Gradient flow and functional inequalities for quantum Markov semigroups, II

Eric A. Carlen

Rutgers University

MPIM Bonn, September 27, 2017

Detailed balance

Let $P_{i,j}$ be the Markov transition matrix for a Markov chain on a finite state space $S = \{x_1, \ldots, x_n\}$. Suppose that σ is a probability density on S with

$$\sigma_j = \sum_{i=1}^n \sigma_i P_{i,j} \; .$$

The transition matrix satisfies the *detailed balance condition* with respect to σ in case

$$\sigma_i P_{i,j} = \sigma_j P_{j,i}$$
 for all i, j .

The matrix P is self-adjoint on C^n equipped with the inner product

$$\langle f,g\rangle_{\sigma} = \sum_{k=1}^{n} \sigma_k \overline{f_k} g_k ,$$

if and only if the detailed balance condition is satisfied.

There are a number of different ways one might generalize this inner product to the quantum setting, and these give different notions of self-adjointness. **Definition 0.1** (Compatible inner product). An inner product $\langle \cdot, \cdot \rangle$ is compatible with $\sigma \in \mathfrak{S}_+(\mathcal{A})$ in case for all $A \in \mathcal{A}$, $\operatorname{Tr}[\sigma A] = \langle \mathbf{1}, A \rangle$. If a quantum Markov semigroup \mathscr{P}_t is self-adjoint with respect to an inner product $\langle \cdot, \cdot \rangle$ that is compatible with $\sigma \in \mathfrak{S}_+$, then for all $A \in \mathcal{A}$,

$$\operatorname{Tr}[\sigma A] = \langle \mathbf{1}, A \rangle = \langle \mathscr{P}_t \mathbf{1}, A \rangle = \langle \mathbf{1}, \mathscr{P}_t A \rangle = \operatorname{Tr}[\sigma \mathscr{P}_t A] ,$$

and thus σ is invariant under \mathscr{P}_t^{\dagger} . **Definition 0.2.** Let $\sigma \in \mathfrak{S}_+$ be a non-degenerate density matrix. For each $s \in \mathbb{R}$, and each $A, B \in \mathcal{A}$, define

$$\langle A, B \rangle_s = \text{Tr}[(\sigma^{(1-s)/2} A \sigma^{s/2})^* (\sigma^{(1-s)/2} B \sigma^{s/2})] = \text{Tr}[\sigma^s A^* \sigma^{1-s} B]$$

Definition 0.3 (Modular operator and modular group). Let $\sigma \in \mathfrak{S}_+$. Define a linear operator Δ_{σ} on $\mathfrak{H}_{\mathcal{A}}$, or, what is the same thing, on \mathcal{A} , by

$$\Delta_{\sigma}(A) = \sigma A \sigma^{-1}$$

 Δ_{σ} is called the modular operator. The modular generator is the self-adjoint element $h \in \mathcal{A}$ given by

$$h = -\log\sigma \; ,$$

The modular automorphism group α_t on $\mathcal{M}_n(C)$ is the group defined by

$$\alpha_t(A) = e^{ith}Ae^{-ith}$$

Note that $\Delta_{\sigma} = \alpha_i$.

Let $\sigma \in \mathfrak{S}_+$ and note that

 $\operatorname{Tr}[A^*\Delta_{\sigma}B] = \operatorname{Tr}[(\Delta_{\sigma}A)^*B]$ and $\operatorname{Tr}[A^*\Delta_{\sigma}A] = \operatorname{Tr}[|\sigma^{1/2}A\sigma^{-1/2}|^2]$

so that Δ_{σ} is a positive operator on $\mathfrak{H}_{\mathcal{A}}$.

Since Δ_{σ} is strictly positive, all eigenvalues of Δ_{σ} are strictly positive, hence we may write them in the form $e^{-\omega_{\gamma}}$. Since $(\Delta_{\sigma}A)^* = \Delta_{\sigma}^{-1}A^*$, it follows that for all $E \in \mathfrak{H}_{\mathcal{A}}$,

$$\Delta_{\sigma} E = e^{-\omega} E \quad \iff \quad \Delta_{\sigma} E^* = e^{\omega} E^* \; .$$

The following is due to Alicki:

Lemma 0.4. Let $\sigma \in \mathfrak{S}_+$ be a non-degenerate density matrix, and let $s \in [0, 1], s \neq 1/2$. Let \mathscr{K} be any operator on \mathcal{A} that is self-adjoint with respect to $\langle \cdot, \cdot \rangle_s$ and also preserves self-adjointness. Then \mathscr{K} commutes with α_t , for all t, real and complex.

