k

)
+ J

200n̂K∑
k=1

f (s)(n, k)P
(
π, π

(s)
k

)

+ J

Loptn−2∑
k=200n̂K+1

f(n, k)P (π, πk) .

(6.29)

On the other hand, by Jensen inequality it holds

E
(
N ε
n,K,K′

2
)
≥ E

(
N ε
n,K,K′

)2
. (6.30)

In order to establish Theorem 2′ it therefore suffices to show that the last three sums on
the r.h.s. of (6.29) are of lower order when compared with the first moment squared. This
is indeed our key claim: since its proof is long and technical, we formulate it in the form
of three Propositions.

Proposition 14. For any K > mε−2, it holds

J

200n̂K∑
k=1

f (d)(n, k)P
(
π, π

(d)
k

)
= o

(
E
(
N ε
n,K,K′

)2
)
, (6.31)

for n→∞.

Proposition 15. For any K > max(2× 107,mε−2) and K ′ > 2 log(2)LK2, it holds

J

Loptn−2∑
k=200n̂K+1

f(n, k)P (π, πk) = o
(
E
(
N ε
n,K,K′

)2
)
, (6.32)

for n→∞.

Proposition 16. For any K > 2× 107 and K ′ > 2 log(2)LK2, it holds

J

200n̂K∑
k=1

f (s)(n, k)P
(
π, π

(s)
k

)
= o

(
E
(
N ε
n,K,K′

)2
)
, (6.33)

for n→∞.

The following three sections are devoted to the proofs of the above statements. We
anticipate that each proposition/treatment will require a good control of the asymptotics
of the f (d), f - and f (s)-terms: these will be formulated in the form of Lemmata whose
proofs, relying on extremely technical combinatorial estimates, are however postponed to
Section 7.

The reason for tackling the f -regime before the f (s)-one is that the treatment of the
latter will require some technical inputs which are obtained in the analysis of the the
former.
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6.1. Proof of Proposition 14. The goal is to prove that

lim
n→∞

J
∑200n̂K

k=1 f (d)(n, k)P
(
π, π

(d)
k

)
E
(
N ε
n,K,K′

)2 = 0. (6.34)

The combinatorial input here is the following

Lemma 17. For all k ≤ 200n̂K, one has

f (d)(n, k) ≤
J(mn̂K − bk2c)!(n− 1− dk

2
e)!

(mn̂K)!n!
l(k) , (6.35)

where

l(k) ≡

{
32(k + 1)3 k ≤ n1/4

16n13(k + 1) otherwise.
(6.36)

The proof of this Lemma is postponed to Section 7. Coming back to the task of proving
(6.34), by (6.24) and (6.25) we write

J
∑200n̂K

k=1 f (d)(n, k)P
(
π, π

(d)
k

)
E
(
N ε
n,K,K′

)2 =
J
∑200n̂K

k=1 f (d)(n, k)
∏K−m+1

i=m Pi
(
π, π

(d)
k

)
J2
∏K−m+1

i=m Pi(π)2
, (6.37)

In the considered regime, polymers share no edges but in the directed phase: the proba-
bilities indexed by i ∈ {m + 1, . . . , K −m} therefore factor out in virtue of the ensuing
independence, and the r.h.s. of (6.37) then takes the neater form

200n̂K∑
k=1

f (d)(n, k)Pm
(
π, π

(d)
k

)
PK−m+1

(
π, π

(d)
k

)
JPm (π)2 PK−m+1 (π)2 . (6.38)

Now, for π ∈ J and π
(d)
k ∈ J

(d)
π (n, k), let us denote by kl the number of common edges

between 0 andHm, and by kr the number of common edges between HK−m and 1 (in which
case it evidently holds that k = kl + kr). By the estimates for the overlap probabilities
from Lemma 12 (using the rough bound ‖g‖∞ ≤ 1), it steadily follows that

Pm
(
π, π

(d)
k

)
PK−m+1

(
π, π

(d)
k

)
.

am,ε
4(mn̂K−1)−k

(mn̂K − 1− kl)!(mn̂K − 1− kr)!(mn̂K − 1)!2
. (6.39)

We now proceed by worst case scenario and maximize the r.h.s. over all possible (kl, kr)-
choices. This can be seamlessly identified thanks to the well-known log-convexity of
factorials, which we recall is the property that for any a ≥ b ≥ j ≥ 0 it holds

(a+ j)!(b− j)! ≥ a!b! . (6.40)

Using (6.40) with

a ≡ mn̂K − 1− bk
2
c, and b ≡ mn̂K − 1− dk

2
e, (6.41)
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we see that the worst case on the r.h.s. of (6.39) is attained in kr ∈ {bk2c, d
k
2
e}, which is

equivalent to kl ∈ {bk2c, d
k
2
e} because k = kl + kr , hence

Pm
(
π, π

(d)
k

)
PK−m+1

(
π, π

(d)
k

)
≤ am,ε

4(mn̂K−1)−k

(mn̂K − 1− bk
2
c)!(mn̂K − 1− dk

2
e)!(mn̂K − 1)!2

.

(6.42)
Using the latter in (6.38), and by the usual tail estimates, we obtain

J
∑200n̂K

k=1 f (d)(n, k)P
(
π, π

(d)
k

)
E
(
N ε
n,K,K′

)2 .
200n̂K∑
k=1

f (d)(n, k)(mn̂K − 1)!2

J(mn̂K − 1− bk
2
c)!(mn̂K − 1− dk

2
e)!(am,ε)k

.

(6.43)
To get a handle on the factorials in the r.h.s. above we employ the bound

(mn̂K − 1)!2

(mn̂K − 1− bk
2
c)!(mn̂K − 1− dk

2
e)!
≤ (mn̂K)!2

(mn̂K − bk2c)!(mn̂K − d
k
2
e)!

, (6.44)

which can be plainly checked by writing out, and simplifying. Using (6.44), and the
combinatorial estimates of Lemma 17 for the f (d)-term, yields

(6.43) .
200n̂K∑
k=1

(mn̂K − bk2c)!(n− 1− dk
2
e)!l(k)(mn̂K)!2

(mn̂K)!n!(mn̂K − bk2c)!(mn̂K − d
k
2
e)!(am,ε)k

=

200n̂K∑
k=1

(n− 1− dk
2
e)!l(k)(mn̂K)!

n!(mn̂K − dk2e)!(am,ε)k
.

(6.45)

the second step in virtue of elementary, term by term, simplifications.
Using (a − 1)! = a!/a for the first factorial-term in the numerator on the r.h.s. above

yields

(6.45) =

200n̂K∑
k=1

(n− dk
2
e)!l(k)(mn̂K)!

(n− dk
2
e)n!(mn̂K − dk2e)!(am,ε)k

.
200n̂K∑
k=1

l(k)

(n− dk
2
e)
·

(1− 1
n
dk

2
e)n−d k2 e(m

K
)mn̂K

(m
K
− 1

n
dk

2
e)(mn̂K−d k2 e)

· 1

(am,ε)k

(6.46)

the last inequality by Stirling’s approximation.
We now focus on the middle term on the r.h.s. above. Omitting the rounding operation,

and shortening

Q(x) ≡ (1− x) log(1− x)− m

K
(1− xK

m
) log

(
1− xK

m

)
, (6.47)

we may rewrite this middle term as

(1− k
2n

)n−
k
2 (m

K
)mn̂K

(m
K
− k

2n
)
(mn̂K− k2 )

=

(√
m

K

)k
expnQ

(
k

n

)
. (6.48)
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It is plainly checked that, for k/n ∈ [0, 1], the Q-function is in fact negative (for K > m),
hence

(6.48) ≤
(√

m

K

)k
. (6.49)

By definition,

(am,ε)
k = (am(E + ε) + ε)k ≥ εk , (6.50)

the inequality by elementary minorization: this, as well as the bound (6.49), imply that
(6.46) is at most

200n̂K∑
k=1

l(k)

(n− k
2
)

1(√
K
m
ε
)k =

 n
1
4∑

k=1

+

200n̂K∑
k=n

1
4 +1

 l(k)

(n− k
2
)

1(√
K
m
ε
)k . (6.51)

If we now take K large enough such that
√

K
m
ε > 1, to wit:

K > mε−2, (6.52)

and recalling the definition of l(k) as in (6.36), we obtain

(6.52) .
1

(n− n 1
4 )

n
1
4∑

k=1

(k + 1)3

(
√

K
m
ε)k

+

200n̂K∑
k=n

1
4 +1

n13 (n+ 1)

(
√

K
m
ε)k

. (6.53)

The first sum on the r.h.s is, in the large-n limit, obviously convergent: its contribution
therefore vanishes in virtue of the (n − n1/4)-normalization. The second sum converges
exponentially fast to 0. All in all, the r.h.s. of (6.53) tends to 0 as n → ∞: this settles
the proof of claim (6.34), and therefore of Proposition 14.

�

6.2. Proof of Proposition 15. We will need here two technical inputs. The first one is
similar in nature to Lemma 12, and provides tail-estimates for the energies of overlapping
polymers. As the proof is short and elementary, it will be given right away.

Lemma 18. Consider independent standard exponentials {ξi}, and let Xl ≡
∑l

i=1 ξi.
Denote by X ′l the sum of l such ξ-exponentials, and assume that X ′l shares exactly k edges
with Xl. Then, for a, b > 0, it holds:

P (Xl ≤ a+ b, X ′l ≤ a+ b) . P (Xl ≤ a, X ′l ≤ a)

(
1 +

b

a

)2l−k

. (6.54)

Proof. Recalling that

g(γ) ≡ {4(1− γ)}1−γ

{2− γ}2−γ , (6.55)

by Lemma 12, it holds

P (Xl ≤ a+ b, X ′l ≤ a+ b) .
(a+ b)2l−k

(l − k)!l!
g

(
k

l

)l
. (6.56)
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Using that (a+ b)2l−k = a2l−k (1 + b
a

)2l−k
, we rephrase the r.h.s. of (6.56), to wit

P (Xl ≤ a+ b, X ′l ≤ a+ b) .
a2l−k

(l − k)!l!
g

(
k

l

)l(
1 +

b

a

)2l−k

. (6.57)

Again by Lemma 12, for the first two terms on the r.h.s. above we have that

a2l−k

(l − k)!l!
g

(
k

l

)l
. P (Xl ≤ a, X ′l ≤ a) , (6.58)

and plugging this in (6.57) yields the claim of the Lemma. �

The second technical input concerns the asymptotic of the f -terms. Here and below,
we will denote by Pn, Qn finite degree polynomials, not necessarily the same at different
occurences, and which depend on the hypercube dimension only.

Lemma 19. For all k ≤ Loptn, it holds

f(n, k) ≤ tanh

(
E

{
1− k

Loptn

})max
(
n−k, Loptn−k

4

)

cosh

(
E

{
1− k

Loptn

})n(
Loptn

eE

)Loptn−k

nKn
α

Pn,

(6.59)

where Pn is polynomial with finite degree and α ≡ 5
6
.

The proof of this Lemma is also postponed to Section 7: here we will use it for the

Proof of Proposition 15. By (6.24), it holds that

J
∑Loptn−2

k=200n̂K+1 f(n, k)P (π, πk)

E
(
N ε
n,K,K′

)2 =
J
∑Loptn−2

k=200n̂K+1 f(n, k)
∏K−m+1

i=m Pi (π, πk)

E
(
N ε
n,K,K′

)2 . (6.60)

We claim that the r.h.s. of (6.60) converges to 0 as n → ∞. To see this, some notation
is needed: given two paths π, π′ ∈ J which share k edges, we denote by

• kl the number of common edges between 0 and Hm,
• km the number of common edges between Hm and HK−m,
• kr the number of shared edges between HK−m and 1.

It clearly holds that k = kl + km + kr. Using Lemma 18, we obtain

K−m+1∏
i=m

Pi (π, πk) . P (Xm(π), Xm(πk) ≤ amE)×

×
K−m∏
i=m+1

P (Xi−1,i(π), Xi−1,i(πk) ≤ aiE)×

× P (XK−m+1(π), XK−m+1(πk) ≤ amE)×

× (1 + εE)2
∑K−m
i=m+1 ndi−km(1 + εm,E)4mn̂K−2−kl−kr .

(6.61)

By definition of εm,E and εE, see (5.1), the following lower bound plainly holds

1 + εm,E ≥ 1 + εE . (6.62)
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Using the independence of sub-energies we rewrite

P (Xm(π), Xm(πk) ≤ amE)×

×
K−m∏
i=m+1

P (Xi−1,i(π), Xi−1,i(πk) ≤ aiE)×

× P (XK−m+1(π), XK−m+1(πk) ≤ amE)

= P

(
Xm(π), Xm(πk) ≤ amE,

Xi−1,i(π), Xi−1,i(πk) ≤ aiE, i = m+ 1 . . . K −m,

XK−m+1(π), XK−m+1(πk) ≤ amE

)
.

