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Abstract

We develop a model of distributed damage in brittle materials deforming in triaxial com-
pression based on the explicit construction of special microstructures obtained by recursive
faulting. The model aims to predict the effective or macroscopic behavior of the material
from its elastic and fracture properties; and to predict the microstructures underlying the
microscopic behavior. The model accounts for the elasticity of the matrix, fault nucleation
and the cohesive and frictional behavior of the faults. We analyze the resulting quasistatic
boundary value problem and determine the relaxation of the potential energy, which de-
scribes the macroscopic material behavior averaged over all possible fine-scale structures.
Finally, we present numerical calculations of the dynamic multi-axial compression exper-
iments on sintered aluminum nitride (AlN) of Chen and Ravichandran [1; 2; 3; 4]. The
model correctly predicts the general trends regarding the observed damage patterns; and
the brittle-to-ductile transition resulting under increasing confinement.
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1 Introduction

This paper is concerned with the formulation of a model of distributed damage
in brittle materials under triaxial compression. The conditions under consideration
here arise in a number of situations of interest, including: geological formations;
confined structural ceramics and brittle-matrix composites; crushed concrete; and
others. The objectives of the theory are to compute the effective or macroscopic
behavior of the material from its elastic and fracture properties; and to predict the
microstructures underlying the microscopic behavior. The present work is also con-
cerned with the numerical implementation of the damage model within a concurrent
multiscale framework; and with the validation of the model against the experimen-
tal data of [2] pertaining to compressive damage in confined ceramics.

Processes of distributed damage in brittle materials have been the subject of ex-
tensive research and have been modelled by a variety of means (e. g., [5; 6; 7; 8;
9; 10; 11; 12; 13; 14; 15]). Most of these models are empirical and are based on
special solutions from linear elasticity, internal variable formalisms, and other mod-
elling schemes. Local models of distributed damage have also been misapplied to
processes of fracture in brittle solids under tension, where fracture mechanics is ex-
pected to govern the behavior of the solid. Indeed, the essential distinction between
damage and fracture has not always been appreciated fully. Thus, whereas dam-
age is a distributed processes and is described by constitutive laws relating stress
to strain, fracture is localized to surfaces and is described, e. g., by cohesive laws
relating tractions to opening displacements. One of the aims of the present paper is
to elucidate the conditions under which damage occurs in a distributed fashion, and
therefore can be described by a damage model. We show that distributed damage
occurs when J = det(F ) < 1, where F is the average or macroscopic deforma-
tion gradient. Thus, distributed damage, as opposed to fracture, is a compressive
phenomenon and only occurs when sufficient confinement is present.

The approach followed in the present paper is based on methods of the calculus
of variations, especially on recent work on fracture as a free-discontinuity problem
[16; 17; 18]. Thus, we suppose that the displacement field jumps discontinuously
across a singular set of co-dimension 1, and that the energy is composed of two
terms: the elastic strain energy obtained by volume integration outside the singular
set; and the cohesive fracture energy obtained by surface integration over the sin-
gular set (e. g., [19; 18]). However, in contrast to recent work on free-discontinuity
problems in fracture mechanics, that has emphasized tensile conditions leading to
the formation of isolated dominant cracks, here we envision conditions of triaxial
compression resulting in a distributed singular set. We specifically consider sin-
gular sets that are composed of recursive or nested faults, and show that these
microstructures or damage patterns suffice to fully relax the energy.

A recursive fault pattern may be constructed by introducing into the solid a family
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of parallel planar cohesive cracks, or faults, and subsequently applying that con-
struction recursively to the intervening matrix between the faults. Recursive fault-
ing is similar to the sequential-lamination constructions used to relax non-convex
energies arising in other areas of application [20; 21; 22; 23; 24; 25; 26; 27; 28; 29;
30; 31; 32; 33]. In particular, the different levels of faulting are only approximately
compatible. However, recursive faulting differs from sequential lamination in some
notable respects. Thus, the state of stress within each level of faulting is uniform,
and therefore in equilibrium. This greatly simplifies the implementation of recur-
sive faulting relative to sequential lamination algorithms, which must necessarily
equilibrate the entire microstructure at considerable computational cost [32; 33].
By contrast, recursive faulting can be implemented simply by means of a recursive
call, and the entire microstructure needs not be considered at any time during the
construction.

The approximate compatibility between levels of faulting has the effect of building
additional misfit elastic energy into the microstructure. We estimate this misfit elas-
tic energy simply by modelling the approximate interfaces as rows of dislocation
dipoles. This simple estimate permits the calculation of the separation between the
faults, and provides a natural termination criterion for the recursive faulting algo-
rithm. It should be carefully noted that recursive faults are likely to cease being
optimal once the misfit elastic energy is taken into consideration. Experience with
model problems in martensite and crystal plasticity [34; 35; 36; 37] suggest that
more complex microstructures, e. g., involving fault branching, are likely to be op-
timal instead. However, these enhancements of the theory will not be consider here
in the interest of simplicity.

The organization of the paper is as follows. In § 2 the general recursive faulting
model is built in steps. We begin by considering rank-1 microstructures consisting
of one single level of faulting. The kinematics of such microstructures, the cohesive
behavior of the faults and frictional characteristics are formulated in § 2.1, § 2.2,
and § 2.6, respectively. In all these and subsequent developments, we strongly rely
on variational principles in order to complete the formulation of the model, imple-
ment it numerically and analyze it mathematically. In particular, we resort to time
discretization in order to coach the incremental problem as a minimum problem.
In § 2.4 we exploit this variational structure in order to elucidate conditions for
the inception of faulting; and in § 2.5 we resort to the minimum principle and a
simple non-local extension of the model in order to determine the optimal sepa-
ration of the faults. Finally, in § 2.7 we apply rank-1 construction recursively in
order to generate more complex microstructures, which we term recursive faulting
microstructures. The variational formulation also paves the way for an effective
mathematical analysis of the quasistatic boundary value problem. The chief analy-
sis tool that we bring to bear on the problem is relaxation. In particular, in § 3 we
characterize the relaxation of the faulting energy functional, starting from a con-
tinuous distribution of faults, with locally only one orientation. The relaxed energy
functional describes the macroscopic material behavior averaged over such fine
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scale structures; the relaxation automatically includes recursive faulting, i. e., mix-
ing of different faulting directions. In section § 4, as of the range of application of
the recursive faulting model and by way of validation, we proceed to simulate the
dynamic multi-axial compression experiments on sintered aluminum nitride (AlN)
of Chen and Ravichandran [1; 2; 3; 4]. Finally, concluding remarks and a critical
discussion of the model are collected in § 5.