Definition 0.5 (Detailed balance). A QMS \mathscr{P}_t on \mathcal{A} satisfies the detailed balance condition with respect to $\sigma \in \mathfrak{S}_+(\mathcal{A})$ in case for each t > 0, \mathscr{P}_t is self-adjoint in the σ -GNS inner product $\langle \cdot, \cdot \rangle_1$. In this case σ is invariant under \mathscr{P}_t^{\dagger} , and we say that the QMS \mathscr{P}_t satisfies the σ -DBC.

$$\langle A, B \rangle_s = \operatorname{Tr}[\sigma^s A^* \sigma^{1-s} B] = \langle A, \Delta^s_\sigma B \rangle_1.$$

$$\langle A, B \rangle_s = \operatorname{Tr}[\sigma^s A^* \sigma^{1-s} B] = \langle A, \Delta^s_\sigma B \rangle_1.$$

Hence if \mathscr{P}_t satisfies the σ -DBC

$$\begin{split} \langle A, \mathscr{P}_t B \rangle_s &= \langle A, \Delta^s_\sigma \mathscr{P}_t B \rangle_1 = \langle A, \mathscr{P}_t \Delta^s_\sigma B \rangle_1 \\ &= \langle \mathscr{P}_t A, \Delta^s_\sigma B \rangle_1 = \langle \mathscr{P}_t A, B \rangle_s \;. \end{split}$$

In particular, if \mathscr{P}_t satisfies the σ -DBC, for each t, \mathscr{P}_t self adjoint with respect to any of the inner products $\langle \cdot, \cdot \rangle_s$, or, more genraly any of the inner products

$$\langle A, B \rangle_{\mu} = \int_0^1 \langle A, B \rangle_s \mathrm{d}\mu \; .$$

 $\langle \cdot, \cdot \rangle_{1/2}$ is special; this is the KMS inner product.

A QMS $\mathscr{P}_t = e^{t\mathscr{L}}$ on \mathcal{A} that satisfies the σ -DBC for $\sigma \in \mathfrak{S}_+(\mathcal{A})$ has a generator \mathscr{L} that commutes with the modular operator Δ_{σ} . Hence Δ_{σ} and \mathscr{L} can be simultaneously diagonalized.

In the case $\mathcal{A} = \mathcal{M}_n(C)$, the diagonalization of Δ_{σ} reduces immediately to the diagonalization of σ : Let $\sigma = e^{-h}$ be a density matrix on C^n . Let $\{\eta_1, \ldots, \eta_n\}$ be an orthonormal basis of C^n consisting of eigenvectors of $h = -\log \sigma$:

$$h\eta_j = \lambda_j \eta_j$$

For $\alpha = (\alpha_1, \alpha_2) \in \{(i, j) : 1 \le i, j \le n\}$, define numbers ω_{α} (called the *Bohr frequencies*) by

$$\omega_{\alpha} = \lambda_{\alpha_1} - \lambda_{\alpha_2} ,$$

and rank-one operators F_{α} given by $F_{\alpha} = |\eta_{\alpha_1}\rangle\langle\eta_{\alpha_2}|$ where for $\eta, \xi \in \mathbb{C}^n$, $|\eta\rangle\langle\xi|$ is the rank-one operator sending ζ to $\langle\xi,\zeta\rangle_{\mathbb{C}^n}\eta$. Evidently

 $\Delta_{\sigma} F_{\alpha} = e^{-\omega_{\alpha}} F_{\alpha}$ and $F_{\alpha}^* = F_{\alpha'}$ where $\alpha' = (\alpha_2, \alpha_1)$.