(6.63)

Since
∑K

i=1 ai = 1, and by monotonicity of the probabilities, the r.h.s. of (6.63) is at most

P
(
X
K−m+1

m (π), X
K−m+1

m (πk) ≤ E
)
. (6.64)

Using (6.62) and (6.64) in (6.61) thus yields

K−m+1∏
i=m

Pi (π, πk) ≤ P
(
X
K−m+1

m (π), X
K−m+1

m (πk) ≤ E
)
×

× (1 + εE)2
∑K−m
i=m+1 ndi(1 + εam,E)4mn̂K−2

(1 + εE)k
,

(6.65)

which no longer depends on kl, kr, km, but only on their total sum. Using Lemma 12 in
(6.65) we thus obtain

K−m+1∏
i=m

Pi (π, πk) .
E2Loptn−2−kg( k

Loptn−2
)Loptn−2

(Loptn− 2)!(Loptn− 2− k)!

(1 + εE)2
∑K−m
i=m+1 ndi(1 + εm,E)4mn̂K−2

(1 + εE)k
.

(6.66)
We now come back to (6.60): using the lower bound to the first moment of N ε

n,K,K′

established in Theorem 1′ for the denominator, and (6.66) for the numerator, we see that

(6.60) ≤ P 2
n

Q2
n

J

Loptn−2∑
k=200n̂K+1

f(n, k)E2Loptn−2−kg( k
Loptn−2

)Loptn−2

(1 + εE)k(Loptn− 2)!(Loptn− 2− k)!C2
n,K,m

. (6.67)

(Recall the convention that Pn stands for some finite degree polynomial, not necessarily
the same at different occurences). It is immediate to check that the following inequality
holds

g

(
k

Loptn− 2

)Loptn−2

< g

(
k

Loptn

)Loptn

Pn . (6.68)

Furthermore,

(Loptn− 2)! =
(Loptn)!

(Loptn)(Loptn− 1)
=

(Loptn)!

Pn
, (6.69)
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where Pn is a polynomial of finite (quadratic) degree, and analogously

(Loptn− 2− k)! =
(Loptn− k)!

Pn
. (6.70)

Using (6.68), (6.69), and (6.70), we thus see that

(6.67) ≤ Pn
Qn

J

Loptn−2∑
k=200n̂K+1

f(n, k)E2Loptn−kg( k
Loptn

)Loptn

(1 + εE)k(Loptn)!(Loptn− k)!C2
n,K,m

, (6.71)

for some (modified, but still finite degree) polynomials Pn, Qn.
The inclusion J ⊂ Πn,Loptn holds by construction, hence

J ≤Mn,Loptn ≤ sinh(E)n
(Loptn)!

ELoptn
=

(Loptn)!

ELoptn
, (6.72)

the second inequality by Stanley’s M-bound (2.14) with x := E, and the last step since E
satisfies sinh(E) = 1. Plugging (6.72) into (6.71), we obtain

(6.71) ≤ Pn
C2
n,K,mQn

Loptn−2∑
k=200n̂K+1

f(n, k)ELoptn−kg( k
Loptn

)Loptn

(1 + εE)k(Loptn− k)!

≤ Pn
C2
n,K,mQn

Loptn∑
k=200n̂K+1

f(n, k)(eE)Loptn−kg( k
Loptn

)Loptn

(1 + εE)k(Loptn− k)Loptn−k
,

(6.73)

the last inequality by Stirling’s approximation, and extending the sum up to Loptn (the
terms are positive anyhow). The estimates of Lemma 19 applied to (6.73) yield

(6.73) ≤ nKn
α
Pn

C2
n,K,mQn

Loptn∑
k=200n̂K+1

[
tanh

(
E

{
1− k

Loptn

})max
(
n−k, Loptn−k

4

)
×

×
cosh

(
E
{

1− k
Loptn

})n
g
(

k
Loptn

)Loptn
(1 + εE)k

(
1− k

Loptn

)Loptn−k
]
.

(6.74)

Recalling the definition (6.2) of the g-function, one plainly checks that

g
(

k
Loptn

)Loptn
(

1− k
Loptn

)Loptn−k =

 4
1− k

Loptn(
2− k

Loptn

)2− k
Loptn


Loptn

. (6.75)

We lighten notation by setting, for x ∈ [0, 1],

Θ̂(x) ≡ 41−x

(2− x)2−x tanh (E {1− x})max
(

1
Lopt
−x, 1−x

4

)
cosh (E {1− x})

1
Lopt . (6.76)
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With this notation, the r.h.s. of (6.74) then reads

nKn
α
Pn

C2
n,K,mQn

Loptn∑
k=200n̂K+1

1

(1 + εE)k
Θ̂

(
k

Loptn

)Loptn

=
nKn

α
Pn

C2
n,K,mQn


Loptn

5∑
k=200n̂K+1

+

Loptn∑
k=

Loptn

5
+1

 1

(1 + εE)k
Θ̂

(
k

Loptn

)Loptn

=: (A) + (B),

(6.77)

say. In order to prove that these two terms vanish as n ↑ ∞, we need the following

Lemma 20. It holds:
sup
x≤1

Θ̂(x) ≤ 1 . (6.78)

Furthermore, for x ≤ 1
5
,

Θ̂(x) ≤ exp
(
− x

100

)
. (6.79)

The proof of Lemma 20 is given at the end of this section. We first use it to conclude
the proof of Proposition 15: using the bound (6.79) for the (A)-term yields

(A) ≤ nKn
α
Pn

C2
n,K,mQn

Loptn

5∑
k=200n̂K+1

exp− k
100

(1 + εE)k

≤
exp− 200n

100K

C2
n,K,m

nKn
α
Pn

Qn

Loptn

5∑
k=200n̂K+1

1

(1 + εE)k
,

(6.80)

since x 7→ exp(−x) is decreasing. Furthemore using that the above sum is convergent we
thus see that

(A) .
exp−2 n

K

C2
n,K,m

nKn
α
Pn

Qn

, (6.81)

Finally plugging the definition (5.3) of Cn,K,m into (6.81), yields

(A) ≤ expn

[√
2− 2

K
+

2
√

2m(m− 1) + 2

K2

]
× nKn

α
Pn

Qn

. (6.82)

But for K > 107, the exponent on the r.h.s. above is < 0, hence the (A)-term vanishes
as n ↑ ∞, settling the first claim.

As for the (B)-term , using (6.78) yields

(B) ≤ nKn
α
Pn

C2
n,K,mQn

×
Loptn∑

k=
Loptn

5
+1

1

(1 + εE)k

≤ nKn
α
Pn

C2
n,K,mQn

× Loptn

(1 + εE)
Loptn

5

,

(6.83)
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the last inequality majorizing with the largest term of the sum. Again plugging the
definition (5.3) of Cn,K,m in (6.83), and absorbing the n-factor in the P -polynomial, yields

(B) ≤ expn

[√
2

K
+

2
√

2m(m− 1) + 2

K2

]
× 1

(1 + εE)
Loptn

5

× nKn
α
Pn

Qn

. (6.84)

By (2.59), it holds that Lopt > L− m
K

, clearly implying that for any K > 105,

1.25 ≥ Lopt ≥ 1.24 . (6.85)

Using this in (6.84) yields

(B) ≤ expn

[√
2

K
+

2
√

2m(m− 1) + 2

K2

]
× 1

(1 + εE)
1.24n

5

× nKn
α
Pn

Qn

= expn

[√
2

K
+

2
√

2m(m− 1) + 2

K2
− 1.24n

5
log (1 + εE)

]
× nKn

α
Pn

Qn

.

(6.86)

Using the lower bound log(1 + x) ≥ x− x2

2
in (6.86) finally yields

(B) ≤ expn

[√
2

K
+

2
√

2m(m− 1) + 2

K2
−
(
εE −

ε2E
2

)
1.24

5

]
× nKn

α
Pn

Qn

. (6.87)

But for K > max(107, ε−2), the exponent is definitely strictly negative, hence the (B)-
terms also vanishes as n ↑ ∞, concluding the proof of the second claim.

In order to conclude the proof of Proposition 15 we therefore owe to the reader a

Proof of Lemma 20. We first address claim (6.79): since Lopt ≤
√

2E ≤ 1.25, one plainly
checks that for all x ≤ 1

5
it holds

max

(
1

Lopt
− x, 1− x

4

)
=

1

Lopt
− x , (6.88)

therefore

Θ̂(x) =
41−x

(2− x)2−x tanh (E {1− x})
1

Lopt
−x

cosh (E {1− x})
1

Lopt

=
41−x

(2− x)2−x sinh (E {1− x})
1

Lopt
−x

cosh (E {1− x})x .
(6.89)

The following inequalities can be easily checked using the convexity of x 7→ sinh (E(1− x)),
and of x 7→ cosh (E(1− x)), and constructing the corresponding chords between x = 0
and x = 1: it holds

sinh (E(1− x)) ≤ (1− x) , and cosh (E(1− x)) ≤
√

2 + (1−
√

2)x , (6.90)



UNDIRECTED POLYMERS IN RANDOM ENVIRONMENT: MEAN FIELD LIMIT 57

Combining (6.89) and (6.90), we obtain

Θ̂(x) ≤ 41−x

(2− x)2−x (1− x)
1

Lopt
−x
(√

2 + (1−
√

2)x
)x

=
22(1−x)−(2−x)(1− x)

1
Lopt
−x(√

2 + (1−
√

2)x
)x(

1− x
2

)(2−x)
,

(6.91)

the last step by rearrangement. Moreover, it holds that

1− x ≤
(

1− x

2

)2

. (6.92)

Simplifying the exponent of the first term in the numerator on the r.h.s. of (6.91), and
using (6.92) for the middle term, yields

Θ̂(x) ≤
2−x
(
1− x

2

)2( 1
Lopt
−x)(√

2 + (1−
√

2)x
)x(

1− x
2

)(2−x)

=

1 + (1−
√

2)√
2
x

√
2(1− x

2
)

x

× 1(
1− x

2

)2(1− 1
Lopt

)
,

(6.93)

the last step again by simple rearrangements.
Elementary inspection of the first derivative shows that, on the interval [0, 1/5], the

function

x 7→
1 + (1−

√
2)√

2
x

(1− x
2
)

(6.94)

is, in fact, increasing: bounding the function with its largest value attained in x = 1/5,
and plugging in (6.93), yields

Θ̂(x) ≤

1 + (1−
√

2)√
2

1
5√

2 9
10

x

× 1

(1− x
2
)
2(1− 1

Lopt
)

≤
(

3

4

)x
× 1

(1− x
2
)
2(1− 1

Lopt
)
,

(6.95)

the second inequality by elementary numerical estimates. Exponentiating the second term
on the r.h.s. above then leads to

Θ̂(x) ≤
(

3

4

)x
exp

[
−2(1− 1

Lopt
) log

(
1− x

2

)]
≤
(

3

4

)x
exp

[
x

(
1− 1

Lopt

)
2 log(2)

]
,

(6.96)

where in the second step we have used that

− log(1− x

2
) ≤ x log(2), (6.97)
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which is an immediate consequence of the convexity of x 7→ − log(1− x
2
). Recalling (2.59),

and the ensuing elementary estimate Lopt <
√

2E < 1.25, we thus see that

Θ̂(x) ≤ expx

[
log

(
3

4

)
+

(
1− 1

1.25

)
2 log(2)

]
≤ exp

[
− x

100

]
, (6.98)

the second inequality by straightforward numerical evaluation: claim (6.79) is thus settled.

We now move to claim (6.78). We recall that

Θ̂(x) =
41−x

(2− x)2−x tanh (E {1− x})max
(

1
Lopt
−x, 1−x

4

)
cosh (E {1− x})

1
Lopt

=
41−x

(2− x)2−x sinh (E {1− x})
1

Lopt
−x

cosh (E {1− x})x1{max
(

1
Lopt
−x, 1−x

4

)
= 1

Lopt
−x}

+
41−x

(2− x)2−x sinh (E {1− x})
1−x

4 cosh (E {1− x})
1

Lopt
− 1−x

4 1{max
(

1
Lopt
−x, 1−x

4

)
= 1−x

4
}.