2 Distributed damage by confined recursive faulting

The model is based on a particular class of deformations, or microstructures, con-
sisting of nested families of equi-spaced cohesive faults bounding otherwise elastic
matrix material. These microstructures are schematically shown in Fig. 1a. We shall
refer to this mode of deformation as recursive faulting, and the resulting microstruc-
tures as recursive faults. The primary aim is to devise a means for the effective
generation of recursive-fault microstructures and the computation of the effective
behavior of the damaged or faulted material. We build the general model in steps.
We begin by considering the simple case of one family of faults, and develop the
corresponding kinematics of deformation. The assumption of faulting separates the
requisite constitutive relations into two independent components: the behavior of
the matrix, which we shall assume to be elastic for simplicity; and the behavior of
the faults, which we shall assume to be governed by a cohesive relation in the fault
initiation stage, and by Coulomb friction and contact henceforth. These aspects of
the model are subsequently developed in turn. Finally, we note that the faulting
construction can be applied recursively in order to generate complex fault patterns.

2.1 Kinematics

We begin by considering the particular case of a single family of fault planes of
normal N and spacing L. Assuming strict separation of scales, consider a material
vector dX which is short on the scale of the macroscopic deformations but much
longer than L. Suppose that dX spans two material points P andQ in the reference
configuration. The number of faults traversed by the vector is of the order of

n =
1

L
dX · N (1)

Suppose that an opening displacement Δ is applied to each fault, Fig 1b. Let dx be
the vector joining P and Q in the deformed configuration. Then,

dx = dX + nΔ = dX +
1

L
(dX · N)Δ = (I +

1

L
Δ ⊗ N)dX ≡ F pdX (2)
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Fig. 1. (a) Schematic of the assumed kinematics of deformation, showing elastic blocks of
matrix material bounded by nested faults. (b) Decomposition of the opening displacement
Δ into normal component and tangential components.

where

F p = I +
1

L
Δ⊗ N (3)

may be regarded as the discontinuous or singular deformation component due to
fault activity. Suppose in addition that the matrix is given a uniform deformation
F e. Then

dx = F dX (4)

where
F = F eF p (5)

Thus we arrive at a multiplicative decomposition of the deformation gradient into a
discontinuous and a matrix component. We note that, once N and L are supplied,
F p and Δ are in one-to-one correspondence. In particular, the opening displace-
ments Δ follow from F p through the relation

Δ = L (F p − I) · N (6)

We also note that the inverse of the F p follows simply by an application of the
Sherman-Morrison formula to (3), with the result:

F p−1 = I − 1

L+ Δ · N Δ ⊗ N (7)

2.2 Cohesive stage

We assume that during the early states of damage immediately following the in-
ception of of the faults, or cohesive stage, the opening of the faults is resisted by
cohesive forces. In addition, we confine our attention to brittle materials that behave
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elastically in the absence of damage. A form of the free energy density consistent
with these assumptions is:

A(F , θ,Δ, q) = W e(F e, θ) +
1

L
Φ(θ,Δ, q) (8)

where W is the elastic strain-energy density per unit volume of the matrix, Φ is
the cohesive energy per unit fault surface, θ is the absolute temperature, and q is
some appropriate set of internal variables describing the state of the faults. The
additive structure (8) of the free energy density is in line with general mathematical
results pertaining to free-discontinuity problems. By material-frame indifference,
it follows that W e can only depend on F e through the matrix right Cauchy-Green
deformation tensor:

Ce = F eT F e = F p−T C F p−1 (9)

where C = F T F is the right Cauchy-Green deformation tensor, whereupon (8)
simplifies to:

A(F , θ,Δ, q) = W e(Ce, θ) +
1

L
Φ(θ,Δ, q) (10)

A simple class of three-dimensional cohesive laws governing the cohesive stage of
the faults can be constructed as follows. Following [38], we begin by introducing
an effective opening displacement of the form, Fig. 1b:

Δ =
√

(1 − β2)(Δ · N)2 + β2|Δ|2 (11)

where |Δ| is the magnitude or norm of Δ and β is a material constant which as-
signs different weights to the normal and tangential components of the opening
displacement. We now assume that the cohesive energy Φ(θ,Δ, q) depends on Δ
only through the effective opening displacement Δ. In addition, we restrict atten-
tion to isothermal processes and omit all explicit references to the temperature θ for
simplicity of notation. Under these conditions the cohesive potential takes the form

Φ = Φ(Δ, q) (12)

The corresponding cohesive tractions are:

T =
∂Φ

∂Δ
=
T

Δ
[(1 − β2)(Δ · N)N + β2Δ] ≡ Td (13)

and the configurational force conjugate to N , or configurational torque, is

∂Φ

∂N
=
T

Δ
(1 − β2)(Δ · N)Δ (14)

where

T =
∂Φ

∂Δ
(Δ, q) (15)
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is the effective traction and d is the traction direction. The tangent stiffness of the
cohesive plane is given by:

K =
∂2Φ

∂Δ∂Δ
=
(
K − T

Δ

)
d ⊗ d +

T

Δ
[(1 − β2)N ⊗ N + β2I] (16)

where

K =
∂T

∂Δ
(Δ, q) (17)

is the effective stiffness of the cohesive plane. A simple calculation gives the iden-
tity

T =
√

(1 − β−2)(T · N)2 + β−2|T |2 (18)
which shows that T is a weighted combination of the normal and tangential trac-
tions to the fault.

