Institut für angewandte Mathematik Wintersemester 2022/23

Adrien Schertzer, Sid Maibach

Klausur "Stochastik"

Bitte diese Felder in Druckschrift ausfüllen

Name:	Vorname:	
Matrikelnr.:	Studiengang:	

Wichtige Hinweise:

- Es sind keine eigenen Unterlagen, Handys, Taschenrechner u.ä. zugelassen!
- Dieses Deckblatt ist vollständig ausgefüllt zusammen mit den Lösungen abzugeben. Jedes abgegebene Blatt ist zudem mit Namen und Matrikelnummer zu versehen.
- Bitte legen Sie den Studierendenausweis und einen amtlichen Lichtbildausweis gut sichtbar neben Ihren Platz!
- Abgabe bis spätestens 11.00 Uhr.

Viel Erfolg!

Diese Felder NICHT ausfüllen:

Aufgabe	1	2	3	4		Summe	Note
Punkte							
Maximal	32	30	18	20		100	

- 1. (Zufallsvariablen und Gesetz der großen Zahlen) $[10 + 6 + 6 + 10 \ Punkte]$ Sei $S \subseteq \mathbb{R}$ eine abzählbare Teilmenge der reellen Zahlen.
 - a) Geben Sie eine kurze, aber vollständige Definition der folgenden Begriffe:
 - (i) σ -Algebra \mathcal{A} ,
 - (ii) Wahrscheinlichkeitsverteilung P,
 - (iii) Zufallsvariable X mit Werten in S,
 - (iv) Die Kovarianz von X und Y für X,Y in $\mathcal{L}^2(\Omega, \mathcal{A}, P)$.
 - b) Leiten Sie folgende Aussagen aus der definition einer σ -Algebra \mathcal{A} her:
 - (i) Sind $A_1, A_2 \ldots \in \mathcal{A}$, dann folgt $\bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$,
 - (ii) Sind $A, B \in \mathcal{A}$, dann folgt $A \cap B \in \mathcal{A}$.
 - c) Sei $Z: \Omega \to S$ eine Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit Erwartungswert 0. Beweisen Sie die Ungleichung

$$P\left[|Z| \geq c\right] \; \leq \; \frac{E(Z^2)}{c^2} \qquad \text{für alle } c \in (0,\infty).$$

- d) Seien $X_1, X_2, \ldots : \Omega \to S$ Zufallsvariablen auf (Ω, \mathcal{A}, P) mit Erwartungswert 0 und Varianz $v \in (0, \infty)$:
 - (i) Schreiben Sie $Var(\frac{S_n}{n})$ als eine Funktion der Kovarianzen.
 - (ii) Falls $X_1, X_2, \ldots : \Omega \to S$ unkorrelierte Zufallsvariablen sind, formulieren und beweisen Sie in diesem Rahmen eine Version des Gesetzes der großen Zahlen.

2. (Diskrete und Absolutstetige Verteilungen) [8 + 12 + 10 Punkte]

- a) Sei $X: \Omega \to \mathbb{R}$ eine reellwertige Zufallsvariable auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit Verteilung $\mu_X(B) = P[X \in B], B \in \mathcal{B}$.
 - i) Wann nennt man die Verteilung diskret und wann absolutstetig?
 - ii) Gib ein Beispiel für eine Verteilung die weder diskret noch absolutstetig ist.
- b) Seien X und Y unabhängige standardnormalverteilte Zufallsvariablen. Berechne den Erwartungswert und die Varianz folgender Zufallsvariablen:
 - i) X^2
 - ii) $\frac{X+Y}{2}$
 - iii) e^X
- c) Sei $f: \mathbb{R} \to [0, \infty)$ gegeben durch

$$f(x) = \begin{cases} |\sin(x)| & x \in [-\pi, \pi] \\ 0 & x < -\pi \text{ oder } x > \pi. \end{cases}$$

- i) Finde ein $\lambda > 0$, so dass $f_Z(x) = \lambda f(x)$ eine absolutstetige Zufallsvariable Z definiert.
- ii) Berechne den Erwartungswert und die Varianz von Z.