(6.99)
By (2.59), it holds that Lopt > L− m

K
and this implies that for any K > 105,

1

1.24
≥ 1

Lopt
≥ 1

1.25
. (6.100)

Let now

g1(x) ≡ 41−x

(2− x)2−x sinh (E(1− x))
1

1.25
−xcosh (E(1− x))x , (6.101)

g2(x) ≡ 41−x

(2− x)2−x sinh (E(1− x))
1−x

4 cosh (E(1− x))
1

1.24
− 1−x

4 . (6.102)

In virtue of (6.100), g1 is larger than the first term in (6.99), whereas g2 ls larger than
the second one. In particular, setting g3 ≡ min(g1, g2), we see that in order to establish
(6.78) it suffices to prove that

sup
x∈[0,1]

g3(x) ≤ 1 , (6.103)

which is our new claim. A plot of these two functions is given in Figure 16 below.
To see this, we first note that (6.79) already shows that

sup
x∈[0,1/5]

g1(x) ≤ 1 . (6.104)

We now claim that

g1 is convex on [0.12, 0.73], g1(0.12) ≤ 1 and g1(0.73) ≤ 1. (6.105)

and that

g2 is convex on [0.71, 1], g2(0.71) ≤ 1 and g2(1) = 1. (6.106)

Assuming the validity of these two claims for the time being, it follows that

g1(x) ≤ 1 ∀x ≤ 0.73 , (6.107)

and

g2(x) ≤ 1 ∀x ≥ 0.71 . (6.108)
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Figure 16. The functions g1 and g2. One clearly sees that the minimum
of these functions is always below 1.

Combining (6.107) and (6.108) thus yields

sup
x∈[0,1]

g3(x) ≤ 1, (6.109)

and claim (6.78) is verified.

To conclude the proof of Lemma 20 it thus remains to prove (6.105) and (6.106). We
begin with the convexity of g1 on the interval [0.12, 0.73]. Since g1 > 0,

d2 log(g1)

dx2
=
g′′1g1 − g′21

g2
1

≥ 0 =⇒ g′′1(x) ≥ 0, (6.110)

hence convexity of log(g1) implies convexity of g1: we will check the former by showing
positivity of its second derivative. It holds:

d2 log(g1(x))

dx2
=
d2

dx2

[
(1− x) log(4) + (−2 + x) log(2− x)

]
+

+
d2

dx2

[
x log(cosh (E(1− x)))

]
+

+
d2

dx2

[(
−x+

1

1.25

)
log sinh (E(1− x))

]
.

(6.111)

By elementary computations, we see that:

d2

dx2

[
(1− x) log(4) + (−2 + x) log(2− x)

]
=
−1

2− x
, (6.112)

d2

dx2

[
x log(cosh (E(1− x)))

]
=

d

dx

[
log(cosh (E(1− x)))− xE tanh (E(1− x))

]
= −2E tanh (E(1− x)) +

xE2

cosh (E(1− x))2 ,
(6.113)



UNDIRECTED POLYMERS IN RANDOM ENVIRONMENT: MEAN FIELD LIMIT 60

and finally

d2

dx2

[(
−x+

1

1.25

)
log sinh (E(1− x))

]
=

d

dx

[
− log(sinh (E(1− x))) + E

(
x− 1

1.25

)
coth (E(1− x))

]
= 2E coth (E(1− x)) +

E2(x− 1
1.25

)

sinh (E(1− x))2 .

(6.114)

Since 1/5 ≥ 0.12, say, by the previous considerations we see that g1(0.12) ≤ 1. We may
thus restrict to to x ∈ [0.12, 0.73]: we first note that the first function on the r.h.s. of
(6.112) is decreasing. In particular, it holds that

−1

2− x
≥ −1

2− 0.73
≥ −0.8 . (6.115)

Plugging (6.112)-(6.114) in (6.111), and then using (6.115) and the fact that xE2

cosh(E(1−x))2 ≥
0, thus yields

(6.111) ≥ −0.8− 2E tanh (E(1− x)) + 2E coth (E(1− x)) +
E2(x− 1

1.25
)

sinh (E(1− x))2 (6.116)

We now make two observations.

• First of all we note that the r.h.s. of (6.116) consists of three increasing functions.
• Furthermore, by Taylor expansions to fifth order, and some elementary yet tedious

numerical estimates (which will be here omitted) one plainly checks that in x =
0.12 the r.h.s. of (6.116) is, in fact, positive, whereas g1(0.73) ≤ 1.

Combining the above items we see, in particular, that g1 is indeed convex on [0.12, 0.73],
and the proof of claim (6.105) is therefore concluded.

We now move to the analysis of g2. Simple computations show that

d2

dx2

[
log(g2(x))

]
=
−1

2− x
− E

2
tanh (E(1− x)) +

E2( 1
1.24

+ x−1
4

)

cosh (E(1− x))2 +
E

2
coth (E(1− x))

+
E2(x− 1)

4 sinh (E(1− x))2

≥ −1− E

2
tanh (E(1− x)) +

E2( 1
1.24

+ x−1
4

)

cosh (E(1− x))2 +
E

2
coth (E(1− x))

+
E2(x− 1)

4 sinh (E(1− x))2 ,

(6.117)
the last inequality using that −1

2−x ≥ −1. We now proceed in full analogy to (6.116):

• First we note that the r.h.s. of (6.117) consists of four increasing functions.
• Furthermore, and again by some tedious yet elementary numerical estimates via

Taylor expansions to fifth order (also omitted), one plainly checks that in x = 0.71,
say, the r.h.s. of (6.117) is, in fact, positive, and g2(0.71) ≤ 1.
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Since the above items clearly imply, in particular, that g2 is convex on [0.71, 1], the second
claim (6.106) is also settled, and the proof of Lemma 20 is thus concluded. �

�

6.3. Proof of Proposition 16. We first state the technical input concerning the as-
ymptotic of the f (s)-terms. (As usual, Pn, Qn stand for finite degree polynomials, not
necessarily the same at different occurences).

Lemma 21. For any k ≤ 200n̂K, it holds

f (s)(n, k) ≤
(

3

4

)(m−200)n̂K

tanh

(
E(1− k

Loptn
)

)n−k
×

× cosh

(
E(1− k

Loptn
)

)n(
Loptn

eE

)Loptn−k

nKn
α

Pn .

(6.118)

The proof of this Lemma is also postponed to Section 7.

Proof of Proposition 16. . By (6.24), it holds that

J
∑200n̂K

k=1 f (s)(n, k)P
(
π, π

(s)
k

)
E
(
N ε
n,K,K′

)2 =
J
∑200n̂K

k=1 f (s)(n, k)
∏K−m+1

i=m Pi
(
π, π

(s)
k

)
E
(
N ε
n,K,K′

)2 . (6.119)

We claim that the r.h.s. of (6.119) converges to 0 as n→∞. To see this, we follow exactly
the same steps which from (6.60) lead to (6.73), this time of course with f (s) instead of
f . Omitting the details, the upshot is that the r.h.s. of (6.119) is at most

Pn
C2
n,K,mQn

200n̂K∑
k=1

f (s)(n, k)(eE)Loptn−kg( k
Loptn

)Loptn

(1 + εE)k(Loptn− k)Loptn−k
, (6.120)

The estimates from Lemma 21 applied to (6.120) then yield

(6.120) ≤
(3

4
)
(m−200)n̂KnKn

α
Pn

C2
n,K,mQn

200n̂K∑
k=1

tanh(E(1− k
Loptn

))
n−k

cosh(E(1− k
Loptn

))
n
g
(

k
Loptn

)Loptn
(1 + εE)k

(
1− k

Loptn

)Loptn−k .

(6.121)
As in (6.75), it holds that

g
(

k
Loptn

)Loptn
(

1− k
Loptn

)Loptn−k =

 4
1− k

Loptn(
2− k

Loptn

)2− k
Loptn


Loptn

. (6.122)

We lighten notation by setting, for x ∈ [0, 1/Lopt],

Θ(x) ≡ 41−x

(2− x)2−x tanh (E(1− x))
1

Lopt
−x

cosh (E(1− x))
1

Lopt . (6.123)
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Using this, together with (6.122), the r.h.s. of (6.121) then takes the neater form(
3

4

)(m−200)n̂K nKn
α
Pn

C2
n,K,mQn

200n̂K∑
k=1

1

(1 + εE)k
Θ

(
k

Loptn

)Loptn

(6.124)

We recall that
K > 2× 107. (6.125)

Thus, in the regime k ≤ 200n̂K , and since Lopt ≥ 1, we have

k

Loptn
≤ 200n

LoptKn
≤ 200

K
≤ 10−5. (6.126)

We now claim that for all x ≤ 10−5,

Θ(x) = Θ̂(x) . (6.127)

In fact, for any x ≤ 10−5,

max

(
1

Lopt
− x, 1− x

4

)
=

1

Lopt
− x , (6.128)

as a simple numerical inspection shows: this proves (6.127).
Combining Lemma 20 and (6.127), thus yields

sup
x≤10−5

Θ(x) ≤ 1. (6.129)

Using (6.129) in (6.124) then gives that

(6.124) ≤
(

3

4

)(m−200)n̂K nKn
α
Pn

C2
n,K,mQn

200n̂K∑
k=1

1

(1 + εE)k

.

(
3

4

)(m−200)n̂K nKn
α
Pn

C2
n,K,mQn

,

(6.130)

since the sum is evidently convergent. Furthermore recalling the definition (5.3) of Cn,K,m,
we thus see that

(6.130) .

(
3

4

)(m−200)n̂K

× expn

[√
2

K
+

2
√

2m(m− 1) + 2

K2

]
× nKn

α
Pn

Qn

= expn

[
1

K

{
(m− 200) log

(
3

4

)
+
√

2

}
+

2
√

2m(m− 1) + 2

K2

]
× nKn

α
Pn

Qn

(6.131)
Since m = 205,

(m− 200) log

(
3

4

)
+
√

2 < − 1

100
, (6.132)

(this bound is, as a matter of fact, the reason for choosing m as we do), plugging (6.132)
in (6.130), yields

(6.130) . expn

[
− 1

100K
+

2
√

2m(m− 1) + 2

K2

]
× nKn

α
Pn

Qn

. (6.133)
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But again in virtue of (6.125), and with m = 205,

− 1

100K
+

2
√

2m(m− 1) + 2

K2
< 0 , (6.134)

as can be immediately checked: the r.h.s. of (6.133) is therefore vanishing as n ↑ ∞, and
the proof of Proposition 16 is concluded. �

7. Combinatorial estimates

To control the asymptotics of the f (d), f (s) and f -terms requires some delicate path-
counting.

7.1. Counting directed paths, and proof of Lemma 17. Key to the whole treatment
are estimates for the number of pairs of directed paths with prescribed overlaps which are
formulated in Lemma 22 below. We shall emphasize that the estimates (7.2) and (7.3)
have been established by Fill and Pemantle [4, Lemma 2.2, 2.4], whereas (7.4) can be
found in [9, Lemma 6].

Lemma 22 (Path counting directed, Fill and Pemantle). Let π′ be any reference path on
the n-dim hypercube connecting 0 and 1, say π′ = 12...n. For k ≥ 1, denote by F (n, k)
the number of directed paths π that share precisely k edges with π′, and by F ∗(n, k) the
number of paths that share k edges with π′, without considering the first and the last edge.
Finally, shorten ne ≡ n− 5e(n+ 3)2/3. It holds:

• For all k ≥ ne, we have

F (n, k) ≤ (n− k)!

(
n

ne

)
, (7.1)

• suppose k ≤ ne for n ≥ 25. Then, it holds

F (n, k) ≤ (n− k)!n6 . (7.2)

• For k ≤ n1/4, the stronger bounds hold

F (n, k) ≤ (n− k)!(k + 1)(1 + on(1)), (7.3)

and

F ∗(n, k) ≤ (n− k − 1)!(k + 1)(1 + on(1)), (7.4)

as n ↑ ∞, uniformly in k.

Proof. As mentioned, we only need to prove (7.1): to this end, consider a directed path
π which shares precisely k edges with the reference path π′ = 12 . . . n. We set ri = l if
the lth traversed edge by π is the ith edge shared by π and π′. (We set by convention
r0 ≡ 0, and rk+1 ≡ n + 1). Furthemore let r ≡ r(π) = (r0, ..., rk+1). For any sequence
r0 = (r0, ..., rk+1) with 0 = r0 < r1 < ... < rk < rk+1 = n+1, let C(r0) denote the number
of paths π with r(π) = r0. Since the values πri+1, ..., πri+1−1 must be a permutation of
{ri + 1, ..., ri+1 − 1}, it clearly holds that C(r) ≤ G(r), where

G(r) ≡
k∏
i=0

(ri+1 − ri − 1)! . (7.5)
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Iterating the log-convexity (6.40) of factorials in its simplest form: a!b! ≤ (a+ b)!, yields

G(r) ≤

(
k∑
i=0

ri+1 − ri − 1

)
! = (n+ 1− (k + 1))! = (n− k)! , (7.6)

which implies, in particular, that there are at most (n − k)! paths sharing k edges with
a reference-path π′ for given r-sequence. But since there are

(
n
k

)
ways to choose such

r-sequences we obtain

F (n, k) ≤ (n− k)!

(
n

k

)
. (7.7)

Since the factorial term on the r.h.s. above is decreasing in k for k ≥ dn
2
e, we deduce that

for k ≥ ne � n
2
,

(n− k)!