Following [39; 38], we render the cohesive law irreversible by assuming unload-
ing to the origin. In this model, the sole internal variable q of the material is the
maximum attained effective opening displacement, and the corresponding kinetic
equation is, therefore,

q̇ =

⎧⎪⎨
⎪⎩

Δ̇, if Δ = q and Δ̇ ≥ 0

0, otherwise
(19)

The first of these cases corresponds to loading or the faults and the second case to
unloading. Let Φ0(Δ) be the monotonic cohesive energy, i. e., a function such that

T0(Δ) =
∂Φ0

∂Δ
(Δ) (20)

K0(Δ) =
∂T0

∂Δ
(Δ) (21)

are the effective tractions and stiffness under monotonically growing Δ. Then, the
cohesive energy and its derivatives follows as

Φ(Δ, q) = Φ0(q) +
1

2

T0(q)

q
(Δ2 − q2) (22)

T (Δ, q) ≡ ∂Φ

∂Δ
(Δ, q) =

T0(q)

q
Δ (23)

−Y (Δ, q) ≡ ∂Φ

∂q
(Δ, q) =

1

2

[
K0(q)q − T0(q)

] [
(Δ/q)2 − 1

]
(24)

K(Δ, q) ≡ ∂T

∂Δ
(Δ, q) =

⎧⎪⎨
⎪⎩
K0(q), loading

T0(q)/q, unloading
(25)

where Y (Δ, q) is the thermodynamic driving force for damage. We shall assume
throughout the inequality

K0(q)q < T0(q), (26)
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Fig. 2. Normalized linearly decreasing cohesive envelop: δ = Δ/Δc, φ = Φ(Δ)/TcΔc,
t = T/Tc.

which ensures that unloading to the origin is well defined. This inequality is satis-
fied by all commonly used cohesive envelops.

For lack of a better term, we shall refer to the cohesive model described in the
foregoing, consisting in the introduction of a scalar effective opening displacement,
a monotonic cohesive envelop and unloading to the origin, as the effective opening
displacement (EOD) cohesive model. In calculations we additionally use the simple
cohesive envelop [39; 40; 41]:

Φ0 =

⎧⎪⎨
⎪⎩
TcΔ − TcΔ

2/2Δc, if Δ ≤ Δc

Gc = TcΔc/2, otherwise
(27)

The corresponding cohesive law consists of rigid behavior, i. e., Δ = 0, for T < Tc,
followed by a linearly decreasing dependence of T on Δ for Δ < Δc, and T = 0
thenceforth, Fig. 2.

2.3 Time discretization

We shall strongly rely on variational principles in order to complete the formulation
of the model, implement it numerically and analyze it mathematically. The behav-
ior of irreversible materials can be characterized variationally by recourse to time
discretization. To this end, we envision a process of incremental deformation and
seek to determine the state of the material at times t0, . . . , tn+1 = tn + Δt, . . . .
Suppose that the state of the material is known at time tn and let the deformation
F n+1 at time tn+1 be given. The problem is to determine the state of the material at
time tn+1.

We begin by considering the case in which one family of faults is present in the
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material and the behavior of the faults is cohesive. Following [42] we define an
incremental strain-energy density

Wn(F n+1) = inf

Δn+1, qn+1

Δn+1 · N ≥ 0

qn+1 ≥ qn

A(F n+1,Δn+1, qn+1) (28)

We note that by virtue of the irreversibility constraint, qn+1 ≥ qn, Wn(F n+1) de-
pends tacitly on the initial conditions at time tn. We signify this dependence by
means of the subindex n. In particular,Wn(F n+1) varies between time steps, which
allows for irreversibility, hysteresis and path dependency. It should be noted that the
irreversible character of the effective strain-energy densityWn is expressed through
the damage scalar qn and through the fault orientation N (see the case of an un-
damaged material in section 2.4). It can be shown [42] that Wn(F n+1) acts as a
potential for the first Piola-Kirchhoff stress tensor P n+1 at time tn+1, i. e., as

P n+1 =
∂Wn

∂F n+1
(F n+1) (29)

Consequently, the stable equilibrium configurations can be characterized as the
minimizers of the corresponding potential energy.

The constraints appended to the minimum problem (28) can be enforced by means
of Lagrange multipliers. The corresponding optimality conditions are (cf, e. g.,
[43])

∂

∂ΔI

[A+ λ1Δ · N ] = − 1

L+ Δ · NNJ
∂W

∂F e
iJ

F e
iI +

1

L

∂Φ

∂ΔI

+ λ1NI = 0 (30a)

∂

∂q
[A + λ2(q − qn)] =

1

L

∂Φ

∂q
+ λ2 = 0 (30b)

Δ · N ≥ 0, λ1 ≤ 0 and λ1Δ · N = 0 (30c)
q − qn ≥ 0, λ2 ≤ 0 and λ2(q − qn) = 0 (30d)

where here and subsequently we have omitted the subindex n + 1 for clarity of
notation. For the EOD cohesive model, the tractions ∂ΔΦ in (30a) are given by (13),
(15) and (23); and the driving force −∂qΦ in (30b) is given by (24). It is clear from
the optimality conditions that λ1 may be regarded as a contact normal traction and
λ2 as a driving force for damage. The Kuhn-Tucker condition (30c) then requires
that the contact tractions be compressive during contact or zero during opening;
and the Kuhn-Tucker condition (30d) then requires that the driving for damage be
zero during damage or negative during unloading. These latter conditions are in
analogy to rate-independent models of plasticity, which require the material to be
at yield, i. e., the overstress to be zero during plastic deformation; and the response
to be elastic when the material is below yield, i. e., when the overstress is negative.
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A strategy for finding optimal solutions consists in looking first for an unloaded
open-fault solution, i. e., assuming Δ · N ≥ 0 and q = qn. In this case, λ1 = 0,
λ2 ≥ 0. Therefore, Δ can be computed directly from (30a), e. g., by a Newton-
Raphson iteration. The requisite tangents for this iteration are

L
∂2A

∂ΔI∂ΔK

=
∂2Φ

∂ΔI∂ΔK

+
L

(L+ Δ · N)2[
∂2W

∂F e
iJ∂F

e
kL

F e
iIF

e
kKNL +

∂W

∂F e
iJ

F e
iKNI +

∂W

∂F e
iJ

F e
iINK

]
NJ

(31)

In addition, it follows from (30b) and (24) that Δ ≤ qn. In reaching this conclu-
sion we have used the constitutive inequality (26). Thus, the solution is valid if Δ
satisfies the inequalities: Δ ·N ≥ 0 and Δ ≤ qn. Suppose now that the unloading-
opening predictor fails to return a feasible solution. Then we repeat the calculation
by activating the most violated constraint, i. e., we activate the contact constraint if
|Δ · N | < |q − qn|, and we activate damage if |q − qn| < |Δ · N |. The iteration
terminates when all the optimality conditions are satisfied simultaneously.