Theorem 0.6. Let $\mathscr{P}_t = e^{t\mathscr{L}}$ be a QMS on $\mathcal{M}_n(C)$ that satisfies the σ -DBC for $\sigma \in \mathfrak{S}_+$. Then the generator \mathscr{L} of \mathscr{P}_t has the form

$$\mathscr{L}A = \sum_{j \in \mathcal{J}} \left(e^{-\omega_j/2} V_j^*[A, V_j] + e^{\omega_j/2} [V_j, A] V_j^* \right),$$

where:

(i) $\tau[V_j^*V_k] = c_j \delta_{j,k}$ for all $j, k \in \mathcal{J}$. (ii) $\tau[V_j] = 0$ for all $j \in \mathcal{J}$. (iii) $\{V_j\}_{j \in \mathcal{J}} = \{V_j^*\}_{j \in \mathcal{J}}$. (iv) $\{V_j\}_{j \in \mathcal{J}}$ consists of eigenvectors of the modular operator Δ_{σ} with

$$\Delta_{\sigma} V_j = e^{-\omega_j} V_j \; .$$

Conversely, given any set any set $\{V_j\}_{j \in \mathcal{J}}$ satisfying *(i)*, *(ii)*, *(iii)*, *(iii)*, the operator \mathscr{L} given by this formula is the generator of a QMS \mathscr{P}_t that satisfies the σ -DBC.

The fact that the operators V_j , $j \in \mathcal{J}$ are eigenfunctions of Δ_{σ} , and hence Δ_{σ}^s for all s, has the following consequence:

$$\sigma^s V_j = \sigma^s V_j \sigma^{-s} \sigma^s = (\Delta^s V_j) \sigma^s = e^{-s\omega_j} V_j \sigma^s$$

Differentiating in s at s = 0,

$$[V_j,h] = -\omega_j V_j \; .$$

Non-commutative derivatives

Fix such a generator \mathscr{L} , and the sets $\{V_j\}_{j \in \mathcal{J}}$ and $\{\omega_j\}_{j \in \mathcal{J}}$ as above.

Define operators ∂_j on \mathcal{A} by

$$\partial_j A = [V_j, A]$$
 so that $\partial_j^{\dagger} A = [V_j^*, A]$.

Define an operator \mathscr{L}_0 on $\mathfrak{H}_{\mathcal{A}}$ by

$$\mathscr{L}_0 A = -\sum_{j \in \mathcal{J}} \partial_j^{\dagger} \partial_j A = -\sum_{j \in \mathcal{J}} [V_j^*, [V_j, A]] .$$

We may write $\mathscr{L}_0 A = -\sum_{j \in \mathcal{J}} (V_j^*[V_j, A] + [A, V_j]V_j^*)$, and hence \mathscr{L}_0 is the generator of QMS. Define the Hilbert space $\mathfrak{H}_{\mathcal{A},\mathcal{J}}$ by

$$\mathfrak{H}_{\mathcal{A},\mathcal{J}} = igoplus_{j\in\mathcal{J}} \mathfrak{H}_{\mathcal{A}}^{(j)} \; ,$$

where each $\mathfrak{H}_{\mathcal{A}}^{(j)}$ is a copy of $\mathfrak{H}_{\mathcal{A}}$. For $\mathbf{A} \in \mathfrak{H}_{\mathcal{A},\mathcal{J}}$ and $j \in \mathcal{J}$, let A_j denote the component of \mathbf{A} in $\mathfrak{H}_{\mathcal{A}}^{(j)}$. Thus, picking some linear ordering of \mathcal{J} , we can write

$$\mathbf{A} = (A_1, \ldots, A_{|\mathcal{J}|}) \; .$$

Define an operator $\nabla:\mathfrak{H}_{\mathcal{A}}\to\mathfrak{H}_{\mathcal{A},\mathcal{J}}$ by

$$\nabla A = (\partial_1 A, \dots, \partial_{|\mathcal{J}|} A)$$
.

We define the operator $\operatorname{div}:\mathfrak{H}_{\mathcal{A},\mathcal{J}}\to\mathfrak{H}_{\mathcal{A}}$ by

div
$$\mathbf{A} = -\sum_{j \in \mathcal{J}} \partial_j^{\dagger} A_j = \sum_{j \in \mathcal{J}} [A_j, V_j^*]$$
.

Note that div is minus the adjoint of the map $\nabla : \mathfrak{H}_{\mathcal{A}} \to \mathfrak{H}_{\mathcal{A},\mathcal{J}}$, so that \mathscr{L}_0 is negative semi-definite. With these definitions, $\mathscr{L}_0 = \operatorname{div} \circ \nabla$. We call ∇ the *non-commutative gradient* associated to \mathscr{L} , and div the *non-commutative divergence* associated to \mathscr{L} .

