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Geodesic convexity

We now develop the advantages of having written the

evolution equation
∂

∂t
ρ = L

†ρ as gradient flow for the

relative entropy. We draw on work of Otto and
Westdickenberg and also of Daneri and Savaré.

Let (M, g) be any smooth Riemannian manifold. The
Riemannian distance dg(x, y) between x and y is given by

d2g(x, y) = inf

{∫ 1

0

‖.γ(s)‖2g(γ(s)) ds : γ(0) = x, γ(1) = y

}
,

where

‖.γ(s)‖2g(γ(s)) = gγ(s)(
.
γ(s),

.
γ(s)) .
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If F is a smooth function on M, let gradgF denote its

Riemannian gradient. Consider the semigroup St of
transformations on M given by solving
γ̇(t) = −gradgF (γ(t)); assume that nice global solutions

exist. The semigroup St, t ≥ 0, is gradient flow for F .
For λ ∈ R, the function F is λ-convex in case whenever
γ : [0, 1] → M is a distance minimizing geodesic, then for all
s ∈ (0, 1),

d2

ds2
F (γ(s)) ≥ λg(

.
γ(s),

.
γ(s)) .
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It is a standard result that whenever F is λ-convex, the
gradient flow for F is λ-contracting in the sense that for all
x, y ∈ M and t > 0,

d

dt
d2g(St(x), St(y)) ≤ −2λd2g(St(x), St(y)) .

Otto and Westdickenberg developed an approach to
geodesic convexity that takes this contraction as its starting
point.

They use the gradient flow transformation St to define a

one-parameter family of paths γt : [0, 1] → M, t ≥ 0 defined
by

γt(s) = Stγ(s) .
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From their work and that of Daneri and Savaré, we have
that if for all smooth curves γ : [0, 1] → M,

d

dt

∣∣∣∣
0+

(∥∥∥∥
d

ds
γt(s)

∥∥∥∥
2

g(γt(s))

)
≤ −2λ

∥∥∥∥
d

ds
γ0(s)

∥∥∥∥
2

g(γ0(s))

,

for all s ∈ (0, 1), then F is geodesically λ-convex.

We now return the QMS setting.
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Let ρ : [0, 1] → S+ be a smooth path in S+, and define the

one-parameter family of paths, ρt(s), (s, t) ∈ [0, 1]× [0,∞) by

ρt(s) = P
†
t ρ(s) .

By what has been explained above, if we can prove that

d

dt

(∥∥∥∥
d

ds
ρt(s)

∥∥∥∥
2

g(ρt(s))

)∣∣∣∣
0+

≤ −2λ

∥∥∥∥
d

ds
ρ0(s)

∥∥∥∥
2

g(ρ0(s))

for all smooth ρ : [0, 1] → M and all s ∈ (0, 1), we will have
proved the geodesic convexity of the relative entropy
functional, and consequently, we shall have proved

D(P†
t ρ||σ) ≤ e−2λtD(ρ||σ) .
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A path forward is indicated by a proof of Ledoux of the
Gaussian logarithmic Sobolev inequality.
Recall Mehler’s formula: (γβ is the centered gaussian

probability density with covariance β1.)

Ptf(x) =

∫

R
n

f(e−tx+ (1− e−2t)1/2y)γβ(y) dy .

Hence ∇Ptf(x) = e−tPt∇f(x). Since (x, t) 7→ |x|2/t is jointly
convex,

|∇Ptf(x)|2
Ptf(x)

= e−2t |Pt∇f(x)|2
Ptf(x)

≤ e−2tPt
|∇f(x)|2
f(x)

.

Now integrate. There are two key ingredients: (1) An
intertwining relation. (2) A convexity property of the action.
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Intertwining for QMS

Lemma 0.1. Suppose that for some numbers aj , j ∈ J ,

[∂j ,L ] = −aj∂j

for each j ∈ J . Then defining ~Pt on ⊕|J |A by

~Pt(A1, . . . , A|J |) = (e−ta1PtA1, . . . , e
−ta|J |PtA|J |) ,

we have the intertwining relation ∂jPt = ~Pt∂j on A.