Once the optimal values of Δ and q at time tn+1 are know, the first Piola-Kirchhoff
stress tensor follows from (29) as

PJi =
∂Wn

∂FiJ

=

(
∂W

∂F e
iK

F e
kK

)
F−1

Jk (32)

The term is parenthesis follows directly from the elasticity of the matrix. The con-
sistent tangent moduli follow by linearization of (29), i. e.,

DP n+1 =
∂2Wn

∂F n+1∂F n+1
(F n+1) (33)

Evidently, the tangent moduli are symmetric owing to the potential character of the
incremental stress-strain relations. A straightforward calculation gives

∂PJi

∂FkL
=

∂2Wn

∂FiJ∂FkL
=

∂2A

∂FiJ∂FkL
− ∂2A

∂FiJ∂ΔM

(
∂2A

∂ΔM∂ΔN

)−1
∂2A

∂ΔN∂FkL
(34)

Again, the first term in this expression follows directly from the elasticity of the
matrix as

∂2A

∂FiJ∂FkL

=
∂2W

∂F e
iM∂F

e
kN

(F p)−1
JM(F p)−1

LN (35)

The second derivatives of A with respect to Δn+1 are given in (16). Finally, the
cross derivatives required to evaluate the tangents (34) are found to be:

∂2A

∂FiJ ∂ΔK

= − 1

L+ Δ · N
(

∂2W

∂F e
iL∂F

e
nM

F e
nKF

e
mL +

∂W

∂F e
iM

F e
mK

)
F−1

JmNM (36)
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2.4 Fault inception and orientation

Suppose that the material is undamaged at time tn and that we are given the defor-
mation F n+1 at time tn+1. We wish to determine whether in insertion of faults is
energetically favorable; and the optimal orientation of the faults. We ascertain these
questions with the aid of the time-discretized variational formulation developed in
the preceding question. Thus, for the given deformation F n+1 we test two end states
of the material, one with faults and another without faults. The orientation of the
faults in the latter state is obtained variationally, as described in this section. We
then choose the end state which results in the lowest incremental energy density
Wn(F n+1).

The optimal orientation N of the faults and the remaining state variables at time
tn+1 follow from the extended minimum problem:

Wn(F n+1) = inf

Δn+1, qn+1,N

Δn+1 · N ≥ 0

qn+1 ≥ qn

|N |2 = 1

A(F n+1,Δn+1, qn+1,N) (37)

The corresponding optimality conditions are

∂

∂ΔI
[A + λ1Δ · N ] = − 1

L+ Δ · NNJ
∂W e

∂F e
iJ

F e
iI +

1

L

∂Φ

∂ΔI
+ λ1NI = 0 (38a)

∂

∂q
[A+ λ2(q − qn)] =

1

L

∂Φ

∂q
+ λ2 = 0 (38b)

∂

∂NI
[A + λ1Δ · N + λ3|N |2] =

− ΔJ

L+ Δ · N
∂W e

∂F e
iJ

F e
iI +

1

L

∂Φ

∂NI
+ λ1ΔI + 2λ3NI = 0 (38c)

Δ · N ≥ 0, λ1 ≤ 0 and λ1Δ · N = 0 (38d)
q − qn ≥ 0, λ2 ≤ 0 and λ2(q − qn) = 0 (38e)
|N |2 = 1 (38f)

For the EOD cohesive model the configurational torque −∂NΦ in (38c) is given by
(14), (15) and (23).

Suppose that the incipient fault undergoes opening, i. e., Δ · N > 0 and, corre-
spondingly, λ1 = 0. Then, it is possible to satisfy eqs. (38a) and (38c) simultane-
ously by setting Δ = (Δ · N)N . This identity in turn implies that the normal to
the incipient fault aligns itself with the direction of opening. Then (38a) and (38c)
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reduce to the symmetric eigenvalue problem

Se
IJNJ = ΛNI (39)

where

Se
IJ = F e

iI

∂W e

∂F e
iJ

(40)

is a symmetric second Piola-Kirchhoff stress tensor for the matrix, and

Λ = (L+ Δ · N)
T

L
= (L+ Δ · N)

(
T

L
(1 − β2) +

2λ3

Δ · N
)

(41)

It follows from the first of these identities that the eigenvalue Λ is a tensile principal
stress of the matrix and, therefore, the case under consideration fails to yield solu-
tions if the stress in the matrix is compressive in all directions. In cases of multiaxial
tension, the largest tensile direction is energetically favorable since, by eq. (41), it
corresponds to the largest effective traction T and hence results in the least expense
of cohesive energy. When two or three of the principal stresses of the matrix are
tensile and equal the optimal value of N is indeterminate and, in calculations, is
chosen randomly.

Suppose that the matrix is in all around compression. Then the incipient faults are
necessarily closed and deform by sliding, i. e., Δ ·N = 0. Under these conditions,
inserting (13) and (14) into (38a) and (38c) gives

− 1

L
Se

IJNJ +
βT

L
MI + λ1NI = 0 (42)

− 1

L
Se

IJMJ + λ1MI +
2λ3

|Δ|NI = 0 (43)

where M = Δ/|Δ| is the unit vector in the direction of Δ. Multiplying the first
of these equations by M and the second by N we obtain the identities

1

L
Se

IJMINJ =
βT

L
=

2λ3

|Δ| (44)

The resulting equations imply that N is a plane of maximum shear of the matrix
stress Se.

In summary, faults can form in two modes: opening and sliding. In the opening
mode, the faults orient themselves so that their normal is aligned with the direction
of opening. This mode can only occur if at least one of the principal directions of
stress in the matrix is tensile. In the sliding mode, the incipient faults orient them-
selves along planes of maximum shear of the matrix. The sliding mode can operate
when there are maximum shear planes that are under normal compression. In cases
in which both the opening and sliding modes can operate, they are evaluated in turn
and the operative mode is chosen to be the energy-minimizing one.
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Fig. 3. a) Dislocation model used to estimate the misfit energy. b) Plot of the optimum L as
function of Tc/G and L1/Δc for the piecewise-linear cohesive law. In the plot we take L0

= 10 Δc.