Note that each ∂_j is a derivation: For all A, B,

$$\partial_j(AB) = (\partial_j A)B + A\partial_j(B)$$

Lemma 0.7. For all $s \in [0, 1]$, all $j \in \mathcal{J}$, and all $A, B \in \mathcal{A}$ we have

$$\langle \partial_j B, A \rangle_s = \langle B, e^{s\omega_j} (e^{-\omega_j} V_j^* A - A V_j^*) \rangle_s$$
.

Consequently, for all $s \in [0, 1]$, and all $A, B \in \mathcal{A}$,

$$e^{(1/2-s)\omega_j}\langle\partial_j B,\partial_j A\rangle_s = -\langle B,e^{-\omega_j/2}V_j^*[A,V_j] + e^{\omega_j/2}[V_j,A]V_j^*\rangle_s.$$

Therefore $\mathcal{E}_s(B, A) = -\langle B, \mathscr{L}A \rangle_s$

$$\mathcal{E}_s(B,A) := \sum_{j \in \mathcal{J}} c_j e^{(1/2-s)\omega_j} \langle \partial_j B, \partial_j A \rangle_s \; .$$

Chain rule

The evolution equation

$$\frac{\partial}{\partial t}\rho(x,t) = \nabla \cdot \left(\rho(x,t) \left[\nabla \log \rho(x,t) - \nabla \log \sigma(x)\right]\right)$$

is a linear equation because of the chain rule identity

$$\rho \nabla \log \rho = \nabla \rho \; .$$

To obtain a non-commutartive analog, write

$$\rho = \lim_{n \to \infty} \left(\mathbf{1} + \frac{1}{n} \log \rho \right)^n$$

for any V,

$$[V,\rho] = \lim_{n \to \infty} \sum_{m=0}^{n-1} \frac{1}{n} \left(\mathbf{1} + \frac{1}{n} \log \rho \right)^m [V,\log\rho] \left(\mathbf{1} + \frac{1}{n} \log \rho \right)^{n-m-1} \\ = \int_0^1 \rho^s [V,\log\rho] \rho^{1-s} \mathrm{d}s \; .$$

The operation $A \mapsto \int_0^1 \rho^s A \rho^{1-s} ds = R_\rho \int_0^1 \Delta_\rho^s A ds$, where R_ρ is right multiplication by ρ , is a non-commutative anolog of multiplication by ρ , and it takes self-adjoint operators to self-adjoint operators.

The map

$$A \mapsto \int_0^1 \rho^s A \rho^{1-s} \mathrm{d}s = R_\rho \int_0^1 \Delta_\rho^s(A) \mathrm{d}s =: R_\rho f_0(\Delta_\rho)(A) \ .$$

has the inverse

$$A \mapsto \int_0^\infty \frac{1}{t+\rho} A \frac{1}{t+\rho} \mathrm{d}t \; .$$

These are two natural quantum analogs of "multiplication by ρ " and "division by ρ " that fequently arise in the study of quantum systems.

There is another useful way to look at this pair of linear transformations. By the Spectral Theorem, if A is a strictly positive operator,

$$\log A = \int_0^\infty \left(\frac{1}{1+t} - \frac{1}{A+t}\right) \mathrm{d}t \; .$$

Hence for A self-adjoint

$$\lim_{h \to 0} \frac{1}{h} (\log(A + hH) - \log(A)) = \int_0^1 \frac{1}{A + t} H \frac{1}{A + t} dt$$

Hence "quantum division by A" is the derivative of the logarithm function.

By Duhamel's Formula, for K and H self-adjoint,

$$e^{K+hH} = \int_0^1 e^{s(K+hH)} hH e^{(1-s)(K)} ds + e^K$$

Hence

$$\lim_{h \to 0} \frac{1}{h} (e^{K+hH} - e^K) = \int_0^1 e^{sK} H e^{(1-s)K} \mathrm{d}s \; .$$

That is, "quantum multiplication of e^K by H" is

$$\left. \frac{\mathrm{d}}{\mathrm{d}h} e^{K+hH} \right|_{h=0}$$

This identification has an important consequence. Let v be a unit vector in \mathcal{H} , and let $|v\rangle\langle v|$ denote the orthogonal projection onto the span of v. It is easy to see that if v is not an eigenvector of A, then

$$B := \int_0^1 \frac{1}{A+t} |v\rangle \langle v| \frac{1}{A+t} \mathrm{d}t$$

is not a rank-one operator. Let

$$B = \sum_{j=1}^{m} \lambda_j |u_j\rangle \langle u_j|$$

be a spectral resolution of B.