(
n

k

)
≤ (n− k)!

(
n

ne

)
, (7.8)

settling the proof of (7.1). �

Armed with the above estimates on the number of directed paths with prescribed
overlaps, we can move to the

Proof of Lemma 17. For π ∈ J and π
(d)
k ∈ J (d)

π (n, k), let us denote by kl the number
of common edges between 0 and Hm, and by kr the number of common edges between
HK−m and 1 (in which case it evidently holds that k = kl + kr). Furthermore, let

f (d)
π (n, k, kl) ≡ all paths π′ ∈ J which share k edges with

π only in the directed phase, i.e between

0 and Hm or HK−m and 1,

with kl edges in common between 0 and Hm,

but without considering first and last edge.

(7.9)

We have
f (d)
π (n, k) =

∑
kl≥kr

f (d)
π (n, k, kl) +

∑
kl<kr

f (d)
π (n, k, kl)

≤
∑
kl≥kr

f (d)
π (n, k, kl) +

∑
kl≤kr

f (d)
π (n, k, kl).

(7.10)

We claim that ∑
kl≥kr

f (d)
π (n, k, kl) =

∑
kl≤kr

f (d)
π (n, k, kl). (7.11)

This claim is perhaps surprising at first sight, as kl and kr cannot be simply swapped.
The idea is over to work through bijections relating the (pair) of paths appearing in the
first sum to those in the second one.

Indeed, each vertex on the right side of the hypercube stands in one to one correspon-
dence with a vertex on the left side: the (trivial) bijection here amounts to changing the
1′s into 0′s (and the 0′s into 1′s).

Furthermore, by (2.28), backsteps and forward steps are symmetric around the center
of the hypercube, meaning that for i ∈ {m+ 1, K −m},

ebi = ebK−i+1 and efi = ebK−i+1 . (7.12)
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This, together with the fact that polymers are stretched, implies that the number of
subpaths reaching two given vertices between Hi and Hi+1, and the number of those
between HK−(i+1) and HK−i do in fact coincide.

Finally, we note that the ”cone” of vertices in Hi+1 which are attainable from a vertex
in Hi in the first half of the hypercube is in one-to-one correspondence with the vertices
in HK−(i+1) which lead to a given vertex in HK−i (this can immediately seen by changing
the 1-coordinates of a vertex into 0, or the other way around). Thus, for each cone on the
left side of the hypercube, we find a cone on the right side which evolves in the opposite
direction, settling claim (7.11).

Using (7.11) in (7.10) yields

f (d)
π (n, k) ≤ 2

∑
kl≥kr

f (d)
π (n, k, kl). (7.13)

We now make the following key observation: counting the number of directed subpaths
which share kl edges with π (disregarding the first edge) between 0 and any admissible
point of Hm is equivalent to counting the number of directed subpaths π′ that share
kl edges with the directed subpath of π, but on a hypercube of dimension mn̂K (again
disregarding the first edge). By symmetry, the same of course holds true for the number
of subpaths between HK−m and 1 (this time disregarding the last edge). The new goal is
thus to solve the path-counting problem on these hypercubes of smaller dimensions. In
order to do so, we focus on the rightmost edge shared by both polymers, and denote by

dl ≡ d
(
πrkl , Hm

)
(7.14)

its Hamming distance to the Hm-plane. We now distinguish between two cases: the first
case concerns the situation where dl = 0, whereas the second case concerns dl > 0.

If dl = 0, the rightmost common edge leads directly into the Hm-plane. Any subpath
sharing kl edges with π can thus reach one vertex only on the target plane: counting
the number of subpaths connecting 0 and this prescribed vertex, while disregarding the
first edge, is therefore equivalent to estimating the number of directed paths which share
kl − 1 edges on a hypercube of dimension mn̂K − 1, also disregarding the first edge. We
will solve the latter problem with the help of F , in which case a small detail must be
taken into account. In fact, contrary to our current situation, the first edge does matter
in the definition of F . We thus have to distinguish between the case whether the first
edge is shared, respectively: not shared, by both paths. In both cases we need to specify
kl − 1 common edges disregarding first and ”last” edge: in the first case the number of
commond edges is, in fact, (kl − 1) + 1 = kl, and this leads to at most F (mn̂K − 1, kl)
ways to choose them. In the second case the problem of the ”hidden” (first) shared edge
is not present, and we simply have at most F (mn̂K − 1, kl − 1) possibilities to choose the
common edges. All in all, for the number of directed paths sharing kl common edges (first
one excluded), and dl = 0, we have the rough bound

F (mn̂K − 1, kl) + F (mn̂K − 1, kl − 1) ≤ 2F (mn̂K − 1, kl − 1) , (7.15)

using for the inequality that j 7→ F (n, j) is decreasing.
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We now move to the case dl > 0 and first note that by definition of f (d)(n, k), neither
first nor the last edges can be a common edge. The number of subpaths, which are sharing
kl edges between 0 and Hm with π whithout considering the first and the last edge is thus
at most

(# admissible vertices in Hm)× F ∗(mn̂K , kl) . (7.16)

We claim that

# admissible vertices in Hm =

(
n− (mn̂K − dl)

dl

)
. (7.17)

Indeed, of the n possible 1-coordinates, (mn̂K − dl) many are already specified by the
rightmost common edge; furthermore, in order to reach any of the admissible points on
Hm we may switch, out of n − (mn̂K − dl) 0-coordinates, dl many into 1′s: (7.17) thus
follows by simple counting.

Next we claim that j 7→
(
n+j
j

)
is increasing. To see this, we write(

n+ j

j

)
=

(n+ j) . . . (j + 1)

n!
, (7.18)

and observe that the term in the numerator on the r.h.s. above is increasing. It follows
in particular, that the r.h.s. of (7.17) is maximized for dl = mn̂K − kl − 1 (recall that we
are not considering the first edge), and therefore

(7.16) ≤
(

n− kl − 1

mn̂K − kl − 1

)
× F ∗(mn̂K , kl) . (7.19)

Combining (7.15) and (7.19), we thus see that the overall number of subpaths sharing kl
edges on the ”left side” of the hypercube (i.e. between 0 and Hm, but without considering
the first edge) with a reference path π is less than

2F (mn̂K − 1, kl − 1) + F ∗(mn̂K , kl)×
(

n− kl − 1

mn̂K − kl − 1

)
. (7.20)

We next move to the ”right side” of the hypercube: in full analogy to the considerations
leading to (7.15), one sees that the number of subpaths sharing kr edges between a point
on HK−m and 1 with a given reference path π (disregarding, in this case, the last edge),
is less than

F (mn̂K , kr) + F (mn̂K , kr + 1) ≤ 2F (mn̂K , kr). (7.21)

The bounds (7.20) and (7.21) address ”left” and ”right” side of the hypercube on
separate footing: for these bounds to be of any use in estimating the f (d)(n, k, kl)-terms
appearing in (7.13), left and right side must be connected. We will do so by slightly
”overshooting”, insofar we do not take into account the fact that the number of subpaths
connecting Hm and HK−m is reduced, as soon as shared edges on the right region are
specified. Recalling that J = #J takes the form

J = (mn̂K)!

(
n

mn̂K

)
︸ ︷︷ ︸

directed

× Js︸︷︷︸
stretched

× (mn̂K)!︸ ︷︷ ︸
directed

, (7.22)
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with Js denoting the number of subpaths between a given vertex on Hm and the HK−m-
plane, it follows from (7.20), (7.21) and the aforementioned overshooting, that

f (d)
π (n, k, kl) ≤

(
2F (mn̂K − 1, kl − 1) + F ∗(mn̂K , kl)×

(
n− kl − 1

mn̂K − kl − 1

))
×

Js × 2F (mn̂K , kr).

(7.23)

The above is our fundamental estimate. Remark in particular, that it holds uniformly
over k = kl + kr. To proceed further we will now distinguish two cases: either k ≤ n

1
4 or

k > n
1
4 .

First case: k ≤ n
1
4 . We begin with an estimate for the terms in the large brackets of the

r.h.s. of (7.23). In the considered k-regime, we may use the bounds provided by Lemma
22: display (7.3) yields the bound

F (mn̂K − 1, kl − 1) ≤ (kl + 1)(mn̂K − kl)! [1 + on(1)] ≤ 2(kl + 1)(mn̂K − kl)! , (7.24)

for n large enough, whereas display (7.4) of the same Lemma yields, for the F ∗-term on
the r.h.s. of (7.23) the bound

F ∗(mn̂K , kl) ≤ (kl + 1)(mn̂K − kl − 1)! [1 + on(1)] ≤ 2(kl + 1)(mn̂K − kl − 1)! , (7.25)

which holds again for large enough n. Combining (7.24) and (7.25) we thus get that the
terms in the large brackets of the r.h.s. of (7.23) are at most

4(kl + 1)(mn̂K − kl)! + 2(kl + 1)(mn̂K − kl − 1)!

(
n− kl − 1

mn̂K − kl − 1

)
≤ 4(kl + 1)(mn̂K − kl − 1)!×

(
n− kl − 1

mn̂K − kl − 1

)
,

(7.26)

the second inequality since n − kl − 1 ≥ mn̂K − kl − 1 ≥ 5n̂K − 1 (see m = 205 and
k ≤ 200n̂K) implies that the second term on the l.h.s. above is (exponentially) larger
than the first one.

We may again use the bounds provided by Lemma 22, display (7.3), akin to (7.24), and
we obtain

2F (mn̂K , kr) ≤ 4(kr + 1)(mn̂K − kr)!. (7.27)

Plugging the estimates (7.26) and (7.27) into (7.23), we obtain

f (d)
π (n, k, kl) ≤ 16(kl + 1)(mn̂K − kl − 1)!

(
n− kl − 1

mn̂K − kl − 1

)
Js(kr + 1)(mn̂K − kr)!

= 16(kl + 1)(mn̂K − kl − 1)!

(
n− kl − 1

mn̂K − kl − 1

)
J(kr + 1)(mn̂K − kr)!

(mn̂K)!2
(

n

mn̂K

) ,
(7.28)

the last equality expressing Js as a function of J via the relation (7.22). Writing out the
binomials, and after some elementary simplifications, (7.28) becomes

f (d)
π (n, k, kl) ≤ 16(kl + 1)(kr + 1)(n− kl − 1)!(mn̂K − kr)!

J

(mn̂K)!n!
. (7.29)
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In order to estimate the r.h.s. of (7.29), we recall that k = kr + kl, hence

(kl + 1) (kr + 1) ≤ (k + 1)2 . (7.30)

Furthermore, we claim that

(n− kl − 1)!(mn̂K − kr)! ≤
(
n− dk

2
e − 1

)
!

(
mn̂K − b

k

2
c
)

!. (7.31)

To see this, we will make use of the log-convexity (6.40) with a ≡ dn − kl − 1e and
b ≡ bmn̂K − krc, in which case it clearly holds that a > b for any choice of kl = k − kr
with k ≤ 200n̂K . By log-convexity we thus obtain

(n− kl − 1)!(mn̂K − kr)! ≤ (n− kl − 1 + 1)!(mn̂K − kr − 1)!

= (n− k′l − 1)! (mn̂K − k′r)! ,
(7.32)

where k′l ≡ kl− 1 and k′r ≡ kr + 1. Iterating the log-convexity as in (7.32) and taking into
account that kl ≥ kr gives that the r.h.s. of (7.32) is maximized in kl = dk

2
e, settling the

claim (7.31).
Plugging (7.30) and (7.31) into (7.29) then yields

f (d)
π (n, k, kl) ≤ 16(k + 1)2

(
n− dk

2
e − 1

)
!

(
mn̂K − b

k

2
c
)

!
J

(mn̂K)!n!
. (7.33)

All in all, using (7.13) and (7.33), we have

f (d)
π (n, k) ≤ 2

∑
kl≥kr

16(k + 1)2

(
n− dk

2
e − 1

)
!

(
mn̂K − b

k

2
c
)

!
J

(mn̂K)!n!

≤ 32(k + 1)3

(
n− dk

2
e − 1

)
!

(
mn̂K − b

k

2
c
)

!
J

(mn̂K)!n!
,

(7.34)

the last inequality since kl+kr = k, implying that the sum consists at most of k+1 terms.

Second case: k > n
1
4 . Note that we additionally require that k ≤ 200n̂K . On the other

hand, 200n̂K ≤ ne, by definition. This implies, in particular, that k ≤ ne: we are thus in
the (7.2)-regime. Recalling the definition of F ∗, the upperbound clearly holds

F ∗(mn̂K , kl) ≤ F (mn̂K , kl) + F (mn̂K , kl + 1) + F (mn̂K , kl + 2)

≤ n6(n− kl)!
(

1 +
1

(n− kl)
+

1

(n− kl)(n− kl − 1)

)
≤ n7(n− kl − 1)!2, (n large enough)

(7.35)

the second inequality by (7.2). Following exactly the same steps which lead from (7.23)
to (7.34), again using the Lemma 22 but this time with the estimate (7.2) and replacing
(7.25) by (7.35), one immediately obtains

f (d)
π (n, k) ≤ 16n13(k + 1)

(
n− 1− dk

2
e
)

!