2.5 Nonlocal extension and the size of the microstructure

In the previous developments, the lengthL has been regarded as a known parameter.
Alternatively, it can be computed variationally as part of the incremental update
(28). However, in order to obtain meaningful values of the fault spacing L it is
important to account for the misfit energy, i. e., the energy contained in the boundary
layers that forms where the faults meet a confining boundary, Fig. 3a. Thus, the
compatibility between the faults and their container is only approximate, or on
average, and this gives rise to boundary layers that penetrate into the faulted region
to a certain depth.

The effect of this extension is to replace a scale-invariant model by another model
that contains a length scale. Mathematically, this extension may be regarded as the
addition of a singular perturbation to the energy functional. By virtue of this ad-
dition, the scale of the microstructure is no longer arbitrary but results from the
balancing of the (already treated) nonconvexity of the energy functional and the
(newly included) scale-dependent nonlocal term. In this manner, the addition of the
higher-order term to the energy furnishes a selection mechanism among all pos-
sible microstructures leading to the relaxed energy. Whereas the relaxation of the
local problem effectively describes the qualitative behavior of the full model, the
nonlocal extension is both more tractable numerically as well as more predictive,
since the degeneracy of the local model is largely eliminated and the predicted mi-
crostructures possess a well-characterized finite size.

In order to estimate the misfit energy, and subsequently compute the resulting op-
timal spacing between faults, we model the boundary layer as an array of disloca-
tions of alternating sign, Fig. 3. The Burgers vector of the misfit dislocations is of
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the order of |Δ|. This suggests the model misfit energy density

Emis(Δ, L) = C
|Δ|2
L1

1

L
log

L

L0
(45)

where C is a constant elastic modulus, L1 the size of the confining container and
L0 plays the role of a ’core cut off’. Accounting for the misfit energy, the total
free-energy density of the faulted region becomes

A(F n+1,Δn+1, qn+1, Ln+1) =

W e(F e
n+1, Ln+1) +

1

Ln+1
Φ(Δn+1, qn+1) + Emis(Δn+1, Ln+1)

(46)

The variational update (28) now becomes

Wn(F n+1) = inf

Δn+1, qn+1, Ln+1

Δn+1 · N ≥ 0

qn+1 ≥ qn

A(F n+1,Δn+1, qn+1, Ln+1) (47)

It is clear from the form of the free energy (46) and, in particular, of the misfit
energy (45) that the optimal fault separation is determined by two competing de-
mands. On one hand, the cohesive energy favors a large value of L resulting in
fewer faults per unit volume. On the other hand, the misfit energy favors a small
value of L resulting in a narrow boundary layer. Minimization with respect to Ln+1

gives the equation

1

L2

(
∂Φ

∂ΔK
ΔK − Φ +

C|Δ|2
L1

− C|Δ|2
L1

log
L

L0

)
= 0 (48)

whence we find

L = L0 exp
[
1 − L1

C
Γ(Δ)

]
(49)

where

Γ(Δ) =
1

|Δ|2
[
Φ(Δ) − ∂Φ

∂ΔK
ΔK

]
(50)

For the EOD model with a linearly decreasing monotonic envelop we obtain the
particularly simple result

Γ(Δ) =
Tc

2Δc
= constant (51)

and the corresponding fault separation follows explicitly as

L = L0 exp
[
1 − L1

C

Tc

2Δc

]
(52)

14



independently of the opening displacement Δ. Thus, in this model the separation
between the faults is set at the inception of the faults and conveniently remains
constant thereafter. The resulting dependence of L/L1 on the parameters Tc/G and
L1/Δc is shown in Fig. 3b, where G is the shear modulus, and we take L0 = 10 Δc.
As expected, L decreases with increasing cohesive strength Tc and critical opening
displacement Δc, since an increase in these parameters implies a corresponding
increase in the specific cohesive energy of the material.

2.6 Frictional stage

Internal friction is an important dissipation mechanism in brittle materials, espe-
cially in geological applications, applications to structural ceramics, and others.
We shall therefore assume that friction operates at the faults concurrently with co-
hesion. However, if the faults loose cohesion completely, e. g., upon the attainment
of a critical opening displacement, friction may become the sole dissipation mech-
anism at the faults.

In considering friction, we wish to retain the variational structure of the model. In
particular, we wish to define an incremental strain energy density Wn(F n+1) with
the property that it be a potential for the stresses through relation (29). To this end,
we follow Pandolfi et al. [44] and define the extended update

Wn(F n+1) =

inf

Δn+1, qn+1

Δn+1 · N ≥ 0

qn+1 ≥ qn

A(F n+1,Δn+1, qn+1) +
Δt

L
ψ∗
(

Δn+1 − Δn

Δt
; F n+1,Δn+1, qn+1

)

(53)

where for simplicity we consider the case of L = constant. In (53) ψ∗(Δ̇; F ,Δ, q)
is a dual kinetic potential per unit area with the following properties:

i) ψ∗ = 0 if the contact traction λ1 = 0, cf eq. (30c), i. e., if the faults undergo
opening.

ii) If λ1 < 0, cf eq. (30c), i. e., if the faults are closed, then ψ∗( · ; F ,Δ, q) is convex
and is minimized at Δ̇ = 0.

We note that during closure, λ1 < 0, the contact constraint Δ ·N = 0 is active and
only the sliding opening displacements are nonzero. Hence, frictional dissipation
is always associated with fault sliding, as required. We also note that, upon mul-
tiplication by N , the equilibrium equation (30a) gives the contact traction in the
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form

λ1 =
1

L

(
N · SeN − ∂Φ

∂Δ
· N

)
(54)

Thus, condition (i) can be restated as the requirement that ψ∗ = 0 if the right hand
side of (54) vanishes. In the presence of friction, the traction equilibrium equation
(30a) becomes

1

L

[
−Se

IJNJ +
∂Φ

∂ΔI
+ ∂Δ̇ψ

∗
(

Δ −Δn

Δt
; F ,Δ, q

)]
+ λ1NI = O(Δt) (55)

where the terms of order O(Δt) arise from the dependence of ψ∗ on the state vari-
ables (F ,Δ, q). As expected, the frictional forces contribute to the equilibrium of
tangential tractions at the faults. It is evident from (55) that the update (53) is con-
sistent with the frictional rate equations up to admissible truncation errors of order
O(Δt).