Then

$$|v\rangle\langle v| = \sum_{j=1}^{m} \lambda_j \int_0^1 A^{1-s} |u_j\rangle\langle u_j| A^s \mathrm{d}s \; .$$

An invertible linear map from $M_n(\mathbb{C}^n)$ to $M_n(\mathbb{C}^n)$ cannot send two $|u_j\rangle\langle u_j|$ and $|u_j\rangle\langle u_j|$ to multiples of $|v\rangle\langle v|$ for distinct *j* and *k*, and this ensures that for some *j* with $\lambda_j > 0$,

$$\int_0^1 A^{1-s} |u_j\rangle \langle u_j | A^s \mathrm{d}s$$

is not positive. That is, the matrix exponential function is non monotone: It is not necessarily the case that for *H* self-adjoint and A > 0, $e^{H+A} - e^{H} \ge 0$.

We need some variants on this "multiplication by ρ ": Consider the function f_{ω} defined by

$$f_{\omega}(t) := \int_{0}^{1} e^{\omega(s-1/2)} t^{s} \, \mathrm{d}s = e^{\omega/2} \frac{t-e^{-\omega}}{\log t+\omega}$$

Definition 0.8. For $\rho \in \mathfrak{S}_+$, and $\omega \in \mathbb{R}$, define the operator $[\rho]_\omega : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ by

$$[\rho]_{\omega} = R_{\rho} \circ f_{\omega}(\Delta_{\rho})$$

For each ω , $[\rho]_{\omega}$ is invertible, and its inverse, $[\rho]_{\omega}^{-1} = (1/f_{\omega})(\Delta_{\rho}) \circ R_{\rho^{-1}}$ may then be viewed as the corresponding non-commutative form of division by ρ . Simple lemmas say:

$$R_{\rho}f_{\omega}(\Delta_{\rho})\left(V\log(e^{-\omega/2}\rho) - \log(e^{\omega/2}\rho)V\right) = e^{-\omega/2}V\rho - e^{\omega/2}\rho V$$

For $\omega = 0$, and $V = V_j$, this is

$$R_{\rho}f_0(\Delta_{\rho})(\partial_j \log \rho) = \partial_j \rho$$
.

Moreover,

$$\partial_j (\log \rho - \log \sigma) = V_j \log(e^{-\omega_j/2}\rho) - \log(e^{\omega_j/2}\rho)V_j$$
.

Combining, we can write $\mathscr{L}^{\dagger}\rho = \sum_{j\in\mathcal{J}} [V^*, e^{-\omega/2}V\rho - e^{\omega/2}\rho V]$ in terms of $D(\rho||\sigma)$. **Theorem 0.9.** Let $\mathscr{P}_t = e^{t\mathscr{L}}$ be QMS on \mathcal{A} that satisfies the σ -DBC for $\sigma \in \mathfrak{S}_+(\mathcal{A})$, and let \mathscr{L} be given in standard from. Then, for all $\rho \in \mathfrak{S}_+$,

$$-\mathscr{L}^{\dagger}\rho = \sum_{j\in\mathcal{J}}\partial_{j}^{\dagger}\left([\rho]_{\omega_{j}}\partial_{j}(\log\rho - \log\sigma)\right).$$

We have now arrived at a quantum analog of the classical Kolmogorov forward equation The evolution equation

$$\frac{\partial}{\partial t}\rho(x,t) = \nabla \cdot \left(\rho(x,t) \left[\nabla \log \rho(x,t) - \nabla \log \sigma(x)\right]\right)$$

This is the Kolmogorov forward equation for a diffusion process.

