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Detailed balance

Let Pi,j be the Markov transition matrix for a Markov chain

on a finite state space S = {x1, . . . , xn}. Suppose that σ is a
probability density on S with

σj =

n
∑

i=1

σiPi,j .

The transition matrix satisfies the detailed balance condition
with respect to σ in case

σiPi,j = σjPj,i for all i, j .
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The matrix P is self-adjoint on C
n equipped with the inner

product

〈f, g〉σ =

n
∑

k=1

σkfkgk ,

if and only if the detailed balance condition is satisfied.

There are a number of different ways one might generalize
this inner product to the quantum setting, and these give
different notions of self-adjointness.
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Definition 0.1 (Compatible inner product). An inner product 〈·, ·〉 is

compatible with σ ∈ S+(A) in case for all A ∈ A, Tr[σA] = 〈1, A〉.

If a quantum Markov semigroup Pt is self-adjoint with
respect to an inner product 〈·, ·〉 that is compatible with
σ ∈ S+, then for all A ∈ A,

Tr[σA] = 〈1, A〉 = 〈Pt1, A〉 = 〈1,PtA〉 = Tr[σPtA] ,

and thus σ is invariant under P
†
t .

Definition 0.2. Let σ ∈ S+ be a non-degenerate density matrix. For

each s ∈ R, and each A,B ∈ A, define

〈A,B〉s = Tr[(σ(1−s)/2Aσs/2)∗(σ(1−s)/2Bσs/2)] = Tr[σsA∗σ1−sB] .
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Definition 0.3 (Modular operator and modular group). Let σ ∈ S+.

Define a linear operator ∆σ on HA, or, what is the same thing, on A, by

∆σ(A) = σAσ−1 .

∆σ is called the modular operator. The modular generator is the

self-adjoint element h ∈ A given by

h = − log σ ,

The modular automorphism group αt on Mn(C) is the group defined by

αt(A) = eithAe−ith .

Note that ∆σ = αi.
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Let σ ∈ S+ and note that

Tr[A∗∆σB] = Tr[(∆σA)
∗B] and Tr[A∗∆σA] = Tr[|σ1/2Aσ−1/2|2]

so that ∆σ is a positive operator on HA.

Since ∆σ is strictly positive, all eigenvalues of ∆σ are strictly

positive, hence we may write them in the form e−ωγ . Since

(∆σA)
∗ = ∆−1

σ A∗, it follows that for all E ∈ HA,

∆σE = e−ωE ⇐⇒ ∆σE
∗ = eωE∗ .
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The following is due to Alicki:

Lemma 0.4. Let σ ∈ S+ be a non-degenerate density matrix, and let

s ∈ [0, 1], s 6= 1/2. Let K be any operator on A that is self-adjoint

with respect to 〈·, ·〉s and also preserves self-adjointness. Then K

commutes with αt, for all t, real and complex.

Definition 0.5 (Detailed balance). A QMS Pt on A satisfies the

detailed balance condition with respect to σ ∈ S+(A) in case for each

t > 0, Pt is self-adjoint in the σ-GNS inner product 〈·, ·〉1. In this case

σ is invariant under P
†
t , and we say that the QMS Pt satisfies the

σ-DBC.

〈A,B〉s = Tr[σsA∗σ1−sB] = 〈A,∆s
σB〉1 .
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〈A,B〉s = Tr[σsA∗σ1−sB] = 〈A,∆s
σB〉1 .

Hence if Pt satisfies the σ-DBC

〈A,PtB〉s = 〈A,∆s
σPtB〉1 = 〈A,Pt∆

s
σB〉1

= 〈PtA,∆
s
σB〉1 = 〈PtA,B〉s .

In particular, if Pt satisfies the σ-DBC, for each t, Pt self
adjoint with respect to any of the inner products 〈·, ·〉s, or,
more genraly any of the inner products

〈A,B〉µ =

∫ 1

0

〈A,B〉sdµ .

〈·, ·〉1/2 is special; this is the KMS inner product.
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A QMS Pt = etL on A that satisfies the σ-DBC for
σ ∈ S+(A) has a generator L that commutes with the
modular operator ∆σ. Hence ∆σ and L can be
simultaneously diagonalized.