3. (Gemeinsame Verteilungen) [6 + 12 Punkte]

- a) Sind $X_1:\Omega\to S_1,X_2:\Omega\to S_2,\ldots,X_n:\Omega\to S_n$ diskrete Zufallsvariablen, dann ist auch (X_1,\ldots,X_n) eine diskrete Zufallsvariable mit Werten im Produktraum $S_1\times\cdots\times S_n$.
 - (i) Definieren Sie die Massenfunktion der gemeinsamen Verteilung.
 - (ii) Wie sieht die Massenfunktion aus, falls die Zufallsvariablen unabhängig sind.
- b) Es sei $\Omega := \{1, 2, 3, 4, 5, 6\}$ und P die Gleichverteilung auf Ω . Wir definieren Zufallsvariablen $X, Y \colon \Omega \to \mathbb{R}$ durch

$$X(\omega) := \begin{cases} 1 & \text{falls } \omega \text{ ungerade,} \\ 0 & \text{sonst,} \end{cases} \qquad Y(\omega) := \begin{cases} 1 & \text{falls } \omega = 1, \\ 0 & \text{sonst.} \end{cases}$$

- (i) Bestimmen Sie die Massenfunktionen der Verteilung von X, der Verteilung von Y, und der gemeinsamen Verteilung von X und Y unter P.
- (ii) Beweisen oder widerlegen Sie, dass X und Y unabhängig sind.
- (iii) Berechnen Sie $\mathbb{E}[X+Y]$ und Var[X+Y].

4. (Markov-Ketten) [4 + 4 + 4 + 4 + 4 + 4 Punkte]

Sei S eine endliche Menge, ν eine Wahrscheinlichkeitsverteilung auf S, und $\pi = (\pi(x,y))_{x,y \in S}$ eine stochastische Matrix.

- a) Definieren Sie eine zeitlich homogene Markov-Kette mit Startverteilung ν und Übergangsmatrix π .
- b) Definieren Sie die Gleichgewichtsverteilung μ der Übergangsmatrix π .
- c) Wie lautet die Detailed Balance-Bedingung für μ bzgl. der Übergangsmatrix π ?
- d) Zeigen Sie: Wenn μ die Detailed Balance-Bedingung erfüllt, dann ist μ eine Gleichgewichtsverteilung von π .
- e) Angenommen $\pi(x,y)=\pi(y,x)$ für alle $(x,y)\in S^2$, geben Sie eine Gleichgewichtsverteilung μ der Übergangsmatrix π an.

1) a) Sbript of A: = (
$$\bigcup_{i=1}^{\infty} A_i^*$$
)

A: $\in A = A : \in A : (A \circ - M_{globa})$

A: $\in A : \in A : (A \circ - M_{globa})$

A: $\in A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : \in A : (A \circ - M_{globa})$

E: $A : (A \circ - M_{globa})$

E

2) a) Stript

b) i)
$$E(x^2) = 1$$
 (Def.)

 $E(x^4) = \int_{-\infty}^{+\infty} \frac{e^{-x^2/2}}{\sqrt{1x^4}} dx = \int_{-\infty}^{+\infty} \frac{e^{-x^2/2}}{\sqrt{1x^4}} dx$

P. I + $E^{\frac{1}{2}} \frac{1}{\sqrt{2x^4}} \int_{-\infty}^{+\infty} \frac{e^{-x^2/2}}{\sqrt{1x^4}} dx = 3 E(x^2) = 3$

E) $V_{\text{CM}}(x^2) = E(x^4) - E(x^2)^2 = 2 - 1 = 2$

(ii) $E(\frac{x+y}{2}) = \frac{1}{\sqrt{2x^4}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2x^4}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2x^4}} \frac{1}{\sqrt{2x^4}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2x^4}} \int$

$$= \frac{1}{2} + \int_{0}^{2} \frac{1}{2} \frac{1}{2$$