Institute for Applied Mathematics, Bonn University

Oberseminar Stochastik

Thursday, April 25, 2024, 16:30 Lipschitz-Saal (LWK 1.016)

Sam Olesker-Taylor

University of Warwick

Fastest-Mixing Markov Chain on a Graph

Given a graph G = (V, E), consider the set of all discrete-time, reversible Markov chains with equilibrium distribution uniform on V and transitions only across edges E of the graph. We establish a Cheeger-type inequality for the *fastest mixing time* τ^* using the *vertex conductance* Ψ of G: namely, $\Psi^{-1} \leq \tau^* \leq \Psi^{-2} (\log |V|)^2$. We also consider chains with *almost-uniform* invariant distribution π : let $\varepsilon > 0$ and impose that $\pi(x) \geq |V|^{-1}(1 - \varepsilon)$ for all $x \in V$. We construct a chain with mixing time $\tau \leq \varepsilon^{-1} \operatorname{diam}(G)^2$, valid for any graph.

Time permitting, we also discuss a construction of a continuoustime chain with *exactly-uniform* invariant distribution and average jump-rate 1, and mixing time $\tau \leq \text{diam}(G)^2 \log |V|$, valid for any graph.