(
mn̂K − b

k

2
c
)

!
J

(mn̂K)!n!
, (7.36)

for all π ∈ J , concluding the proof of Lemma 17. �
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7.2. Counting undirected paths, and proofs of Lemmata 19 and 21. Thanks to
the repulsive nature of the H-planes, if two paths share two edges between a different
pair of H-planes, the common edge with the smaller Hamming distance to 0 is evidently
crossed first. Given that paths eventually proceed according to the inherent directivity
of the problem (”from left to right”), one may ask a similar question for the way two (or
more) common edges between two successiveH-planes (in the stretched phase) are crossed.
To address this question, we will distinguish between two concepts: i) directionality, i.e.
whether the path performs, while crossing the considered edge, a forward- or a backstep,
and ii) order in which the considered edges are crossed5.

Lemma 23. Let π, π′ ∈ J share edges between the Hi−1- and the Hi-plane, for some
i ∈ {m + 1, . . . , K − m}, and assume that the π-path crosses the common edges in a
certain directionality and order. Then the π′-path has to cross the edges either

• in the same directionality and order,
or
• in opposite directionality and reverse order.

Figure 17. The yellow edges are shared by both polymers. The picture
on the left satisfies the directionality: the red polymer crosses the yellow
edges in graphical order ”from left to right”, while the blue polymer crosses
the yellow edges in reversed order and opposite directionality. The picture
on the right does not: the blue polymer first crosses the first common edge,
but then reverts both order and directionality.

Proof of Lemma 23. Consider a path π, and the associated directionality/order in which
it crosses the prescribed, common edges. A second path π′ which does not follow such
directionality and order (nor its complete reversal) will move away from one of the shared
edges which are bound to be crossed in a future step. The second path will thus have to

5In hindsight, we only need two distinctions here: either the two paths cross the edges in the same,
or in reverse order. We will avoid explicit definitions for this intuitive concept, but provide an example:
assuming that the common edges are labeled a,b,c,d, etc., the order in which a path crosses them is simply
the order of the labels: assume the path π crosses the edges in the order a-b-c-d; the path π′ can cross
the same edges either in exactly the same order a-b-c-d, or in reverse order d-c-b-a.
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make up for this ”departure”, eventually, but this can only happen if it performs, during
its evolution, a detour, i.e. if it goes through an edge (parallel to one of the unit vectors)
in both directions. Since detours are not possible in the stretched phase at hand, the claim
follows repeating the line of reasoning.

�

Proof of Lemma 19. Consider π ∈ J , and k = (k1, k2, . . . , kK) ∈ NK , such that k1 + k2 +
· · · + kK = k. By a slight abuse of notation we denote by fπ(n,k) the number of paths
which share ki edges with π between the hyperplanes Hi−1 and Hi, i ∈ {1, . . . , K}. It
then holds

fπ(n, k) =
∑
k

fπ(n,k). (7.37)

If ki > 0, let vfi
i be the first vertex which π hits when crossing the first common edge

between Hi−1 and Hi, and vla
i the last vertex from which π departs after crossing the last

common edge (also between Hi−1 and Hi). Furthermore, denote by

lfii (π) ≡ d
(
Hi−1 ∩ π, vfi

i

)
, llai (π) ≡ d

(
vla
i , Hi ∩ π

)
, (7.38)

the Hamming distance from (resp. to) the first (resp. last) vertex to the previous (resp.
next) H-plane. If ki = 0, we simply set lfii (π) ≡ d(Hi−1 ∩ π,Hi ∩ π) and llai ≡ 0.

Finally, consider the whole list (vector) of Hamming distances

l(π) ≡
(
lfi1(π), lla1 (π), lfi2(π), lla2 (π), . . . , lfiK(π), llaK(π)

)
∈ N2K . (7.39)

Let fπ(n,k, l) the number of paths sharing ki edges with π between the hyperplanes
Hi−1 and Hi, i = 1 = . . . K, and with prescribed l-vector. It then holds

fπ(n, k) =
∑
k

∑
l

fπ(n,k, l) (7.40)

By Lemma 23, a path π̂ ∈ Jπ(n, k) has two ways only to travel through the common edges
between successive H-planes: either in identical, or opposite directionality/order. In order
to keep track of this, we consider the σ ≡ (σ1, . . . , σK) ∈ {−1, 1}K with coordinates given
by

σi ≡ +1, if ki = 0, (7.41)

and

σi ≡

{
+1, if π̂ crosses first vfi

i ,

−1, if π̂ crosses first vla
i .

and ki > 0. (7.42)

We need some additional notation: if ki > 0 and in case of identical directionality/order,
i.e. σi = +1, we set

l̂fii (π̂) ≡ length of the substrand connecting the vertices Hi−1 ∩ π̂ and vfi
i ,

l̂lai (π̂) ≡ length of the substrand connecting vla
i and Hi ∩ π̂,

v̂fi
i ≡ vfi

i ,

v̂la
i ≡ vla

i .

(7.43)
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If ki > 0 and in case of reverse directionality/order, i.e. σi = −1, we set

l̂fii (π̂) ≡ length of the substrand connecting the vertices Hi−1 ∩ π̂ and vla
i ,

l̂lai (π̂) ≡ length of the substrand connecting Hi ∩ π̂ and vfi
i ,

v̂fi
i ≡ vla

i ,

v̂la
i ≡ vfi

i .

(7.44)

If ki = 0, we simply set

l̂fii (π̂) ≡ lπ(Hi−1 ∩ π,Hi ∩ π),

l̂lai (π̂) ≡ 0.
(7.45)

Furthermore, let

v̂la
0 ≡ 0,

v̂fi
K+1 ≡ 1.

(7.46)

In full analogy with l, we denote by l̂ the list (vector) of l̂-lengths.

Let us now go back to (7.40): with fπ(n,k, l,σ, l̂) standing for the number of π̂-paths
which share ki edges with π between the hyperplanes Hi−1 and Hi with prescribed lengths

l (for π), l̂ (for π̂) and with σ directionality/order, it holds

fπ(n, k) =
∑
k

∑
l

∑
σ

∑
l̂

fπ(n,k, l,σ, l̂). (7.47)

We will now derive a formula for the fπ-summands on the r.h.s. above in terms of the
number of paths satisfying the prescriptions locally: this requires discriminating between
the cases where first and last common edge both lie within the same slab (i.e. between
successive H-planes), or in two different slabs. Let h(i) ≡ min{a, a ≥ i, ka > 0} and
h(i) = K + 1 if {a, a ≥ i, ka > 0} is empty or i = K + 1. Finally, h(0) ≡ 0.

• Same slab.
– For kh(i) ≥ 1, we denote by f̊π(n,k, l,σ, l̂, i) the number of stretched subpaths

sharing kh(i) edges with π between vfi
h(i) and vla

h(i), knowing that first and last
edge are in common.

• Different slabs.
– We denote by fπ(n,k, l,σ, l̂, i) the number of paths connecting v̂la

h(i) to v̂fi
h(i+1).

See below for a graphical rendition:
With these definitions, denoting by b ≡ #{i : ki > 0}, it clearly holds that

fπ(n,k, l,σ, l̂) =
b∏
i=1

f̊π(n,k, l,σ, l̂, i)
b∏
i=0

fπ(n,k, l,σ, l̂, i) . (7.48)
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Figure 18. The blue and the red paths are admissible paths, which cross
the different common edges in yellow.

The new goal is to get a handle on the f̊π and fπ-terms. As for the former, we claim that
for n big enough, for i, kh(i) > 0 and with α ≡ 5

6
,

f̊π(n,k, l,σ, l̂, i) ≤ tanh

(
E
d(vfi

h(i), v
la
h(i))− kh(i)

Loptn

)d(vfi
h(i)

,vla
h(i)

)−kh(i)

× cosh

E

(
d(vfi

h(i), v
la
h(i)

)
− kh(i))

Loptn

n

×
(

Loptn

eE

)d(vfi
h(i)

,vla
h(i)

)−kh(i)

nn
α

n
1
2 .

(7.49)

In order to see this, we first observe that substrands are stretched between successive
H-planes: the number of subpaths which share kh(i) ≥ 2 edges with π between vfi

h(i) and

vla
h(i) therefore equals the number of directed subpaths that share kh(i) − 2 edges with the

subpath of π between vfi
h(i) and vla

h(i) on a hypercube of dimension d
(
vfi
h(i), v

la
h(i)

)
−2. Hence

f̊π(n,k, l,σ, l̂, i) ≤ F
(
d
(
vfi
h(i), v

la
h(i)

)
− 2, kh(i) − 2

)
. (7.50)

Next we note that for n large enough,

n6 ≤
(
n

ne

)
, (7.51)

and therefore, by Lemma 22, the following rough bound holds for all k ≤ n:

F (n, k) ≤ (n− k)!

(
n

ne

)
. (7.52)
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Using this in (7.50) yields

F
(
d
(
vfi
h(i), v

la
h(i)

)
− 2, kh(i) − 2

)
≤
(
d
(
vfi
h(i), v

la
h(i)

)
− kh(i)

)
!

(
n

ne

)
. (7.53)

Furthermore, (
n

ne

)
≤ n!

ne!
=

n!

(n− 5e(n+ 3)2/3)!
≤ n5e(n+3)2/3 ≤ nn

α

, (7.54)

for n big enough, where α ≡ 5
6
. Using this in (7.53), and plugging the ensuing estimates

in (7.50) we obtain

f̊π(n,k, l,σ, l̂, i) ≤ (d(vfi
h(i), v

la
h(i))− kh(i))!n

nα . (7.55)

By elementary Stirling approximation,

(d(vfi
h(i), v

la
h(i))− kh(i))! .

(
d(vfi

h(i), v
la
h(i))− kh(i)

)1/2

[
d(vfi

h(i), v
la
h(i))− kh(i)

e

]d(vfi
h(i)

,vla
h(i)

)−kh(i)

. n1/2

[
d(vfi

h(i), v
la
h(i))− kh(i)

e

]d(vfi
h(i)

,vla
h(i)

)−kh(i)

,

(7.56)
the last inequality using that the dimension of an hypercube embedded between two
hyperplanes is bounded above by their distance, i.e d(vfi

h(i), v
la
h(i)) ≤

n
K
< n.

Plugging (7.56) in (7.55) yields

f̊π(n,k, l,σ, l̂, i) . nn
α+1/2

[
d(vfi

h(i), v
la
h(i))− kh(i)

e

]d(vfi
h(i)

,vla
h(i)

)−kh(i)

. (7.57)

The above bound strongly depends on local specifications, which turn out to be rather
untractable especially when it comes to the full product (7.48). We will circumvent this
problem by means of a series of tricks: in a first step we recognize the term involving
the d(vfi

h(i), v
la
h(i)) in (7.57) as a constituent part of a Stanley’s bound, which we thus

introduce artificially. In a second step, we will perform a rather elementary asymptotic
analysis of the product (7.48) which is enabled by some monotonicity properties of the
hyperbolic functions. To see how the first step comes about, we note that sinh(x) ≥ x
and cosh(x) ≥ 1 for all x > 0, hence the following holds

1 ≤ sinh(y)d

yd
cosh(y)n−d = tanh(y)d cosh(y)n

1

yd
, (7.58)

for any y > 0 and d ≤ n. We use this inequality with

y := E
(d(vfi

h(i), v
la
h(i))− kh(i))

Loptn
, d := d(vfi

h(i), v
la
h(i))− kh(i), (7.59)
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in which case we see that

1 ≤ tanh

(
E

(d(vfi
h(i), v

la
h(i))− kh(i))

Loptn

)

× cosh

(
E

(d(vfi
h(i), v

la
h(i))− kh(i))

Loptn

)n

×

[
Loptn

E(d(vfi
h(i), v

la
h(i))− kh(i))

]d(vfi
h(i)

,vla
h(i)

)−kh(i)

.

(7.60)
Artificially upperbounding with the help of this estimate the r.h.s. of (7.57), and factoring

out the (d(vfi
h(i), v

la
h(i))− kh(i))

d(vfi
h(i)

,vla
h(i)

)−kh(i)-terms then yields

f̊π(n,k, l,σ, l̂, i) . nn
α+1/2tanh

(
E
d(vfi

h(i), v
la
h(i))− kh(i)

Loptn

)d(vfi
h(i)

,vla
h(i)

)−kh(i)

×

× cosh

(
E
d(vfi

h(i), v
la
h(i))− kh(i)

Loptn

)n(
Loptn

eE

)d(vfi
h(i)

,vla
h(i)

)−kh(i)

.

