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Geodesic convexity
fW

. .0 .
evolution equation o P = #1p as gradient flow for the

relative entropy. We draw on work of Otto and
Westdickenberg and also of Daneri and Savare.

Let (M, g) be any smooth Riemannian manifold. The
Riemannian distance d,(x,y) between z and y is given by

e now develop the advantages of having written the T

1

where
13 ()12 6y = o5 (3(5), 3(s)) -
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ﬁf F'is a smooth function on M, let grad, F’ denote its T

Riemannian gradient. Consider the semigroup S; of

transformations on M given by solving
4(t) = —grad, F(v(t)); assume that nice global solutions

exist. The semigroup S, t > 0, is gradient flow for F.
For \ € R, the function F' is A\-convex in case whenever
v :10,1] = M is a distance minimizing geodesic, then for all

s € (0,1),
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ﬁt IS a standard result that whenever F' is A-convex, the
gradient flow for F' is A-contracting in the sense that for all
r,yce Mandt >0,

d
- dg(Si(x), Si(y)) < =22 (Sy(x), Si(y))
Otto and Westdickenberg developed an approach to
geodesic convexity that takes this contraction as its starting
point.

They use the gradient flow transformation S; to define a
one-parameter family of paths ¢ : [0,1] — M, t > 0 defined
by

v (s) = Sey(s) -
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fFrom their work and that of Daneri and Savaré, we have
that if for all smooth curves ~ : [0, 1] — M,

A

for all s € (0,1), then F' is geodesically A\-convex.

d

dt

We now return the QMS setting.
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fLe’[ p:10,1] — &, be a smooth path in &, and define the
one-parameter family of paths, p'(s), (s,t) € [0,1] x [0, 00) by
p'(s) = Plp(s) .

By what has been explained above, if we can prove that

dt 9(p())

for all smooth p: [0,1] - M and all s € (0,1), we will have
proved the geodesic convexity of the relative entropy
functional, and consequently, we shall have proved

o D(Z}pllo) < e D(pllo) |
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p'(s) - (s)

< -2

0+ 9(p°(s))
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fA path forward is indicated by a proof of Ledoux of the
Gaussian logarithmic Sobolev inequality.
Recall Mehler’s formula: (4 is the centered gaussian
probability density with covariance 51.)

Pte) = [ e (=) 2ty dy

Hence VP f(z) = e ' BV f(x). Since (z,t) — |z|*/t is jointly
convex,

VPSP _ o BYI@P o VF@)P
P f(x) Fif(z)  — f(zx)
Now integrate. There are two key ingredients: (1) An J

intertwining relation. (2) A convexity property of the action.
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Intertwining for QMS
-

Lemma 0.1. Suppose that for some numbers a;, 7 € 7,
[3]',0%] — _ajaj
for each 7 € J. Then defining 9315 on @71 A by

@t(Al, - ,A|j|) — (G_tals.@tAly . e 76_ta|j|<@t*’4|j|) )

we have the intertwining relation 0; & = @tﬁj on A.
Note that
@j div A(s) = div e_@jA(s) .
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fNow consider any smooth path p: [0,1] — &, and for each
s € (0,1) write
p(s) = div A(s)

where A(s) is the solution of p(s) = div A(s) that minimizes
(A, [p]5'A) ¢, sO that

Gop(P(5), P(s)) =Y (A;(s), [p(s)]0) Aj(s)) s -

1€
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Set p'(s) := 2 p(s), and suppose that the semigroup 2,
given by

@tA — (e_At@tAla R ae_At‘@tA‘j‘)

intertwines with &2,. It follows that

d . -
- ts) = @J div A(s) = div WQLAQS) :
Consequently,
d 2
| L < e MNP A(5), 2] ()5 2L A (9)) s,
g(p*(s)) jeg

|
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Monotone metrics

fO

ur work is done if we can show that T
S (PLA(s), (2] o)), 2L A ()54 <
jeJ
D (Aj(5), [p()]5 Ay(8)) s -
je€TJ

This is where the convexity enters, and the problem is
solved by the theory of “monotone metrics” developed by

Chentsov and Morozova in the classical case, and by Petz
In the non-commutative case.
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- N

he map

(p: A) = (A, [pl " A)sia =

Tr [/ (t1 4 e “/2p) " LA* (t1 + e*/2p) 1A dt]
0

IS jointly convex on &, x A. If p and A are scalars, the
right-hand side reduces to 4%/p. The non-commutative
convexity result ultimately derives from Lieb’s concavity

Theorem. Since 2] is completely positive,

(PIA [P 2] AV < (A, o) A)s, -
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fSummarizing, whenever we can show that the semigroup
2, given by

@tA — (e_At@tAla RN ae_At‘@tA‘j‘)

intertwines with &2;, we have \-convexity of the relative
entropy, and we have the entropy dissipation inequality

D(Z]pllo) < e M D(pl|o) .