In calculations we assume Coulomb friction and set

ψ∗(Δ̇; F ,Δ, q) = μmax

{
0,

∂Φ

∂Δ
· N − N · SeN

}
|Δ̇| (56)

where μ is the coefficient of friction. We note that this choice of dual dissipation
potential satisfies conditions (i) and (ii), as required. As befits Coulomb friction,
the kinetic potential (56) is rate-independent, i. e., is positively homogeneous of
degree 1 in Δ̇, and proportional to the contact pressure. We also note that for the
EOD model ∂ΔΦ · N = 0 if Δ · N = 0 and (56) simplifies to

ψ∗(Δ̇; F ,Δ, q) = μmax {0, −N · SeN} |Δ̇| (57)

It should be carefully noted that the variational formulation (53) of fault friction,
and the more general one of Pandolfi et al. [44], is non-standard in that it results
in an incremental minimization problem. In particular, the tangent stiffness corre-
sponding to the incremental equilibrium problem is symmetric, contrary to what
is generally expected of non-associative materials. The difference between a di-
rect, or non-symmetric, and a variational update for these materials resides in the
O(Δt) terms in eq. (55). Thus, these terms ensure the variational structure of the
update without affecting its consistency. In particular, as already mentioned, the
variational update defines an incremental strain-energy densityWn(F n+1) with the
fundamental property (29), as desired.

2.7 Recursive faulting

So far we have consider either an intact material or a single family of parallel faults.
We shall refer to the latter microstructure as a rank-1 faulting pattern. More com-
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plex microstructures, which we name recursive faulting patterns, can effectively be
generated by applying the rank-1 construction recursively. In the first level of re-
cursion, in (8) and (28) we simply replace the elastic strain-energy density W (F e)
of the matrix by Wn(F e), i. e., by the effective strain-energy density of a rank-
1 faulting pattern. This substitution can now be iterated, resulting in a recursive
definition of Wn(F n+1). The recursion stops when Wn(F e) = W (F e), i. e., when
intervening matrix between the faults remains elastic. The resulting microstructures
are shown in Fig. 1a, and consist of faults within faults. The level of recursion is
the rank of the microstructure.

As noted in the introduction, recursive faulting is similar in spirit to the sequential-
lamination constructions used to relax non-convex energies arising in other areas
of application (cf, e. g., [21; 27] and references therein). In particular, as in lami-
nates the different levels of faulting are only approximately compatible. However,
recursive faulting differs from sequential lamination crucially in that the state of
stress within each level of faulting is uniform, and therefore automatically in equi-
librium. The implication of this property is that the recursive faulting construction
can be implemented simply by means of a recursive call to the rank-1 faulting con-
struction. Conveniently, many programming languages such as C or C++ support
recursive function calls. This greatly facilitates the implementation of the model,
which is reduced to the implementation of the rank-1 faulting construction. This is
in sharp contrast to laminates, which must be equilibrated globally at considerable
computational cost and complexity of implementation (cf [32; 33]).

3 Relaxation of the faulting model

Next we turn to the boundary value problem of a solid undergoing recursive faulting
such as described in the foregoing and proceed to analyze its properties. In order to
simplify the analysis we work within a deformation theory framework, namely, we
consider the incremental strain-energy densityW (F ) that results from applying the
entire deformation F to an intact body in one step. Alternatively, this simplification
may be regarded a the study of the first time step in the time-discretized framework
discussed in Section 2.3. We shall be specifically interested in situations where the
size of the body is much larger than the spacing L of the faults, i. e., in the limit-
ing behavior as L → 0. We focus our attention on the local model introduced in
Sections 2.1 and 2.2 and neglect the lengthscale-dependent corrections discussed
in Section 2.5. In addition, for every material point we consider faults with one
single orientation. In a crystal plasticity framework this constraint corresponds to
the assumption of infinite latent hardening (cf, e. g., [31; 37]). The relaxation of the
model then gives mixtures of faults of different orientations, which furnishes math-
ematical justification to the recursive faulting construction discussed in Section 2.7.
Since we are primarily interested in the macroscopic behavior of the material, our
analysis contemplates, locally, a continuous distribution of faults (with a single ori-

17



entation) from the outset. Including discrete sharp faults, e. g., within a BV (space
of functions of bounded variation) framework, results in the same relaxation of the
energy, albeit at the expense of technical difficulties arising from a lack of sufficient
coercivity to ensure compactness. For general tools for the relaxation of functionals
defined on BV see, e. g., [45].

Suppose that we wish to determine the stable configurations of the body. To this
end, we introduce the potential energy

I(u) =
∫
Ω
W (∇u) dV −G(u) ≡ F (u) −G(u) (58)

where Ω is the domain of analysis; u is the displacement field; dV is the element
of volume; and G(u) is a loading term, e. g.,

G(u) =
∫
Ω
ρB · u dV +

∫
∂Ω2

T̄ · u dS (59)

where ρB is a body-force density per unit undeformed volume; T̄ are applied trac-
tions per unit undeformed area; ∂Ω2 is the traction boundary; and dS is the corre-
sponding element of area. We identify the stable configurations of the body with
the configurations of minimum potential energy. In this manner we are led to the
minimum problem

inf
u∈X

I(u) (60)

where X is the configurational space of the body. For instance, an appropriate con-
figuration space is X = {u ∈ W 1,∞(Ω), u = ū on ∂Ω1}, where W 1,∞(Ω) is
the space of Lipschitz continuous functions; ∂Ω1 = ∂Ω − ∂Ω2 is the displacement
boundary; and ū is a prescribed boundary displacement function over ∂Ω1.