Note that

P
†
t divA(s) = div ~P†

tA(s) .
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Now consider any smooth path ρ : [0, 1] → S+, and for each
s ∈ (0, 1) write

.
ρ(s) = divA(s)

where A(s) is the solution of
.
ρ(s) = divA(s) that minimizes

〈A, [ρ]−1
~ω A〉L ,ρ so that

gσ,ρ(
.
ρ(s),

.
ρ(s)) =

∑

j∈J

〈Aj(s), [ρ(s)]
−1
ωj

Aj(s)〉HA .
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Set ρt(s) := P
†
t ρ(s), and suppose that the semigroup ~Pt

given by

~PtA = (e−λt
PtA1, . . . , e

−λt
PtA|J |)

intertwines with Pt. It follows that

d

ds
ρt(s) = P

†
t divA(s) = div ~P†

tA(s) .

Consequently,

∥∥∥∥
d

ds
ρt(s)

∥∥∥∥
2

g(ρt(s))

≤ e−2λt
∑

j∈J

〈P†
tAj(s), [P

†
t ρ(s)]

−1
ωj

P
†
tAj(s)〉HA
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Monotone metrics

Our work is done if we can show that

∑

j∈J

〈P†
tAj(s), [P

†
t ρ(s)]

−1
ωj

P
†
tAj(s)〉HA ≤

∑

j∈J

〈Aj(s), [ρ(s)]
−1
ωj

Aj(s)〉HA .

This is where the convexity enters, and the problem is
solved by the theory of “monotone metrics” developed by
Chentsov and Morozova in the classical case, and by Petz
in the non-commutative case.
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The map

(ρ,A) 7→ 〈A, [ρ]−1
ω A〉HA =

Tr

[∫ ∞

0

(t1+ e−ω/2ρ)−1A∗(t1+ eω/2ρ)−1A dt

]

is jointly convex on S+ ×A. If ρ and A are scalars, the

right-hand side reduces to A2/ρ. The non-commutative
convexity result ultimately derives from Lieb’s concavity

Theorem. Since P
†
t is completely positive,

〈P†
tA, [P

†
t ρ]

−1
ω P

†
tA〉HA ≤ 〈A, [ρ]−1

ω A〉HA .
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Summarizing, whenever we can show that the semigroup
~Pt given by

~PtA = (e−λt
PtA1, . . . , e

−λt
PtA|J |)

intertwines with Pt, we have λ-convexity of the relative
entropy, and we have the entropy dissipation inequality

D(P†
t ρ||σ) ≤ e−2λtD(ρ||σ) .

The problem now is to verify the intertwining property. In
Ledoux’s proof, this was done using an explicitly formula for
the action of the semigroup (Pt)t≥0. In our case it will be
easier to work with the generator L .
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Lemma 0.2. Suppose that for some numbers aj , j ∈ J ,

[∂j ,L ] = −aj∂j

for each j ∈ J . Then defining ~Pt on HA,J by

~Pt(A1, . . . , A|J |) = (e−ta1PtA1, . . . , e
−ta|J |PtA|J |) ,

we have the intertwining relation ∂jPt = ~Pt∂j on A.

Onwards to examples!
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The Fermi O-U Semigroup

Let A be the Clifford algebra Cn of dimension n = 2m for
some m ∈ N . Consider a set of generators

{Q1, . . . , Qm, P1, . . . , Pm} ,

where

QjQk +QkQj = PjPk + PkPj = 2δj,k1

and

QjPk + PkQj = 0 for all 1 ≤ j, k ≤ m .

Think of A as the full set of phase space observables, the
subalgebra generated by {Q1, . . . , Qm} as the algebra of
configuration space observables, and the subalgebra
generated by {P1, . . . , Pm} as the algebra of momentum
space observables.
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Form the operators

Zj =
1√
2
(Qj + iPj) so that Z∗

j =
1√
2
(Qj − iPj) .

It is easy to check that

ZjZk + ZkZj = 0 and ZjZ
∗
k + Z∗

kZj = 2δj,k1

for all j, k. The formulas

Nj =
1

2
Z∗
jZj and N⊥

j =
1

2
ZjZ

∗
j for all 1 ≤ j ≤ m .

define m pairs of complementary orthogonal projections.