The problem now is to verify the intertwining property. In
Ledoux’s proof, this was done using an explicitly formula for
the action of the semigroup (Z%;):>¢- In our case it will be
easier to work with the generator .Z.
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Lemma 0.2. Suppose that for some numbers a;, 7 € 7,
0j, £] = —a;0;
for each 5 € J. Then defining P, on H A7 by
P(Ay, ... A7) = (e" M P A, ... ,G_m'j'c@tA\j\) :

we have the intertwining relation 0; & = @tﬁj on A.

Onwards to examples!
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The Fermi O-U Semigroup

fLe’[ A be the Clifford algebra €™ of dimension n = 2m for
some m € N. Consider a set of generators

{Qla"'anapla”'aPm}a

where
QiQr + QrQj = PPy + PPy = 20,1

and
QiPr+P,Q; =0 foralll<jk<m.

Think of A as the full set of phase space observables, the
subalgebra generated by {Q1,...,Q,.} as the algebra of
configuration space observables, and the subalgebra
generated by { Py, ..., P, } as the algebra of momentum

Lspace observables. J

Gradient flow and functional inequalities for quantum Markov semigroups, Ill — p. 15/2?



F

orm the operators

1 1
Zj = E(Qj +iPj) sothat Z7 = 7

It is easy to check that

(Qj —iFj) .

Lily + 2Ly =0 and ZjZZ + ZZZJ' — 25]"]{1
for all j, k. The formulas

1 1

N; = §Z;Zj and Nji = §ZjZ; forall 1<j7<m .

define m pairs of complementary orthogonal projections.

o
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fFor any set of m real numbers {ey,..., ey}, and any
parameter 5 € (0, 00), to be interpreted as the inverse
temperature, define the free Hamiltonian h and the Gibbs
state oz by

m

L sn

h = Zeij and og = T[e—ﬁh]e bh
j=1

where 7 Is the normalized trace.

Let W :=i™ [];L, Q;P; so that W is self-adjoint and unitary,
andforall Ae A, letT'(A) = WAW.
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fSinc:e W commutes with every even element of A, simple
computations show that

Noy(WZj) = ePWZ; and A, (Z;W)=e P5ZIW .

Define the operators

— — )

Vj::WZj, 1<j<m

so that §V*V; = N; and 5V;V* = N

o |
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E

he operator 3

1 — e * *
LyA =33 PO (VA + VA +
=1

> Pl (VA + 1V AV

J=1

|

is the generator of a QMS 22, = ¢!# that satisfies the
03-DBC. This is the Fermi Ornstein-Uhlenbeck semigroup at inverse
temperature 3.
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ﬁt Is a simple matter to diagonalize #3: For each 1 < 5 <m,
define the four operators

Kjo0 =1, Kjuo =2
Kion=2; and K =e"/?Nj—e P92N;

One readily checks that this set of four operators is
orthonormal in any of the inner products (, -)s based on o3.
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sting the fact that for each j, V; and V;* commute with P T

and @y, for all & # j, and using the identities
%Kj,(l,l) — €Bej/2‘/} and Kj,(l,l)‘/} — —€_Bej/2‘/3‘ 3 We read”y
compute that

LpZj = —cosh(Be;/2)Z;
ZLsK; (1,1) = —2cosh(Be;/2)Kj 11y -

Therefore, forall 0 < k, ¢ < 1,

LK 0y = —(k + ) cosh(Be; /2) K 1.0) -
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fLe’[ o = (ay,...,q,) denote a generic element of the index
set {{0,1} x {0,1}}™, and for a = (k,¢) € {0,1} x {0,1},
define |a| = k + £. Then the functions

Ko = Kl,alKQ,ag T Km,am

are an orthogonal (but not normalized) basis for $ 4
consisting of eigenvectors of .Z5:

L3Ka = — Z\ozjlcosh(ﬁej/Q) Ka .
j=1

o |
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Intertwining - with a twist

-

fThere Is another differential calculus, more closely adapted
to £5: For 1 < j <m, define

0jA = S(Z;A~T(A)Z)) = SW[V;. A

A 1 * * 1 *

0iK;00) = 0K 10 =0, 9K 01) = Kj 00
and éjKj,l,l — Cosh(ﬂej/Q)ij(Lo) :

53'](' (0,0) = éjKj,(o,n =0, 53'Kj,(1,0) = K 0,0
\_ and 5]'[(]-7(171) = — Cosh(ﬁej/Q)ij(oyl)J
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sting the fact that for each j, V; and V;* commute with P T
and @, for all k¥ # j, one determines the effect of 9, and 0,
on all of A. The orthonormal basis { K, } may be viewed as
consisting of analogs of multivariate Krawtchouck
polynomials — the discrete analogs of the Hermite
polynomials.

0; and 5]-, which are skew derivations, have the advantage
that they always lower the “degree” of any K, by one, as
one would expect. The operators 9,4 and 9; A do not do
this.

o |
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fU

sing this, one readily deduces the identities,
éjgﬁKa — gﬁéj[(a = — COSh(ﬂej/Q)éjKa (1)

and
5]-,,2”5](@ — ggéjKa = — COSh(ﬂ@j/Q)aija : (2)

o |
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Theorem 0.3. For 3 > 0, let &?; be the Fermi Ornstein-Uhlenbeck T
semigroup with generator 02”5, and let o g be its invariant state. Then for
all p € 6_|_,

D(Pipllos) < e D(pl|o)

where \g = min{cosh(Be;/2) : j =1,...,m}. Moreover, the
relative entropy functional p — D(p||o) is geodesically Ag convex in
the Riemannain metric associated to -Z3.
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The embedded walk on the cube

fEach of the vectors K is an eigenvector of A,,. Moreover, T

if {e1,... en}islinearly independent over the integers, then
A Ko = K If and only if for each k, |oy| # 1. The span of

the set of such K, is the same as the span of
{N{,Ni-, ..., Ny, N}

Hence in this case, the modular algebra A, is the algebra

generated by the commuting projections listed above.
Denote this algebra by B. While it need not be the modular
algebra when {ey, ..., e} Is not linearly independent over
the integers, it is easy to see (by continuity or computation)
that it is always invariant under &,.
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The projections { N1, Ni-, ..., Ny, N2} are not minimal in B,
but the set of the 2" distinct non-zero products one can
form from them is a full set of minimal projections. Identify
this set with the discrete hypercube 2™ = {0, 1}™: Set
J=A{1,...,m},and let s; : 2" — 2™ define the j-th
coordinate swap defined by

sij(x1,...,2m) = (1,...,—2j,...,2y). Let x denote a

generic point of 2™. Define Ey = | | N7*(N;")'~*1. The

j=1
restriction 2, of 2, to B is a nearest neighbor random walk
on 2™,
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fFor a standard representation in which the elements of A

operate on c?”, and r is the normalized trace, each Ex is
rank one, so that the transition rate matrix D for the walk is
simply Dx x = Tr[Ex, £ Ex]. One readily computes that
Dx x = 0 unless x’ = s;(x) for some j, and in that case

2 cosh(fBe;)

Ly = 1
Dy ={ L1tebe
XX 2 cosh(Be;)
Ly = 0 y
1+ 6563’

and this gives the jump rates along the edges of 2™ for the
classical Markov chain corresponding to #,.
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fThe transition matrix D is the one, for this model, arising in
the general equation for the evolution of occupation
probability for a reversible Markov chain:

%ﬂz(t) = Z (%(ﬂDk,ﬁ - W(t)DM) '

m
k=1

0 Dgyo = 09Dy
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The Bose O.U. Semigroup

fLe’[ Z and Z* be Bose annihilation and creation operators: T
Z, Z*] = 1. Define

o3 = (Tr [e_ﬁh})_l e P

Theorem 0.4. Let &?; be the Bose Ornstein-Uhlenbeck semigroup with
generator -Z3 given by

Ly =P (7 AZ - M 27 AY)+e P2 (ZAZ" — (7% 7, A}) |
and let o g be its invariant state. Then forall p € G,

D(Zipllog) < e 22D (pl|og)
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