(7.61)
Claim (7.49) is therefore settled for kh(i) ≥ 2 and easely holds for kh(i) = 1.

We now move to estimating the fπ(n,k, l,σ, l̂, i)-terms. Note that l fixes the vertices
vfi
i , v

la
i , and in particular the Hamming distance between two successive commons edges,

which are not between the same H-planes, σ fixes v̂fi
i , v̂

la
i , while l̂ gives the length of the

subpaths π̂ between these common edges.
For all i ∈ {0 . . . K}, we set

l̂i ≡ lπ̂(v̂la
h(i), v̂

fi
h(i+1)). (7.62)

We claim that

fπ(n,k, l,σ, l̂, i) . tanh

(
El̂i

Loptn

)d(v̂la
h(i)

,v̂fi
h(i+1))

cosh

(
El̂i

Loptn

)n(
Loptn

Ee

)l̂i
n

1
2 . (7.63)

Indeed, it clearly holds that

fπ(n,k, l,σ, l̂, i) ≤M
n,l̂i,d

(
v̂la
h(i)

,v̂fi
h(i+1)

). (7.64)

To get a handle on the r.h.s. above we make use of the following estimate, the derivation
of which follows the by now classical route6, and is thus omitted:

Mn,l,nd . n
1
2 tanh

(
El

Loptn

)nd
cosh

(
El

Loptn

)n(
Loptn

Ee

)l
. (7.65)

Using (7.65) with l := l̂i, nd := d(v̂la
h(i), v̂

fi
h(i+1)) in (7.64) steadily yields the claim (7.63).

6Stanley’s bound (2.14) with x := lE
Loptn

/ Stirling approximation / some elementary rearrangements.
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Having obtained explicit estimates for the f̊π and fπ-terms, we need bounds to their
products as appearing in (7.48). This will be done exploiting the aforementioned mono-
tonicity properties of hyperbolic functions: for any yi, di ≥ 0, and k ∈ N it holds

k∏
i=1

tanh (yi)
di ≤

k∏
i=1

tanh

(
k∑
i=1

yi

)di

= tanh

(
k∑
i=1

yi

)∑k
i=1 di

, (7.66)

since tanh is increasing, and

k∏
i=1

cosh (yi) ≤ cosh

(
k∑
i=1

yi

)
, (7.67)

which can be steadily checked iterating cosh (a+ c) = cosh (a) cosh (c)+sinh (a) sinh (c) ≥
cosh (a) cosh (c) , for a, c > 0.

These bounds allow to remove most of the local dependencies appearing in the products
(7.48): shortening

Db ≡
b∑
i=1

[
d
(
vfi
h(i), v

la
h(i)

)
− kh(i)

]
, (7.68)

and combining (7.66), (7.67) and (7.49) we get

b∏
i=1

f̊π(n,k, l,σ, l̂, i) . nKn
α+K

2 tanh

(
EDb
Loptn

)Db
cosh

(
EDb
Loptn

)n(
Loptn

eE

)Db
. (7.69)

On the other hand, shortening

D̂b ≡
b∑
i=0

d
(
v̂la
h(i), v̂

fi
h(i+1)

)
, L̂b ≡

b∑
i=0

l̂i , (7.70)

and combining (7.66), (7.67) with (7.63) we obtain

b∏
i=0

fπ(n,k, l,σ, l̂, i) . n
K+1

2 tanh

(
EL̂b

Loptn

)D̂b
cosh

(
EL̂b

Loptn

)n(
Loptn

Ee

)L̂b
. (7.71)

Plugging (7.69) and (7.71) in (7.48) thus leads to

fπ(n,k, l,σ, l̂) . n
2K+1

2
+Knαtanh

(
EDb
Loptn

)Db
cosh

(
EDb
Loptn

)n(
Loptn

Ee

)Db
×

× tanh

(
EL̂b

Loptn

)D̂b
cosh

(
EL̂b

Loptn

)n(
Loptn

Ee

)L̂b
.

(7.72)

The above estimate still involves the product of two tanh-, and two cosh-terms: using
once more the monotonicity tricks (7.66) and (7.67) we get



UNDIRECTED POLYMERS IN RANDOM ENVIRONMENT: MEAN FIELD LIMIT 76

fπ(n,k, l,σ, l̂) .

n
2K+1

2
+Knαtanh

(
E
Db + L̂b

Loptn

)Db+D̂b
cosh

(
E
Db + L̂b

Loptn

)n(
Loptn

Ee

)Db+L̂b
.

(7.73)

But paths in J have the same, prescribed length, and it holds that

Db + L̂b = Loptn− k. (7.74)

Using this, (7.73) simplifies to

fπ(n,k, l,σ, l̂) .

n
2K+1

2
+Knαtanh

(
E

Loptn− k
Loptn

)Db+D̂b
cosh

(
E

Loptn− k
Loptn

)n(
Loptn

Ee

)Loptn−k (7.75)

Remark, in particular, that the r.h.s. above depends on the local prescriptions only
through the tanh-exponent. It will come hardly as a surprise that this feature leads to
a dramatic simplification of the computations. As a matter of fact, even the exponent
depends only very mildly on the local prescriptions: indeed, we claim that

Lemma 24.

Db + D̂b ≥ max

(
n− k, Loptn− k

4

)
. (7.76)

Proving this claim will unfortunately require a fair amount of work, so we assume its
validity for the time being.

By monotonicity,

tanh

(
E

Loptn− k
Loptn

)
≤ tanh (E) =

1√
2
< 1, (7.77)

hence Lemma 24 applied to (7.75) yields the upperbound

fπ(n,k, l,σ, l̂) .

n
2K+1

2
+Knαtanh

(
E

Loptn− k
Loptn

)max
(
n−k, Loptn−k

4

)
cosh

(
E

Loptn− k
Loptn

)n(
Loptn

Ee

)Loptn−k

,

(7.78)

no longer depends on l,σ, l̂,k; plugging this in (7.48), and the ensuing estimate in (7.47)
therefore leads to

fπ(n, k) . n
2K+1

2
+Knα

∑
l

∑
σ

∑
l̂

∑
k

T(n, k) , (7.79)

where

T(n, k) ≡ tanh

(
E(Loptn− k)

Loptn

)max
(
n−k, Loptn−k

4

)
cosh

(
E(Loptn− k)

Loptn

)n(
Loptn

Ee

)Loptn−k

.

(7.80)
Since T(n, k) depends on the number of common edges, but not on the local prescriptions,
we thus only need estimates on the cardinalities of the sums appearing in (7.79). As for
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the first sum, since vfi
· can only move along the path π between two successive hyperplanes,

the number of ways to place such vfi
· ’s is at most n (the same of course holds true for vla

· ),
hence ∑

l

≤ n2K , (7.81)

and by analogous reasoning ∑
l′

≤ n2K . (7.82)

Moreover, it clearly holds that ∑
σ

≤ 2K . (7.83)

Finally, ∑
k

=
∑
ki,

k1+k2+...+kK=k

=

(
k +K − 1

K − 1

)
.

(k +K − 1)k+K−1

(K − 1)K−1kk
, (7.84)

by Stirling approximation. Since (K − 1)K−1 ≥ 1, and log(1 + x) ≤ x, we see that

(7.84) ≤ kK−1

(
1 +

K − 1

k

)k+K−1

= kK−1 exp

[
(k +K + 1) log

(
1 +

K − 1

k

)]
≤ kK−1 exp

[
(k +K − 1)

K − 1

k

]
≤ kK−1expK (K − 1).

(7.85)

Combining (7.79), (7.81), (7.82), (7.83) and (7.85), we obtain

fπ(n, k) ≤ Pnn
Knαtanh

(
E

Loptn− k
Loptn

)max
(
n−k, Loptn−k

4

)
cosh

(
E

Loptn− k
Loptn

)n(
Loptn

Ee

)Loptn−k

,

(7.86)
where Pn is a finite degree polynomial, which is indeed the claim of Lemma 19. �

Proof of Lemma 24. . Recall that the claim reads

Db + D̂b ≥ max

(
n− k, Loptn− k

4

)
. (7.87)

The validity of the first inequality, to wit

Db + D̂b ≥ n− k, (7.88)

relies on a self-evident fact, namely that the total distance of shared edges in the directed
case is a lower bound for the undirected case. More precisely, since common edges con-
tribute to the number of steps performed while connecting 0 to 1, as soon as a backstep
acts on a shared edge, the total distance between shared edges is bound to increase: the
path has eventually to make up for the ”lost ground”. Another way to put it: the con-

tribution Db + D̂b is smallest when all shared edges are steps forward, in which case the
total distance between these edges must be at least the minimal number of steps required
to connect 0 to 1. Since this minimal number is clearly the dimension minus the number
of shared (prescribed) edges, i.e. n− k, (7.88) is settled.
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The second inequality

Db + D̂b ≥
Loptn− k

4
, (7.89)

requires more work and depends on some key properties of paths in J . We begin with a
couple of observations:

i) First we note that

d
(
vfi
h(i), v

la
h(i)

)
= d

(
v̂fi
h(i), v̂

la
h(i)

)
,

since inverting directionality clearly has no impact on the distance.
ii) Furthemore, in a (fully) stretched phase distance and length do, in fact, coincide:

d
(
v̂fi
h(i), v̂

la
h(i)

)
= lπ̂

(
v̂fi
h(i), v̂

la
h(i)

)
.

iii) Finally, and by definition,

b∑
i=1

kh(i) = k .

Plugging items i-iii) above in the Db-definition (7.68) yields

Db + D̂b =
b∑
i=1

lπ̂
(
v̂fi
h(i), v̂

la
h(i)

)
− k +

b∑
i=0

d
(
v̂la
h(i), v̂

fi
h(i+1)

)
. (7.90)

We now claim that for i ∈ {0, 1, . . . b} , it holds:

d
(
v̂la
h(i), v̂

fi
h(i+1)

)
≥ 1

4
lπ̂(v̂la

h(i), v̂
fi
h(i+1)) . (7.91)

This is, in fact, our key technical claim, but since its proof requires some involved analysis,
we assume its validity for the time being, and first show how it implies (7.89): plugging
(7.91) in (7.90) we obtain

Db + D̂b ≥
b∑
i=1

lπ̂
(
v̂fi
h(i), v̂

la
h(i)

)
− k +

1

4

b∑
i=0

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) . (7.92)

But by construction,

lπ̂
(
v̂fi
h(i), v̂

la
h(i)

)
≥ kh(i), (7.93)

hence
b∑
i=1

lπ̂
(
v̂fi
h(i), v̂

la
h(i)

)
− k ≥

b∑
i=1

kh(i) − k ≥ 0, (7.94)

the last inequality by item iii) above. This positivity implies, in particular, that

b∑
i=1

lπ̂
(
v̂fi
h(i), v̂

la
h(i)

)
− k ≥ 1

4

(
b∑
i=1

lπ̂
(
v̂fi
h(i), v̂

la
h(i)

)
− k

)
, (7.95)
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and using this lower bound in (7.92) then yields

Db + D̂b ≥
1

4

(
b∑
i=1

lπ̂
(
v̂fi
h(i), v̂

la
h(i)

)
− k

)
+

1

4

b∑
i=0

lπ̂(v̂la
h(i), v̂

fi
h(i+1))

=
1

4


b∑
i=1

lπ̂
(
v̂fi
h(i), v̂

la
h(i)

)
+

b∑
i=0

lπ̂(v̂la
h(i), v̂

fi
h(i+1))︸ ︷︷ ︸

=Loptn

−k

 ,

(7.96)

which settles our key claim (7.89).

It thus remains to prove (7.91). Recall that we are considering the situation where
shared edges are separated by (at least) one H-plane7. Since by definition an H-plane is
also an H ′-plane, prescribing the number of separating H ′-planes allows to discriminate
among different scenarios. Indeed, introducing, for i = 0 . . . b,

cπ̂(i) ≡ number of H ′-planes which lie between v̂la
h(i) and v̂fi

h(i+1) , (7.97)

a minute’s thought suggests that there are three scenarios which are ”structurally” man-
ifestly different:

• cπ̂(i) > 2: the common edges are separated by at least one H-plane, and multiple
H ′-planes. We will refer to this as the H’HH’-case.
• cπ̂(i) = 2: in this case the common edges are separated by one H-plane, and one
H ′-plane (which is however not an H-plane). We will refer to this as the HH’-case.
• cπ̂(i) = 1: the separating hyperplane must be an H-plane: we will refer to this as

the H-case.

We will establish the validity of (7.91) in all three possible scenarios. We anticipate that
(7.91) becomes more delicate the less hyperplanes are separating the common edges: this
is due to the fact that the larger the number of separating hyperplanes the further apart
(in terms of Hamming distance d) the common edges must lie, a feature which renders
(7.91) all the more likely. In line with this observation, the cπ̂(i) = 1 will turn out to be
the most delicate. We emphasize that the index i is given and fixed. To lighten notation
we will thus omit it in the expressions, whenever no confusion can possibly arise.