Gradient flow and functional inequalities for quantum Markov semigroups, III – p. 16/??



For any set of m real numbers {e1, . . . , em}, and any
parameter β ∈ (0,∞), to be interpreted as the inverse
temperature, define the free Hamiltonian h and the Gibbs
state σβ by

h =

m∑

j=1

ejNj and σβ =
1

τ [e−βh]
e−βh .

where τ is the normalized trace.

Let W := im
∏m

j=1QjPj so that W is self-adjoint and unitary,

and for all A ∈ A, let Γ(A) = WAW .
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Since W commutes with every even element of A, simple
computations show that

∆σβ
(WZj) = eβejWZj and ∆σβ

(Z∗
jW ) = e−βejZ∗

jW .

Define the operators

Vj := WZj , 1 ≤ j ≤ m ,

so that 1
2V

∗
j Vj = Nj and 1

2VjV
∗
j = N⊥

j .
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The operator Lβ

LβA :=
1

4

m∑

j=1

eβej/2
(
V ∗
j [A, Vj ] + [V ∗

j , A]Vj

)
+

1

4

m∑

j=1

e−βej/2
(
Vj [A, V

∗
j ] + [Vj , A]V

∗
j

)

is the generator of a QMS Pt = etLβ that satisfies the
σβ-DBC. This is the Fermi Ornstein-Uhlenbeck semigroup at inverse

temperature β.

Gradient flow and functional inequalities for quantum Markov semigroups, III – p. 19/??



It is a simple matter to diagonalize Lβ: For each 1 ≤ j ≤ m,

define the four operators

Kj,(0,0) = 1 , Kj,(1,0) = Zj

Kj,(0,1) = Z∗
j and Kj,(1,1) = eβej/2Nj − e−βej/2N⊥

j .

One readily checks that this set of four operators is
orthonormal in any of the inner products 〈·, ·〉s based on σβ.

Gradient flow and functional inequalities for quantum Markov semigroups, III – p. 20/??



Using the fact that for each j, Vj and V ∗
j commute with Pk

and Qk for all k 6= j, and using the identities

VjKj,(1,1) = eβej/2Vj and Kj,(1,1)Vj = −e−βej/2Vj , we readily

compute that

LβZj = − cosh(βej/2)Zj

LβKj,(1,1) = −2 cosh(βej/2)Kj,(1,1) .

Therefore, for all 0 ≤ k, ℓ ≤ 1,

LβKj,(k,ℓ) = −(k + ℓ) cosh(βej/2)Kj,(k,ℓ) .
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Let α = (α1, . . . , αm) denote a generic element of the index
set {{0, 1} × {0, 1}}m, and for α = (k, ℓ) ∈ {0, 1} × {0, 1},
define |α| = k + ℓ. Then the functions

Kα := K1,α1
K2,α2

· · ·Km,αm

are an orthogonal (but not normalized) basis for HA

consisting of eigenvectors of Lβ:

LβKα = −




m∑

j=1

|αj | cosh(βej/2)


Kα .
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Intertwining - with a twist

There is another differential calculus, more closely adapted
to Lβ: For 1 ≤ j ≤ m, define

∂̌jA =
1

2
(ZjA− Γ(A)Zj) =

1

2
W [Vj , A]

∂̌jA =
1

2
(Z∗

jA− Γ(A)Z∗
j ) = −1

2
W [V ∗

j , A]

∂̌jKj,(0,0) = ∂̌jKj,(1,0) = 0 , ∂̌jKj,(0,1) = Kj,(0,0)

and ∂̌jKj,1,1 = cosh(βej/2)Kj,(1,0) ,

∂̌jKj,(0,0) = ∂̌jKj,(0,1) = 0 , ∂̌jKj,(1,0) = Kj,(0,0)

and ∂̌jKj,(1,1) = − cosh(βej/2)Kj,(0,1) .
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Using the fact that for each j, Vj and V ∗
j commute with Pk

and Qk for all k 6= j, one determines the effect of ∂̌j and ∂̌j
on all of A. The orthonormal basis {Kα} may be viewed as
consisting of analogs of multivariate Krawtchouck
polynomials – the discrete analogs of the Hermite
polynomials.

