Institut für Angewandte Mathematik Wintersemester 2022/23 Adrien Schertzer, Sid Maibach

2. Übungsblatt "Stochastik für Lehramt"

Abgabe bis Donnerstag den 20.10, 18 Uhr im Postfach "Stochastik für Lehramt".

1. (Ereignisse als Mengen)

Sei \mathcal{A} eine σ -Algebra auf Ω , und seien $A, B, A_n \in \mathcal{A}$ Ereignisse. Was bedeuten (mit Begründung) die folgenden Ereignisse anschaulich?

a)
$$A \cap B$$
 b) $\bigcap_{n=1}^{\infty} A_n$ c) $\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$

Sei nun speziell $\Omega = \{\omega = (x_1, x_2, \ldots) \mid x_i \in \{-1, +1\}\}$. Wir definieren für $n \in \mathbb{N}$ die Abbildungen $S_n : \Omega \to \mathbb{R}$ durch

$$S_n(\omega) := \frac{1}{n} \sum_{i=1}^n x_i, \qquad \omega = (x_1, x_2, \ldots) \in \Omega.$$

Was bedeuten die den folgenden Mengen zugeordneten Ereignisse anschaulich?

d)
$$S_n^{-1}\left(\left[-\frac{1}{2},\frac{1}{2}\right]\right)$$
 e) $\bigcap_{\substack{\varepsilon \in \mathbb{Q} \\ \varepsilon > 0}} \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} S_m^{-1}(\left[-\varepsilon,\varepsilon\right])$

2. (Massenfunktionen?) Sei $\Omega := \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ und sei $(p_n)_{n \in \mathbb{N}_0}$ eine reelle Folge. Beweisen oder widerlegen Sie jeweils, welche der folgenden Folgen die Massenfunktion einer Wahrscheinlichkeitsverteilung auf Ω definieren.

1

- a) $p_n := (-1)^n$.
- b) $p_n := 1/n$.
- c) $p_n := (n+1)^{-1}(n+2)^{-1}$.
- d) $p_n := (1 a)a^n$, wobei $a \in (0, 1)$.
- e) $p_n := q_n / \sum_{i \in \mathbb{N}_0} q_i$, wobei $q_0 := 0$ und $q_n := 1/n^2$ für $n \in \mathbb{N}$.
- f) $p_n := \lambda^n e^{-\lambda}/n!$, wobei $\lambda > 0$.

3. (Gleichverteilung)

- a) Sei Ω eine endliche Menge. Definieren Sie die Gleichverteilung P auf Ω , und zeigen Sie durch Überprüfen der Axiome, dass P eine Wahrscheinlichkeitsverteilung ist.
- b) Zeigen Sie: Die Anzahl aller k-elementigen Teilmengen einer Menge mit n Elementen (also die Anzahl der Möglichkeiten aus n Objekten k auszuwählen, wobei die Reihenfolge nicht berücksichtigt wird), ist gleich

$$\binom{n}{k} := \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{k \cdot (k-1) \cdot \ldots \cdot 1}.$$

c) In einer Urne befinden sich N Kugeln, von denen K rot sind. Wir ziehen n Kugeln ohne Zurücklegen. Beschreiben Sie dieses Modell durch einen geeigneten Wahrscheinlichkeitsraum. Zeigen Sie: Die Wahrscheinlichkeit, dass die Stichprobe genau k rote Kugeln enthält, ist

$$\binom{K}{k} \binom{N-K}{n-k} / \binom{N}{n}$$
.

4. (Geburtstagsparadox) In einer Klasse sind n Schüler.

- a) Wie groß ist die Wahrscheinlichkeit p_n , dass mindestens zwei Schüler am selben Tag Geburtstag haben? Berechnen Sie p_{22} und p_{23} explizit. Dabei sei vereinfachend angenommen, dass kein Schüler am 29. Februar geboren ist und alle anderen Geburtstage gleich wahrscheinlich sind. (Hinweis: Betrachten Sie das Gegenereignis.)
- b) Zeigen Sie unter Verwendung der Ungeichung $1-x \leq \exp(-x)$, dass

$$p_n \ge 1 - \exp(-n(n-1)/730).$$

Welche untere Schranke ergibt sich für p_{30} ?