In the case A = Mn(C), the diagonalization of ∆σ reduces

immediately to the diagonalization of σ: Let σ = e−h be a
density matrix on C

n. Let {η1, . . . , ηn} be an orthonormal
basis of Cn consisting of eigenvectors of h = − log σ:

hηj = λjηj .
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For α = (α1, α2) ∈ {(i, j) : 1 ≤ i, j ≤ n}, define numbers ωα

(called the Bohr frequencies) by

ωα = λα1 − λα2 ,

and rank-one operators Fα given by Fα = |ηα1〉〈ηα2 | where
for η, ξ ∈ C

n, |η〉〈ξ| is the rank-one operator sending ζ to
〈ξ, ζ〉Cnη. Evidently

∆σFα = e−ωαFα and F ∗
α = Fα′ where α′ = (α2, α1) .
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Theorem 0.6. Let Pt = etL be a QMS on Mn(C) that satisfies the

σ-DBC for σ ∈ S+. Then the generator L of Pt has the form

LA =
∑

j∈J

(

e−ωj/2V ∗
j [A, Vj ] + eωj/2[Vj , A]V

∗
j

)

,

where:

(i) τ [V ∗
j Vk] = cjδj,k for all j, k ∈ J . (ii) τ [Vj ] = 0 for all j ∈ J . (iii)

{Vj}j∈J = {V ∗
j }j∈J . (iv) {Vj}j∈J consists of eigenvectors of the

modular operator ∆σ with

∆σVj = e−ωjVj .
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Conversely, given any set any set {Vj}j∈J satisfying (i), (ii),

(iii), the operator L given by this formula is the generator of
a QMS Pt that satisfies the σ-DBC.

The fact that the operators Vj , j ∈ J are eigenfunctions of

∆σ, and hence ∆s
σ for all s, has the following consequence:

σsVj = σsVjσ
−sσs = (∆sVj)σ

s = e−sωjVjσ
s .

Differentiating in s at s = 0,

[Vj , h] = −ωjVj .
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Non-commutative derivatives

Fix such a generator L , and the sets {Vj}j∈J and {ωj}j∈J
as above.

Define operators ∂j on A by

∂jA = [Vj , A] so that ∂†jA = [V ∗
j , A] .

Define an operator L0 on HA by

L0A = −
∑

j∈J

∂†j∂jA = −
∑

j∈J

[V ∗
j , [Vj , A]] .

We may write L0A = −
∑

j∈J

(V ∗
j [Vj , A] + [A, Vj ]V

∗
j ), and

hence L0 is the generator of QMS.
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Define the Hilbert space HA,J by

HA,J =
⊕

j∈J

H
(j)
A ,

where each H
(j)
A is a copy of HA. For A ∈ HA,J and j ∈ J ,

let Aj denote the component of A in H
(j)
A . Thus, picking

some linear ordering of J , we can write

A = (A1, . . . , A|J |) .

Define an operator ∇ : HA → HA,J by

∇A = (∂1A, . . . , ∂|J |A) .
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We define the operator div : HA,J → HA by

divA = −
∑

j∈J

∂†jAj =
∑

j∈J

[Aj , V
∗
j ] .

Note that div is minus the adjoint of the map
∇ : HA → HA,J , so that L0 is negative semi-definite. With

these definitions, L0 = div ◦∇. We call ∇ the
non-commutative gradient associated to L , and div the
non-commutative divergence associated to L .

Note that each ∂j is a derivation: For all A,B,

∂j(AB) = (∂jA)B + A∂j(B) .
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Lemma 0.7. For all s ∈ [0, 1], all j ∈ J , and all A,B ∈ A we have

〈∂jB,A〉s = 〈B, esωj (e−ωjV ∗
j A− AV ∗

j )〉s .

Consequently, for all s ∈ [0, 1], and all A,B ∈ A,

e(1/2−s)ωj〈∂jB, ∂jA〉s = −〈B, e−ωj/2V ∗
j [A, Vj ]+eωj/2[Vj , A]V

∗
j 〉s .

Therefore Es(B,A) = −〈B,LA〉s

Es(B,A) :=
∑

j∈J

cje
(1/2−s)ωj〈∂jB, ∂jA〉s .
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Chain rule

The evolution equation

∂

∂t
ρ(x, t) = ∇ · (ρ(x, t)[∇ log ρ(x, t)−∇ log σ(x)])

is a linear equation because of the chain rule identity

ρ∇ log ρ = ∇ρ .

To obtain a non-commutartive analog, write

ρ = lim
n→∞

(

1+
1

n
log ρ

)n

.
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for any V ,

[V, ρ] = lim
n→∞

n−1
∑

m=0

1

n

(

1+
1

n
log ρ

)m

[V, log ρ]

(

1+
1

n
log ρ

)n−m−1

=

∫ 1

0

ρs[V, log ρ]ρ1−sds .

The operation A 7→

∫ 1

0

ρsAρ1−sds = Rρ

∫ 1

0

∆s
ρAds, where Rρ

is right multiplication by ρ, is a non-commutative anolog of
multiplication by ρ, and it takes self-adjoint operators to
self-adjoint operators.
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The map

A 7→

∫ 1

0

ρsAρ1−sds = Rρ

∫ 1

0

∆s
ρ(A)ds =: Rρf0(∆ρ)(A) .

has the inverse

A 7→

∫ ∞

0

1

t+ ρ
A

1

t+ ρ
dt .