∂̌j and ∂̌j, which are skew derivations, have the advantage

that they always lower the “degree” of any Kα by one, as

one would expect. The operators ∂jA and ∂jA do not do
this.

Gradient flow and functional inequalities for quantum Markov semigroups, III – p. 24/??



Using this, one readily deduces the identities,

∂̌jLβKα − Lβ ∂̌jKα = − cosh(βej/2)∂̌jKα (1)

and

∂̌jLβKα − Lβ ∂̌jKα = − cosh(βej/2)∂̌jKα . (2)
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Theorem 0.3. For β ≥ 0, let Pt be the Fermi Ornstein-Uhlenbeck

semigroup with generator Lβ , and let σβ be its invariant state. Then for

all ρ ∈ S+,

D(Ptρ||σβ) ≤ e−2λβtD(ρ||σβ)
where λβ = min{cosh(βej/2) : j = 1, . . . ,m}. Moreover, the

relative entropy functional ρ 7→ D(ρ||σβ) is geodesically λβ convex in

the Riemannain metric associated to Lβ .
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The embedded walk on the cube

Each of the vectors Kα is an eigenvector of ∆σβ
. Moreover,

if {e1, . . . , em} is linearly independent over the integers, then
∆σβ

Kα = Kα if and only if for each k, |αk| 6= 1. The span of

the set of such Kα is the same as the span of

{N1, N
⊥
1 , . . . , Nm, N⊥

m} .

Hence in this case, the modular algebra Aσβ
is the algebra

generated by the commuting projections listed above.
Denote this algebra by B. While it need not be the modular
algebra when {e1, . . . , em} is not linearly independent over
the integers, it is easy to see (by continuity or computation)
that it is always invariant under Pt.
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The projections {N1, N
⊥
1 , . . . , Nm, N⊥

m} are not minimal in B,

but the set of the 2m distinct non-zero products one can
form from them is a full set of minimal projections. Identify
this set with the discrete hypercube Qm = {0, 1}m: Set
J = {1, . . . ,m}, and let sj : Qm → Qm define the j-th

coordinate swap defined by
sj(x1, . . . , xm) = (x1, . . . ,−xj , . . . , xm). Let x denote a

generic point of Qm. Define Ex =

m∏

j=1

Nx1

j (N⊥
j )1−x1. The

restriction P̃t of Pt to B is a nearest neighbor random walk
on Qm.
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For a standard representation in which the elements of A
operate on C

2m, and τ is the normalized trace, each Ex is
rank one, so that the transition rate matrix D for the walk is
simply Dx,x′ = Tr[Ex,LEx

′ ]. One readily computes that

Dx,x′ = 0 unless x
′ = sj(x) for some j, and in that case

Dx,x′ =





2 cosh(βej)

1 + e−βej
xj = 1

2 cosh(βej)

1 + eβej
xj = 0 ,

and this gives the jump rates along the edges of Qm for the

classical Markov chain corresponding to P̃t.
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The transition matrix D is the one, for this model, arising in
the general equation for the evolution of occupation
probability for a reversible Markov chain:

d

dt
ρℓ(t) =

m∑

k=1

(
ρk(t)Dk,ℓ − ρℓ(t)Dℓ,k

)
.

σkDk,ℓ = σℓDℓ,k
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The Bose O.U. Semigroup

Let Z and Z∗ be Bose annihilation and creation operators:
[Z,Z∗] = 1. Define

σβ =
(
Tr
[
e−βh

])−1
e−βh .

Theorem 0.4. Let Pt be the Bose Ornstein-Uhlenbeck semigroup with

generator Lβ given by

Lβ = eβ/2
(
Z∗AZ − 1

2{ZZ
∗, A}

)
+e−β/2

(
ZAZ∗ − 1

2{Z
∗Z,A}

)
,

and let σβ be its invariant state. Then for all ρ ∈ S+,

D(Ptρ||σβ) ≤ e−2 sinh(β/2)tD(ρ||σβ) .
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