Lemma 0.10 (Chain rule identity). For all $V \in \mathcal{M}_n(C)$, $\rho \in \mathfrak{S}_+$ and $\omega \in \mathbb{R}$,

$$\int_0^1 e^{\omega(s-1/2)} R_\rho \Delta_\rho^s \left(V \log(e^{-\omega/2}\rho) - \log(e^{\omega/2}\rho) V \right) \mathrm{d}s = e^{-\omega/2} V \rho - e^{\omega/2} \rho V.$$

Proof. Define $f(s) = e^{\omega(1/2-s)}\rho^{1-s}V\rho^s$. The right side equals f(1) - f(0) and

$$f'(s) = e^{\omega(1/2-s)}\rho^{1-s} \left(-\omega V - \log(\rho)V + V\log(\rho)\right)\rho^s$$
$$= e^{\omega(1/2-s)}\rho^{1-s} \left(V\log(e^{-\omega/2}\rho) - \log(e^{\omega/2}\rho)V\right)\rho^s$$

Lemma 0.11. Let $\mathscr{P}_t = e^{t\mathscr{L}}$ be QMS on \mathcal{A} that satisfies the σ -DBC for $\sigma \in \mathfrak{S}_+(\mathcal{A})$. and let \mathscr{L} be given in standard from. Then for all $\rho \in \mathfrak{S}_+$, and all $j \in \mathcal{J}$,

$$\partial_j (\log \rho - \log \sigma) = V_j \log(e^{-\omega_j/2}\rho) - \log(e^{\omega_j/2}\rho)V_j \,.$$

Proof. Since $\Delta_{\sigma}^{s}V_{j} = e^{-s\omega_{j}}V_{j}$, $[V_{j}, \log \sigma] = \omega_{j}V_{j}$. It follows that

$$\partial_j (\log \rho - \log \sigma) = [V_j, \log \rho] - \omega_j V_j = V_j \log(e^{-\omega_j/2}\rho) - \log(e^{\omega_j/2}\rho) V_j ,$$

which is the desired identity.

Riemannian metrics on S.

We now turn to the construction of a Riemannian metric $g_{\mathscr{L}}$ on \mathfrak{S} for which the quantum equation is gradient flow for the relative entropy.

Let $\rho(t), t \in (t_0, t_1)$, be any differentiable path in \mathfrak{S}_+ regarded as a convex subset of \mathcal{A} . For each $t \in (t_0, t_1)$, let $\rho(t) \in \mathcal{A}$ denote the derivative of $\rho(t)$ in t. If $\rho(t)$ is any differentiable path in \mathfrak{S}_+ defined on $(-\epsilon, \epsilon)$ for some $\epsilon > 0$ such that $\rho(0) = \rho_0$, then $\operatorname{Tr}[\rho(0)] = 0$, so that there is an affine subspace of $\mathfrak{H}_{\mathcal{A},\mathcal{J}}$ consisting of elements \mathbf{A} for which

$$\dot{\rho}(0) = \operatorname{div} \mathbf{A}$$

We wish to rewrite this as an analog of the classical continuity equation for the time evolutions of a probability density $\rho(x,t)$ on \mathbb{R}^n :

$$\frac{\partial}{\partial t}\rho(x,t) + \operatorname{div}[\mathbf{v}(x,t)\rho(x,t)] = 0$$
.

In the classical case, for ρ strictly positive, any expression of the form

$$\frac{\partial}{\partial t}\rho(x,t) = \operatorname{div}[\mathbf{a}(x,t)]$$

gives rise to a continuity equation with $\mathbf{v}(x,t) = -\rho^{-1}(x,t)\mathbf{a}(x,t)$. In the quantum case, there are many different ways to multiply and divide by $\rho \in \mathfrak{S}_+$.

Definition 0.12. Let $\vec{\omega} \in \mathbb{R}^{|\mathcal{J}|}$. For $\rho \in \mathfrak{S}_+$ we define the linear operator $[\rho]_{\vec{\omega}}$ on $\mathfrak{H}_{\mathcal{A},\mathcal{J}}$ by

$$[\rho]_{\vec{\omega}}(A_1,\ldots,A_{|\mathcal{J}|}) = ([\rho]_{\omega_1}A_1,\ldots,[\rho]_{\omega_{|\mathcal{J}|}}A_{|\mathcal{J}|}).$$