These are two natural quantum analogs of "multiplication by
ρ” and "division by ρ" that fequently arise in the study of
quantum systems.
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There is another useful way to look at this pair of linear
transformations. By the Spectral Theorem, if A is a strictly
positive operator,

logA =

∫ ∞

0

(

1

1 + t
−

1

A+ t

)

dt .

Hence for A self-adjoint

lim
h→0

1

h
(log(A+ hH)− log(A)) =

∫ 1

0

1

A+ t
H

1

A+ t
dt .

Hence “quantum division by A” is the derivative of the
logarithm function.
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By Duhamel’s Formula, for K and H self-adjoint,

eK+hH =

∫ 1

0

es(K+hH)hHe(1−s)(K)ds+ eK .

Hence

lim
h→0

1

h
(eK+hH − eK) =

∫ 1

0

esKHe(1−s)Kds .

That is, “quantum multiplication of eK by H” is

d

dh
eK+hH

∣

∣

∣

∣

h=0

.
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This identification has an important consequence. Let v be
a unit vector in H, and let |v〉〈v| denote the orthogonal
projection onto the span of v. It is easy to see that if v is not
an eigenvector of A, then

B :=

∫ 1

0

1

A+ t
|v〉〈v|

1

A + t
dt

is not a rank-one operator. Let

B =

m
∑

j=1

λj |uj〉〈uj |

be a spectral resolution of B.
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Then

|v〉〈v| =

m
∑

j=1

λj

∫ 1

0

A1−s|uj〉〈uj |A
sds .

An invertible linear map from Mn(C
n) to Mn(C

n) cannot
send two |uj〉〈uj | and |uj〉〈uj | to multiples of |v〉〈v| for distinct

j and k, and this ensures that for some j with λj > 0,

∫ 1

0

A1−s|uj〉〈uj |A
sds

is not positive. That is, the matrix exponential function is
non monotone: It is not necessarily the case that for H

self-adjoint and A > 0, eH+A − eH ≥ 0.
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We need some variants on this “multiplication by ρ”:

Consider the function fω defined by

fω(t) :=

∫ 1

0

eω(s−1/2)ts ds = eω/2
t− e−ω

log t+ ω
.

Definition 0.8. For ρ ∈ S+, and ω ∈ R, define the operator

[ρ]ω : Mn(C) → Mn(C) by

[ρ]ω = Rρ ◦ fω(∆ρ)

For each ω, [ρ]ω is invertible, and its inverse,

[ρ]−1
ω = (1/fω)(∆ρ) ◦ Rρ−1 may then be viewed as the corresponding

non-commutative form of division by ρ.
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Simple lemmas say:

Rρfω(∆ρ)
(

V log(e−ω/2ρ)− log(eω/2ρ)V
)

= e−ω/2V ρ− eω/2ρV .

For ω = 0, and V = Vj , this is

Rρf0(∆ρ)(∂j log ρ) = ∂jρ .

Moreover,

∂j(log ρ− log σ) = Vj log(e
−ωj/2ρ)− log(eωj/2ρ)Vj .

Combining, we can write L
†ρ =

∑

j∈J

[V ∗, e−ω/2V ρ− eω/2ρV ]

in terms of D(ρ||σ).
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Theorem 0.9. Let Pt = etL be QMS on A that satisfies the σ-DBC for

σ ∈ S+(A), and let L be given in standard from. Then, for all

ρ ∈ S+,

−L
†ρ =

∑

j∈J

∂†j

(

[ρ]ωj
∂j(log ρ− log σ)

)

.

We have now arrived at a quantum analog of the classical
Kolmogorov forward equation The evolution equation

∂

∂t
ρ(x, t) = ∇ · (ρ(x, t)[∇ log ρ(x, t)−∇ log σ(x)])

This is the Kolmogorov forward equation for a diffusion
process.
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Lemma 0.10 (Chain rule identity). For all V ∈ Mn(C), ρ ∈ S+ and

ω ∈ R,

∫ 1

0

eω(s−1/2)Rρ∆
s
ρ

(

V log(e−ω/2ρ)− log(eω/2ρ)V
)

ds =

e−ω/2V ρ− eω/2ρV .

Proof. Define f(s) = eω(1/2−s)ρ1−sV ρs. The right side equals

f(1)− f(0) and

f ′(s) = eω(1/2−s)ρ1−s
(

− ωV − log(ρ)V + V log(ρ)
)

ρs

= eω(1/2−s)ρ1−s
(

V log(e−ω/2ρ)− log(eω/2ρ)V
)

ρs .
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Lemma 0.11. Let Pt = etL be QMS on A that satisfies the σ-DBC for

σ ∈ S+(A). and let L be given in standard from. Then for all

ρ ∈ S+, and all j ∈ J ,

∂j(log ρ− log σ) = Vj log(e
−ωj/2ρ)− log(eωj/2ρ)Vj .