A number of insights are common to the treatment of all three scenarios. Given the
nature of the inequality we are aiming to prove, it will not come as a surprise that we will
need a good control - in the form of lower bounds - on the distance of two common edges,
as well as a good control - this time around in the form of upper bounds - on the length
of the substrands connecting the shared edges.

A reasonably tight, but what’s more: valid for any of the three cπ̂-scenarios, lower
bound for the distance is provided by technical input (T1) below. Let H ′fi be the first

7as otherwise the claim would be trivial anyhow: if the shared edges lie within two successive H-planes,
the polymer is in a stretched phase in which case distance (d) and length (l) coincide, with the inequality
(7.91) thus trivially holding.
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hyperplane on the right of v̂la
h(i) and H ′la be the last hyperplane on the left of v̂fi

h(i+1), and

shorten dfi
π̂ ≡ d(v̂la

h(i), H
′
fi), and dla

π̂ ≡ d(H ′la, v̂
fi
h(i+1)). A graphical depiction of this is given

in Figure 19 below. The following estimate holds by definition/construction8

Figure 19. v̂la
h(i) and v̂fi

h(i+1) separated by three hyperplanes.

d
(
v̂la
h(i), v̂

fi
h(i+1)

)
≥ dfi

π̂ +
cπ̂(i)− 1

KK ′
n+ dla

π̂ (T1) .

(We note in passing that equality holds if and only if v̂la
h(i), v̂

fi
h(i+1) are connected by a

directed substrand; since a stretched substrand may have to perform backsteps while con-
necting these two vertices, (T1) is in general only a lower bound).

As mentioned, the second technical input, (T2) below, concerns upperbounds on the
length of a substrand connecting H ′-planes. To see how these come about, let us denote
by v ∈ H ′i,j,w ∈ H ′i,j+1 the vertices by which the π̂-substrand connects the finer mesh. It
is important to observe that in virtue of (4.2), there is no absolutely no ambiguity in the
way we identify these vertices: in fact,

these vertices are unequivocally identified through the length of

the substrand connecting the successive H ′ -planes.
(7.98)

We now claim that

lπ̂(v,w) ≤ 1.46

KK ′
n (T2)

The proof of (T2) is rather immediate: first recall that in virtue of (4.2),

lπ̂(v,w) = (efi + ebi)
n

K ′
=

(
1

K
+ 2ebi

)
n

K ′
, (7.99)

8it can also immediately evinced from Figure 19.
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the second equality by (2.36). But by (3.19) (and again (2.36)), the number of effective
backsteps between H-planes in the stretched phase satisfies

ebi = sinh(ai−1E) sinh(aiE) sinh(aiE), (7.100)

and by (4.12),

sinh(aiE) ≤ 1

K
+

1

6K3
, (7.101)

which combined with (7.100) yields

ebi ≤ sinh(aiE) sinh(aiE)

(
1

K
+

1

6K3

)
≤ sinh

(
E

2

)2(
1

K
+

1

6K3

)
.

(7.102)

the second inequality by (4.10). Since

sinh

(
E

2

)2
(4.14)
=

√
2− 1

2
≤ 0.22, (7.103)

and using that K > 107, one plainly checks that

ebi ≤ 0.23× 1

K
. (7.104)

Plugging (7.104) in (7.99) settles (T2).

If it’s true that there is no ambiguity in the way vertices on the H ′-plane are identified
(recall remark (7.98) above), it is nonetheless true there there is a certain amount of
uncertainty in the way the polymer connects these planes. This is due to the fact that
(contrary to the H-planes) the H ′-planes are not repulsive, hence a polymer might cross
them multiple times. Such excursions increase of course the length of the substrand, and
introduce some ”fuzziness” into the picture. Notwithstanding, we claim that

during one such excursion a polymer can overshoot,
in terms of Hamming distance, an H ′-plane by at most

0.23
KK′

n units.
(T3)

Figure 20 below provides an elementary proof of this fact.
The above insight, captured by (T3), suggests to introduce the following set

Fi,j ≡
{
v ∈ Vn, d(v,H ′i,j) ≤

0.23

KK ′
n

}
. (7.105)

We emphasize that whenever a common edge lies in this set, it can be crossed by a sub-
strand which either connects H ′i,j−1 with H ′i,j or H ′i,j with H ′i,j+1: for this reason, we refer
to Fi,j (which is nothing but ”twice” the blue-shaded region in Figure 20) as the fuzzy zone.

We now record two useful consequences of (T2) and (T3) on the lengths of substrand
which will play a role in the proof of (7.91). For reasons which will become clear, we will
only need to consider the case where the first common edge lies in the fuzzy zone of the



UNDIRECTED POLYMERS IN RANDOM ENVIRONMENT: MEAN FIELD LIMIT 82

Figure 20. The proof of (T3) relies on two observations: i) By (T2), the
length of the path connecting first and second H ′-planes (the continuous
blue strand) is at most 1.46

KK′
n. ii) By construction, the Hamming distance of

these planes is n
KK′

. Taking into account that the polymer must return to
the second H ′-plane, we see that the blue arrow is at most half the difference
of these quantities, indeed 0.23

KK′
n, as claimed by (T3). (Remark that this

case corresponds to a worst-case scenario: the polymer performs first all
available forward steps, and only then all availble backsteps).

H ′−plane which is on the left of H ′fi, and/or the other common edge lies on the right of
H ′la. There are two cases: either shared edges lie outside the fuzzy zone, OuF for short,
or inside, InF.

(InF) Remark that v̂la
h(i) being in a fuzzy zone is equivalent to dfi

π̂ ≥ 0.77
KK′

n. Analogously,

v̂fi
h(i+1) is in a fuzzy zone if and only if dla

π̂ ≥ 0.77
KK′

n. Furthermore, a path crossing

v̂la
h(i) (or v̂fi

h(i+1)) can cross multiple H ′-planes besides that to which this vertex

belongs: by (T3), this phenomenon can contribute to the length of the substrand
at most 0.46

KK′
n units.

(OuF) If neither v̂la
h(i) nor vfi

h(i+1) are in a fuzzy zone, by (T2), the connecting substrands
satisfy

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) ≤

(
cπ̂(i) + 1

)
1.46

KK ′
n .

We can finally move to the proof of (7.91): this will be done via case-by-case analysis
of the three possible cπ̂-scenarios.

The H’HH’-case.
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Figure 21. c(i) ≥ 3: at least three hyperplanes, i.e. at least two H ′ and
one H, separating the common edges.

This case is graphically summarized in Figure 21 below: combining (OuF) and (InF), we
immediately evince from this picture that

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) ≤

(cπ̂(i) + 1) 1.46

KK ′
n+

0.46

KK ′
n
(

1dfi
π̂≥

0.77n
KK′

+ 1dla
π̂≥

0.77n
KK′

)
. (7.106)

The H’HH’-scenario at hand is characterized by cπ̂(i) > 2, in which case the following
inequality is immediate:

(cπ̂(i) + 1) 1.46

KK ′
≤ 4(cπ̂(i)− 1)

KK ′
. (7.107)

Using this in (7.106) we obtain

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) ≤

4(cπ̂(i)− 1)

KK ′
+

0.46

KK ′
n
(

1dfi
π̂≥

0.77n
KK′

+ 1dla
π̂≥

0.77n
KK′

)
. (7.108)

Concerning the last two terms on the r.h.s. above, we first observe that obviously

d ≥ 0.77

KK ′
n =⇒ 4d ≥ 0.46

KK ′
n , (7.109)

hence
0.46

KK ′
n1dfi

π̂≥
0.77
KK′ n

≤ 4dfi
π̂(π̂),

0.46

KK ′
n1dla

π̂≥
0.77
KK′ n

≤ 4dla
π̂ (π̂). (7.110)

Plugging this in (7.108) yields

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) ≤

4(cπ̂(i) − 1)

KK ′
n+ 4dfi

π̂(π̂) + 4dla
π̂ (π̂)

≤ 4d
(
v̂la
h(i), v̂

fi
h(i+1)

)
,

(7.111)

the last step by (T1). Claim (7.91) is therefore settled for the H’HH’-case.
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The HH’-case.

Figure 22. The common edges are separated by cπ̂(i) = 2.

In this case, see Figure 22 below for a graphical rendition, a subpath connecting v̂la
h(i)

and v̂fi
h(i+1), crosses cπ̂(i) = 2 many H ′-planes, one of which is also an H-plane. Without

loss of generality, we assume that H ′fi is the H-plane. We will here distinguish two sub-
cases: dfi

π̂ ≥ 0.77
KK′

n, and its complement. It holds:

• If dfi
π̂ ≥ 0.77

KK′
n, i.e. the vertex v̂la

h(i) is in the fuzzy zone, it follows from (OuF) and

(InF) (cfr. also with Figure 22) that

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) ≤

3× 1.46

KK ′
n+

0.46

KK ′
n
(

1dfi
π̂≥

0.77n
KK′

+ 1dla
π̂≥

0.77n
KK′

)
,

=
4.38

KK ′
n+

0.46

KK ′
n1 +

0.46

KK ′
n1dla

π̂≥
0.77n
KK′

(7.109)

≤ 4.84

KK ′
n+ 4dla

π̂

≤ 4

KK ′
n+ 4

0.77

KK ′
n+ 4dla

π̂

(T1)

≤ 4d(v̂la
h(i), v̂

fi
h(i+1)) .

(7.112)

• If dfi
π̂ <

0.77
KK′

n, the vertex v̂la
h(i) is no longer in the fuzzy zone. However, and crucially,

the ”complement” of the fuzzy zone is necessarily the repulsive phase, cfr. Figure
22 below. This in particular implies that the substrand will connect v̂la

h(i) with the
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H-plane in a directed fashion, and therefore

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) = lπ̂(v̂la

h(i), Hh(i) ∩ π̂) + lπ̂(Hh(i) ∩ π̂, v̂fi
h(i+1))

= dfi
π̂ + lπ̂(Hh(i) ∩ π̂, v̂fi

h(i+1)),
(7.113)

As before, we estimate the last term on the r.h.s. above by OuF and InF. Here is
the upshot:

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) ≤ dfi

π̂ +
2× 1.46

KK ′
n+

0.46

KK ′
n1dla

π̂≥
0.77
KK′ n

(7.109)

≤ dfi
π̂ +

2.92

KK ′
n+ 4dla

π̂

≤ 4
0.77

KK ′
n+

4

KK ′
n+ 4dla

π

(T1)

≤ 4d(v̂la
h(i), v̂

fi
h(i+1)).

(7.114)

The claim (7.91) is thus settled for the HH’-case.

The H-case.

Figure 23. The common edges are separated by cπ̂(i) = 1.

In this case, see Figure 23 above, a subpath connecting v̂la
h(i) and v̂fi

h(i+1), crosses cπ̂(i) = 1

many H ′-planes which is also an H-plane. Four subcases are possible:

• dfi
π̂ <

0.77
KK′

n and dla
π̂ < 0.77

KK′
n, i.e. both vertices v̂la

h(i) and v̂fi
h(i+1) are in the (same)

repulsive phase: the substrand thus connects them in directed fashion, in which
case length and distance coincide, and

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) = d(v̂la

h(i), v̂
fi
h(i+1)) ≤ 4d(v̂la

h(i), v̂
fi
h(i+1)). (7.115)

• dfi
π̂ <

0.77
KK′

n and dla
π̂ ≥ 0.77

KK′
n. In this case:
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– the vertex v̂la
h(i) is in the repulsive phase (cfr. with the second subcase in

the HH’-regime above): in this first part of the journey, the substrand thus
connects it with the H-plane in directed fashion, where again, and crucially,
length and distance coincide.

– as for the ”rest of the journey”, i.e. in order to deal with the length of the
strand connecting H-plane and target vertex v̂fi

h(i+1), we proceed exactly as in

(7.113).

Splitting the substrand in first/second part of the journey, and then by these
observations, we get

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) = lπ̂(v̂la

h(i), Hh(i) ∩ π̂) + lπ̂(Hh(i) ∩ π̂, v̂fi
h(i+1))

≤ dfi
π̂ +

1.46

KK ′
n+

0.46

KK ′
n

≤ 4dfi
π̂ + 4

0.77

KK ′
n

(T1)

≤ 4d(v̂la
h(i), v̂

fi
h(i+1)).

(7.116)

• dfi
π̂ ≥ 0.77

KK′
n and dla

π̂ <
0.77
KK′

n: this case is, by symmetry, equivalent to the previous.