Note that $[\rho]_{\vec{\omega}}$ is invertible with

$$[\rho]_{\vec{\omega}}^{-1}(A_1,\ldots,A_{|\mathcal{J}|}) = ([\rho]_{\omega_1}^{-1}A_1,\ldots,[\rho]_{\omega_{|\mathcal{J}|}}^{-1}A_{|\mathcal{J}|}).$$

where we have used the fact that R_{ρ} and Δ_{ρ} commute. If $\vec{\omega} \in \mathbb{R}^{|\mathcal{J}|}$ is the vector of Bohr frequencies associated to Δ_{σ} , then for $\mathbf{V} \in \mathfrak{H}_{\mathcal{A},\mathcal{J}}$, define

$$\|\mathbf{V}\|_{\sigma,\rho}^2 = \langle \mathbf{V}, [\rho]_{\vec{\omega}} \mathbf{V} \rangle .$$

Theorem 0.13. Let $\rho(t)$ be a differentiable path in \mathfrak{S}_+ defined on $(-\epsilon, \epsilon)$ for some $\epsilon > 0$ such that $\rho(0) = \rho_0$. Then there is a unique vector field $\mathbf{V} \in \bigoplus^{|\mathcal{J}|} \mathcal{A}$ of the form $\mathbf{V} = \nabla U$ with $U \in \mathcal{A}$, for which the non-commutative continuity equation

$$\dot{\rho}(0) = -\operatorname{div}([\rho_0]_{\vec{\omega}}\mathbf{V}) = -\operatorname{div}([\rho_0]_{\vec{\omega}}\nabla U)$$
(1)

holds. Moreover, U can be taken to be traceless, and is then self-adjoint. Furthermore, if \mathbf{W} is any other vector field such that $\dot{\rho}(0) = -\nabla^{\dagger}([\rho_0]_{\vec{\omega}}\mathbf{W})$, then

$$\|\mathbf{V}\|_{\sigma,
ho_0} < \|\mathbf{W}\|_{\sigma,
ho_0}$$

Definition 0.14. For each $\rho \in \mathfrak{S}_+$, we identify the tangent space T_ρ at ρ , with the set of gradients vector fields { $\nabla U : U \in \mathcal{A}, U = U^*$ }. We define the Riemannian metric g_σ on \mathfrak{S}_+ by

$$\|\dot{\rho}(0)\|_{g_{\sigma(\rho(0))}}^{2} = \|\mathbf{V}\|_{\sigma,\rho(0)}^{2}$$

where $\rho(0)$ and V are related by (1). If \mathcal{F} is any differentiable function on \mathfrak{S}_+ , the corresponding gradient vector field, denoted $\operatorname{grad}_{g_\sigma} \mathcal{F}(\rho)$ is given by

$$\left. \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{F}(\rho(t)) \right|_{t=0} = g_{\sigma} \big(\dot{\rho}(0), \operatorname{grad}_{g_{\sigma}} \mathcal{F}(\rho) \big)$$

for all differentiable paths $\rho(t)$ defined on $(-\epsilon, \epsilon)$ for some $\epsilon > 0$ with $\rho(0) = \rho$.

Let $\frac{\delta \mathcal{F}}{\delta \rho}(\rho)$ denote the derivative of \mathcal{F} : For all self-adjoint $A \in \mathcal{A}$,

$$\lim_{t \to 0} \frac{1}{t} (\mathcal{F}(\rho + tA) - \mathcal{F}(\rho)) = \operatorname{Tr} \left[\frac{\delta \mathcal{F}}{\delta \rho}(\rho) A \right]$$

In particular, when

$$\vec{\rho}(0) + \operatorname{div}([\rho_0]_{\vec{\omega}} \nabla U) = 0$$

is satisfied for some U,

$$\operatorname{Tr}\left[\frac{\delta\mathcal{F}}{\delta\rho}(\rho)\operatorname{div}([\rho]_{\vec{\omega}}\nabla U)\right] = -g_{\vec{\omega}}\left(\nabla\frac{\delta\mathcal{F}}{\delta\rho}(\rho),\nabla U\right)$$

Theorem 0.15. Let $\mathscr{P}_t = e^{t\mathscr{L}}$ be QMS on \mathcal{A} that satisfies the σ -DBC for $\sigma \in \mathfrak{S}_+(\mathcal{A})$. Then

$$\frac{\partial}{\partial t}\rho = \mathscr{L}^{\dagger}\rho \tag{2}$$

is gradient flow for the relative entropy $D(\cdot || \sigma)$ in the metric g_{σ} canonically associated to σ .