Proof. Since ∆s
σVj = e−sωjVj , [Vj , log σ] = ωjVj . It follows that

∂j(log ρ− log σ) = [Vj , log ρ]− ωjVj =

Vj log(e
−ωj/2ρ)− log(eωj/2ρ)Vj ,

which is the desired identity.
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Riemannian metrics on S.

We now turn to the construction of a Riemannian metric gL

on S for which the quantum equation is gradient flow for the
relative entropy.

Let ρ(t), t ∈ (t0, t1), be any differentiable path in S+

regarded as a convex subset of A. For each t ∈ (t0, t1), let
.
ρ(t) ∈ A denote the derivative of ρ(t) in t. If ρ(t) is any
differentiable path in S+ defined on (−ǫ, ǫ) for some ǫ > 0
such that ρ(0) = ρ0, then Tr[

.
ρ(0)] = 0, so that there is an

affine subspace of HA,J consisting of elements A for which

.
ρ(0) = divA .

Gradient flow and functional inequalities for quantum Markov semigroups, II – p. 29/48



We wish to rewrite this as an analog of the classical
continuity equation for the time evolutions of a probability
density ρ(x, t) on R

n:

∂

∂t
ρ(x, t) + div[v(x, t)ρ(x, t)] = 0 .

In the classical case, for ρ strictly positive, any expression of
the form

∂

∂t
ρ(x, t) = div[a(x, t)]

gives rise to a continuity equation with

v(x, t) = −ρ−1(x, t)a(x, t). In the quantum case, there are
many different ways to multiply and divide by ρ ∈ S+.
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Definition 0.12. Let ~ω ∈ R
|J |. For ρ ∈ S+ we define the linear

operator [ρ]~ω on HA,J by

[ρ]~ω
(

A1, . . . , A|J |

)

=
(

[ρ]ω1A1, . . . , [ρ]ω|J |
A|J |

)

.

Note that [ρ]~ω is invertible with

[ρ]−1
~ω

(

A1, . . . , A|J |

)

=
(

[ρ]−1
ω1

A1, . . . , [ρ]
−1
ω|J |

A|J |

)

.

where we have used the fact that Rρ and ∆ρ commute. If

~ω ∈ R
|J | is the vector of Bohr frequencies associated to ∆σ,

then for V ∈ HA,J , define

‖V‖2σ,ρ = 〈V, [ρ]~ωV〉 .
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Theorem 0.13. Let ρ(t) be a differentiable path in S+ defined on

(−ǫ, ǫ) for some ǫ > 0 such that ρ(0) = ρ0. Then there is a unique

vector field V ∈ ⊕|J |A of the form V = ∇U with U ∈ A, for which

the non-commutative continuity equation

.

ρ(0) = − div([ρ0]~ωV) = − div([ρ0]~ω∇U) (1)

holds. Moreover, U can be taken to be traceless, and is then self-adjoint.

Furthermore, if W is any other vector field such that
.

ρ(0) = −∇†([ρ0]~ωW), then

‖V‖σ,ρ0 < ‖W‖σ,ρ0 .
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Definition 0.14. For each ρ ∈ S+, we identify the tangent space Tρ at

ρ, with the set of gradients vector fields {∇U : U ∈ A , U = U∗}.

We define the Riemannian metric gσ on S+ by

‖
.

ρ(0)‖2gσ(ρ(0))
= ‖V‖2σ,ρ(0)

where
.

ρ(0) and V are related by (1). If F is any differentiable function

on S+, the corresponding gradient vector field, denoted gradgσF(ρ) is

given by

d

dt
F(ρ(t))

∣

∣

∣

∣

t=0

= gσ
(

.

ρ(0), gradgσF(ρ)
)

for all differentiable paths ρ(t) defined on (−ǫ, ǫ) for some ǫ > 0 with

ρ(0) = ρ.
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Let
δF

δρ
(ρ) denote the derivative of F : For all self-adjoint

A ∈ A,

lim
t→0

1

t
(F(ρ+ tA)− F(ρ) = Tr

[

δF

δρ
(ρ)A

]

.

In particular, when

.
ρ(0) + div([ρ0]~ω∇U) = 0

is satisfied for some U ,

Tr

[

δF

δρ
(ρ) div([ρ]~ω∇U)

]

= −g~ω

(

∇
δF

δρ
(ρ),∇U

)

.
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Theorem 0.15. Let Pt = etL be QMS on A that satisfies the σ-DBC

for σ ∈ S+(A). Then

∂

∂t
ρ = L

†ρ (2)

is gradient flow for the relative entropy D(·||σ) in the metric gσ
canonically associated to σ.
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