We begin by considering the limiting case of frictionless sliding. In this limit, and
for a single level of faulting, the strain energy density can be expressed in the form:

W (F ) = inf {W e(F e) +W p(F p) : F = F eF p} (61)

where

W p(F p) =

⎧⎨
⎩f(|a · b|, |a × b|) if F p = I + a ⊗ b , a · b ≥ 0 ,

∞ otherwise.
(62)

The elastic energy satisfies

W e(F ) = ∞, if det F ≤ 0 , (63a)
W e(F ) <∞, if det F > 0 , (63b)

and is continuous on the set {F : det F > 0}. In addition, the function f is
continuous, nonnegative, vanishes at the origin and has sublinear growth, in the
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sense that

lim
t→∞

f(tx)

|t| = 0 , (64)

for all x ∈ R
2.

The cohesive energy (62) restricts the local fault geometry to be of rank-one, i. e.,
permits faulting in one direction only at every material point, in analogy to (3).
Since, in the spirit of relaxation, we are interested in the limit of infinite microstruc-
tural refinement, L → 0, we proceed to adapt our notation to this limit. In partic-
ular, henceforth we work with the opening-displacement density per unit volume,
instead of the opening displacement per fault, which effectively eliminates L in
the definition of the variables. Specifically, we use b–instead of N–to denote the
normal to the faulting plane; a–instead of Δ/L–to denote the average opening
displacement; and we replace the cohesive energy Φ/L by a more general energy
densityW p per unit volume which depends, through a sublinear function f , on both
the normal and transverse opening displacements, a · b and |a × b|, respectively.
These adjustments both streamline as well as add generality to the analysis.

The preceding form of the energy density affords a number of revealing analogies
to other models. Thus, within a variational framework of plasticity [42], (61) and
(62) are in analogy to Tresca models of plasticity, in which yielding is assumed
to occur instantaneously on a single–but otherwise arbitrary–slip system. However,
an important difference between the present model and Tresca plasticity is that the
faults are allowed to open in addition to sliding. Thus, in (62) the faulting model re-
quires that a·b ≥ 0, whereas Tresca plasticity requires that a·b = 0, corresponding
to a deformation of pure slip. These differences notwithstanding, within the anal-
ogy to variational plasticity the assumption (64) of sublinear growth corresponds
to an assumption of strain softening. On the strength of this analogy, we expect the
static problem (60) to be highly degenerate. In particular, we expect the material to
lose its bearing capacity in shear under conditions of all-around confinement; and
to have no resistance to tensile fracture, or toughness. This latter property makes
local softening models poor models of tensile fracture in general.

These expectations are rigorously born out by an investigation of the relaxation of
the potential energy functional I(u). This functional is not lower semicontinuous,
and minimizing sequences form fine-scale oscillations. The aim then is to obtain
the relaxation J(u) of I(u), which describes the macroscopic material behavior
averaged over such fine scale structures. We recall that J(u) is characterized by the
two properties

(1) Lower bound. For each sequence uh converging to u,

J(u) ≤ lim inf
h→∞

I(uh)

(2) Recovery sequence. For every u there is a sequence uh converging to u such
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that
J(u) = lim

h→∞
I(uh) .

Here convergence is understood in the sense of the weak-W 1,∞ topology, i. e., we
say that the sequence uh converges to u if {uh} is uniformly Lipschitz and uh

converges uniformly to u. Standard theory shows that, if W is continuous,

J(u) =
∫
Ω
W qc(∇u)dV −G(u) (65)

where

W qc(F ) = inf
v∈W 1,∞

0 (E)

1

|E|
∫

E
W (F + ∇v)dV (66)

is the quasi-convex envelope of W . Here E ⊂ R
3 is any open bounded set, and

W 1,∞
0 (E) is the space of Lipschitz continuous functions which vanish on the bound-

ary ∂E. A scaling and covering argument shows that the definition ofW qc(F ) does
not depend on the choice of the domain E.

Standard theory also provides a compelling connection between the minimizers of
J(u) and I(u). In particular, infu∈X I(u) = infu∈X J(u) and every cluster point
of a minimizing sequence of I(u) is a minimum point of J(u). Conversely, every
minimum point of J(u) is the limit of a minimizing sequence of I(u) in X . The
relaxed functional J(u) is always lower semi-continuous. If I(u) is coercive, then
J(u) is also coercive and, hence, has a minimum point in X . These properties
of relaxation show that the functional I(u) can be replaced by the better-behaved
functional J(u) without essential loss of information. The minimizing sequences
of I(u) then correspond to microstructures and minimizers of J(u) characterize
their average properties. For a precise exposition of these and related concepts, see
e. g., [21, Sect. 5.2] and [27, Sect. 4].

In the present setting, the functional I(u) is not coercive and, therefore, existence
cannot be guaranteed in general even for the relaxed functional. This degeneracy,
which is illustrated by the examples after Proposition 1, owes to the lack of macro-
scopic resistance to tension and slip (cf also the discussion below). Further, since
the energy densityW under consideration incorporates a positive-determinant con-
straint the general results that link the relaxed functional to the quasiconvex enve-
lope W qc hold for C1 displacement fields u only.

Our main result is a characterization of the quasiconvex envelope of W .

Proposition 1 The quasiconvex envelope of W , defined in (61-64), is:

W qc(F ) = ϕ∗∗(det F ) (67)

where ϕ∗∗ is the convex envelope of the function

ϕ(t) = inf {W e(F e) : det F e ≤ t} . (68)
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The proof of this proposition is given in the appendix. To illustrate the significance
of this result, we provide two explicit examples.

Example 1: Suppose thatW e(F ) = dist2(F , SO(3))+ψ(detF ) for some convex
nonnegative ψ with ψ(1) = 0 and ψ(t) = ∞ for t < 0. Since

dist2(F , SO(3)) =
3∑

i=1

(λi(F ) − 1)2 , (69)

where λi(F ) are the singular values of F , we get

inf {W e(F ) : det F = t} = 3(t1/3 − 1)2 + ψ(t) . (70)

Then it follows that

ϕ∗∗(t) = ϕ(t) =

⎧⎪⎪⎨
⎪⎪⎩
∞ if t < 0

3(t1/3 − 1)2 + ψ(t) if 0 ≤ t < 1

0 if t ≥ 1 .