• dfi
π̂ ≥ 0.77

KK′
n and dla

π̂ ≥ 0.77
KK′

n: both vertices being in the fuzzy zone, we proceed
exactly as in (7.106) to obtain

lπ̂(v̂la
h(i), v̂

fi
h(i+1)) ≤ 2

1.46

KK ′
n+ 2

0.46

KK ′
n

≤ 4
0.77

KK ′
n+ 4

0.77

KK ′
n

(T1)

≤ 4d(v̂la
h(i), v̂

fi
h(i+1),

(7.117)

Claim (7.91) thus holds true for all possible sub-scenarios of the third (and last) H-case:
this finishes the proof of Lemma 24. �

Proof of Lemma 21. We want now to estimate f
(s)
π (n, k): Let f

(s)
l,π (n, k) (respectively f

(s)
r,π (n, k))

the number of paths which are sharing k edges with π with at least one common edge
betweeen Hm and the middle of the hypercube ( respectively between the middle of the
hypercube and HK−m) but without considering first and last edge. It holds

f (s)
π (n, k) = f

(s)
l,π (n, k) + f (s)

r,π (n, k) = 2f
(s)
l,π (n, k), (7.118)
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the last equality by symmetry (see (7.11) ). Using (7.48), (7.49) and(7.63), it clearly holds

f
(s)
l,π (n, k) . n

2K+1
2 nKn

α
∑
k

∑
l

∑
σ

∑
l′

b∏
i=1

tanh

(
E
d(vfi

h(i), v
la
h(i))− kh(i)

Loptn

)d(vfi
h(i)

,vla
h(i)

)−kh(i)

× cosh

(
E
d(vfi

h(i), v
la
h(i))− kh(i)

Loptn

)n(
Loptn

eE

)d(vfi
h(i)

,vla
h(i)

)−kh(i)

×
b∏
i=0

tanh

(
l̂iE

Loptn

)d(v̂la
h(i)

,v̂fi
h(i+1))

cosh

(
l̂iE

Loptn

)n(
Loptn

Ee

)l̂i
.

(7.119)
Using the monotonicity of the cosh-function (7.67), and the fact that all paths in J have
the same length9, in (7.119) yields

f
(s)
l,π (n, k) . n

2K+1
2 nKn

α
∑
k

∑
l

∑
σ

∑
l′

cosh

(
E

Loptn− k
Loptn

)n(
Loptn

Ee

)Loptn−k

b∏
i=0

tanh

(
l̂iE

Loptn

)d(v̂la
h(i)

,v̂fi
h(i+1)) b∏

i=1

tanh

(
E
d(vfi

h(i), v
la
h(i))− kh(i)

Loptn

)d(vfi
h(i)

,vla
h(i)

)−kh(i)

.

(7.120)
Let q ≡ min{h(i) > m, kh(i) > 0}, splitting the product of the tanh-terms according to q,
we obtain

b∏
i=0

tanh

(
El̂i

Loptn

)d(v̂la
h(i)

,v̂fi
h(i+1)) b∏

i=1

tanh

(
E
d(vfi

h(i), v
la
h(i))− kh(i)

Loptn

)d(vfi
h(i)

,vla
h(i)

)−kh(i)

=

q−1∏
i=0

tanh

(
El̂i

Loptn

)d(v̂la
h(i)

,v̂fi
h(i+1)) q∏

i=1

tanh

(
E
d(vfi

h(i), v
la
h(i))− kh(i)

Loptn

)d(vfi
h(i)

,vla
h(i)

)−kh(i)

×
b∏
i=q

tanh

(
El̂i

Loptn

)d(v̂la
h(i)

,v̂fi
h(i+1)) b∏

i=q+1

tanh

(
E
d(vfi

h(i), v
la
h(i))− kh(i)

Loptn

)d(vfi
h(i)

,vla
h(i)

)−kh(i)

≤ tanh

(
E
L̂q−1 +Dq

Loptn

)D̂q−1+Dq

× tanh

(
E
L̂b − L̂q−1 +Db −Dq

Loptn

)D̂b−D̂q−1+Db−Dq

,

(7.121)
the last r.h.s using the monotonicity of the tanh-terms (7.66) two times: one time for the
first line and a second time for the second line of the second equality. Putting (7.121)

9 Recall from (7.74) that
∑b

i=0 l̂i +
∑b

i=1 d(vfi
h(i), v

la
h(i))− kh(i) = Loptn− k,.
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into (7.120) yields

f
(s)
l,π (n, k) . n

2K+1
2 nKn

α
∑
k

∑
l

∑
σ

∑
l′

cosh

(
E

Loptn− k
Loptn

)n(
Loptn

Ee

)Loptn−k

tanh

(
E
L̂q−1 +Dq

Loptn

)D̂q−1+Dq

× tanh

(
E
L̂b − L̂q−1 +Db −Dq

Loptn

)D̂b−D̂q−1+Db−Dq

.

(7.122)
We now claim that for 0 < x ≤ y ≤ E,

tanh(x) ≤ 3

4
tanh(x+ y). (7.123)

Indeed, using the addition formula for the tanh function, it holds

tanh(x)

tanh(x+ y)
=

tanh(x) (1 + tanh(x) tanh(y))

tanh(x) + tanh(y)
=

1 + tanh(x) tanh(y)

1 + tanh(y)
tanh(x)

≤ 1 + tanh(E)2

2
=

3

4
,

(7.124)
the last inequality because the function tanh is increasing and the claim (7.123) is settled.

Again using that tanh is increasing we also have that

tanh(y) ≤ tanh(x+ y). (7.125)

Using in (7.122) the estimates (7.123) and (7.125) with

x ≡ min{L̂q−1 +Dq, L̂b − L̂q−1 +Db −Dq}, (7.126)

and

y ≡ max{L̂q−1 +Dq, L̂b − L̂q−1 +Db −Dq}, (7.127)

we obtain

f
(s)
l,π (n, k) . n

2K+1
2 nKn

α
∑
k

∑
l

∑
σ

∑
l′

(
3

4

)min{D̂q−1+Dq ,D̂b−D̂q−1+Db−Dq}

tanh

(
E
Db + L̂b

Loptn

)Db+D̂b
cosh

(
E

Loptn− k
Loptn

)n(
Loptn

Ee

)Loptn−k

.

(7.128)
With the same line of reasoning as in (7.88), we clearly have that

D̂q−1 +Dq ≥ mn̂K − k, (7.129)

and

D̂b − D̂q−1 +Db −Dq ≥
n

2
− k. (7.130)

Thus, it follows from (7.129) and (7.130) that

min{D̂q−1 +Dq, D̂b − D̂q−1 +Db −Dq} ≥ mn̂K − k. (7.131)
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Plugging (7.131) into (7.128) and recalling that paths in J have the same, prescribed
length (recall once more (7.74) or, which is the same, footnote 9), it holds

f
(s)
l,π (n, k) . n

2K+1
2 nKn

α
∑
k

∑
l

∑
σ

∑
l′

[(
3

4

)mn̂K−k
tanh

(
E

Loptn− k
Loptn

)Db+D̂b
× cosh

(
E

Loptn− k
Loptn

)n(
Loptn

Ee

)Loptn−k
]
.

(7.132)
We follow exactly the same steps which from (7.73) lead to (7.86), this time of course with

the factor
(

3
4

)mn̂K−k. Omitting the details, we obtain

f
(s)
l,π (n, k) ≤ Pnn

Knα
(

3

4

)mn̂K−k
tanh

(
E

Loptn− k
Loptn

)max
(
n−k, Loptn−k

4

)

× cosh

(
E

Loptn− k
Loptn

)n(
Loptn

Ee

)Loptn−k

,

(7.133)

where Pn is a finite degree polynomial. Combining (7.118) and (7.133) and the fact that

for k ≤ 200n̂K ,
(

3
4

)mn̂K−k ≤ (3
4

)(m−200)n̂K finishes the proof of Lemma 21.
�

8. Concentration of the optimal length: proof of Theorem 3

Recall that claim (2.60) reads

lim
n→∞

P
(

#

{
π ∈ Πn : Xπ ≤ E + ε2,

|lπ − Ln|
n

≥ aε

}
> 0

)
= 0 , (8.1)

for a > 0 large enough. The proof, which is (vaguely) inspired by the saddle point method
[5], exploits the strong concentration of the expansion of the sinh-function on specific
Taylor-terms. To see how this goes, in virtue of the by now ”classical” route (union
bounds and Markov’s inequality / independence / tail estimates) it holds

P
(

#

{
π ∈ Πn : Xπ ≤ E + ε2,

|lπ − Ln|
n

≥ aε

})
.

∑
|l−Ln|
n
≥aε

Mn,l
(E + ε2)l

l!
. (8.2)

Splitting the above sum∑
|lπ−Ln|

n
≥aε

Mn,l
(E + ε2)

l

l!
=

(L−aε)n∑
l=0

Mn,l
(E + ε2)

l

l!
+

∞∑
l=(L+aε)n

Mn,l
(E + ε2)

l

l!
, (8.3)

we claim that both contributions vanish in the large-n limit.
Concerning the first sum, by Stanley’s M-bound (2.14), and for any x > 0, we have

that
(L−aε)n∑
l=0

Mn,l
(E + ε2)

l

l!
≤ sinh(x)n

(L−aε)n∑
l=0

(
E + ε2

x

)l
, (8.4)
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We choose x ≡ E + ε2 − ε, in which case the largest term in the above sum is given by
l = L− aε, and therefore

(8.4) . sinh
(
E + ε2 − ε

)n( E + ε2

E + ε2 − ε

)(L−aε)n

× n

= n exp

{
n log sinh(E + ε2 − ε)− (L− aε) log

(
1− ε

E + ε2

)}
.

(8.5)

To get a handle on the above exponent we proceed by Taylor expansions around E:

sinh(E + ε2 − ε) = sinh(E) + (ε2 − ε) cosh(E) + (ε2 − ε)2 sinh(E)

2
+ o(ε2)

= 1 + (ε2 − ε)
√

2 +
ε2

2
+ o(ε2) (ε ↓ 0).

(8.6)

Further using that log(1− x) = 1− x− x2

2
+ o(x2) for x ↓ 0, we thus get

log sinh(E + ε2 − ε)− (L− aε) log

(
1− ε

E + ε2

)
= (ε2 − ε)

√
2 +

ε2

2
− (L− aε)

(
− ε

E
− ε2

2E2

)
+ o(ε2)

= ε2
(

1

2
+
√

2 +
1√
2E
− a

E

)
+ o(ε2) ,

(8.7)

for ε ↓ 0. But the r.h.s. (8.7) is clearly negative as soon as a > E
2

+
√

2E + 1√
2
, implying

that the first sum in (8.3) yields no contribution in the large-n limit, as claimed.
We proceed in full analogy for the second sum, but this time around via Stanley’s

M-bound with x ≡ E + ε2 + ε: an elementary estimate of the ensuing geometric series
yields

∞∑
l=(L+aε)n

Mn,l
(E + ε2)

l

l!
. sinh

(
E + ε2 + ε

)n( E + ε2

E + ε2 + ε

)(L+aε)n
E + ε2 + ε

ε

. expn

{
log sinh(E + ε2 + ε)− (L + aε) log

(
1 +

ε

E + ε2

)}
,

(8.8)
recalling in the last step the definition of lε,n = L + aε. Once again Taylor-expanding the
exponent (around E) we get

log sinh(E + ε2 + ε)− (L + aε) log

(
1 +

ε

E + ε2

)
= ε2

(
1

2
+
√

2 +
1√
2E
− a

E

)
+ o(ε2),

(8.9)
for ε ↓ 0: as this is also negative for a > E

2
+
√

2E + 1√
2
, the second claim is also settled,

and the proof of the Theorem 3 follows.

�
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9. Appendix

We give for completeness the short proof of Stanley’s formula (1.3), which states that

sinh(x)dcosh(x)n−d =
∞∑
l=0

Mn,l,d
xl

l!
. (9.1)

Indeed, by the Binomial Theorem, it holds

sinh(x)dcosh(x)n−d =
1

2n
(
ex − e−x

)d(
ex + e−x

)n−d
=

1

2n

(
d∑
j=0

(
d

j

)
(−1)je(d−2j)x

)(
n−d∑
i=0

(
n− d
i

)
e(n−d−2i)x

)

=
1

2n

d∑
j=0

n−d∑
i=0

(
n− d
i

)(
d

j

)
(−1)j exp (n− 2(i+ j)x) .

(9.2)

Taylor expanding the exponential function, we get that the r.h.s. above equals

∞∑
l=0

1

2n

n−d∑
i=0

d∑
j=0

(
d

j

)(
n− d
i

)
(−1)j(n− 2(i+ j))l

xl

l!

=
∞∑
l=0

{
1

2n

n−d+j∑
i′=j

d∑
j=0

(
d

j

)(
n− d
i′ − j

)
(−1)j(n− 2i′)

l
1j≤i′

}
xl

l!
,

(9.3)

the last step by the substitution i′ ↪→ i + j. By definition of the M ′s, Stanley’s formula
thus follows .

�
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