(71)

�

Example 2: Let W e(F ) = W dev(F dev) + ψ(det F ), with ψ as above, F dev ≡
(det F )−1/3F , W dev nonnegative and W dev(I) = 0. Then

inf
{
W dev(F dev) : det F = t

}
= 0 (72)

for any t �= 0, e. g., by choosing F = t1/3I . Therefore

ϕ(t) = inf {ψ(s) : s ≤ t} , (73)

and, consequently,

ϕ∗∗(t) = ϕ(t) =

⎧⎪⎪⎨
⎪⎪⎩
∞ if t < 0

ψ(t) if 0 ≤ t < 1

0 if t ≥ 1 .

(74)

�

Proposition 1 can be readily extended to polycrystals. To this end, suppose that the
domain Ω is subdivided into countably many Lipschitz subsets ω i with an orienta-
tion Qi ∈ SO(3) ascribed to each subset. The corresponding strain energy is

I(u) =
∑

i

∫
ωi

W (∇uQi)dV (75)

Then, an application of Proposition 1 to each grain yields the following result.
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Corollary 2 The relaxation of I(u), eq. (75), is given on maps u ∈ C 1(Ω,R3) by
the isotropic functional

J(u) =
∫
Ω
W qc(∇u)dV . (76)

The preceding results shed considerable light into the properties of the quasistatic
problem (60) defined by the local and frictionless recursive faulting model. Thus,
proposition 1 and the subsequent examples show that, for a broad range of com-
monly assumed elastic energy densities, the effective behavior of the material falls
into two well-differentiated regimes: the compressive regime, det F < 1, corre-
sponding to strong all-around confinement; and the tensile regime, det F > 1,
characterized by the presence of directions of large tensile deformation. In the
compressive regime, the material retains is volumetric load-bearing capacity but
loses its shear load-bearing capacity completely. In the tensile regime, the material
disintegrates completely. It is interesting to note that, as shown in the appendix,
recursive faulting does indeed provide a class of minimizing sequences that deliv-
ers the relaxation of the material, which justifies the recursive faulting construction
described in § 2.7.

In practice there are several sources of regularizaton that prevent the attainment
of the degenerate limit just described. Firstly, relaxation represents a highly ide-
alized limit that is attained only if the material is capable of exploring all possi-
ble microstructures. A more common type of physical behavior is metastability, in
which the system falls in local minima instead of attaining the infimum of the en-
ergy. Other common sources of regularization are viscosity and dynamics [46; 47].
In the present context the role of viscosity, albeit rate-independent, is played by
friction. In this case, the sublinear growth (64) is replaced by linear growth and
the material no longer exhibits softening. The relaxation of the resulting energy
is beyond the scope of this paper, but may be expected to be similar to that of
other models having linear growth, including single-crystal plasticity [37]. Finally,
in a time-discretized framework the effect of inertia is to add an L2-continuous
quadratic positive-definite term to the incremental energy functional [46; 47]. The
resulting stabilizing effect of inertia in otherwise non-convex problems has been in-
vestigated by Dolzmann and Friesecke [46] and Demoulini [48]. However, even al-
lowing for metastability and frictional and dynamical regularization the relaxation
result of proposition 1 does provide useful information about the general trends
in the expected macroscopic behavior, such as the existence of well-differentiated
compressive and tensile regimes.

4 Validation examples

As an example of application of the recursive faulting model, and by way of valida-
tion, we proceed to simulate the dynamic multi-axial compression experiments on
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Fig. 4. (a) Geometry of the sleeved specimen used in the experiments of Chen and
Ravichandran [2; 4]. Internal diameter 4.76 mm, external diameter 8.17 mm, height
5.48 mm. (b) Schematic of the damage patterns in the confined specimen at the end of
the experiment (Fig. 8 in [2]), from top to bottom: top view, vertical cross section, and
bottom view.

sintered aluminum nitride (AlN) of Chen and Ravichandran [1; 2; 3; 4]. Chen and
Ravichandran’s experimental technique is designed for imposing controlled lateral
confinement on specimens subjected to dynamic uniaxial compression [1; 3]. In
Chen and Ravichandran’s experiments, an axial compression is applied by a split
Hopkinson pressure bar modified to subject the specimen to a single loading pulse
during the experiment. The specimen is confined laterally by a shrink-fit metal
sleeve, Fig. 4a. We specifically focus on Chen and Ravichandran’s data for for alu-
minum nitride (AlN) [2; 4]. The experiments provide a wealth of validation data,
including loading histories, the axial stress-strain curves, as well as detailed crack
patterns in the confined specimen, Fig. 4b. The data show that failure occurs by
fragmentation due to axial splitting under uniaxial stress conditions; and by local-
ized shear deformation under moderate lateral confinement. The compressive fail-
ure strength of ceramic materials increases with increasing confinement pressure.
It is also observed that the propensity for ceramics to fragment is suppressed by
lateral confinement. Furthermore, ceramics exhibit some inelasticity in the stress-
strain behavior in the presence of lateral confinement.

The material properties of AlN used in the calculations are collected in Table 2. The
elastic modulus E, the Poisson coefficient ν and the mass density ρ are reported in
[2]. The tensile strength Tc is chose in the middle of the experimental range of
155-214 MPa characteristic of structural ceramics [49]. The coupling parameter β
is estimated from the difference between tensile and compressive strengths of the
material. The critical opening displacement Δc is estimated from static data. From
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(a) (b)

Fig. 5. Finite element meshes used in the calculations (a) Coarse 217-elements mesh; and
(b) fine 2004-elements mesh.

the top view of the observed damage pattern, Fig. 4b, the distribution of rank-1
faults is assumed to be coarse and, in consequence, the fault separation L is taken
to be one half of the specimen diameter.

E (GPa) ν Tc (MPa) Δc (μm) β L (mm) μ ρ (kg/m3)

310 0.237 180 1.8 3.464 2.38 0.25 3200

Table 2. AlN material constants adopted in the calculation.

The AlN specimen under consideration is 4.76 mm in diameter and 5.48 mm in
length, Fig. 4a. The outer diameter of the sleeve is 8.17 mm, and the inner di-
ameter is 0.025 mm less than the specimen diameter. The specimen is loaded by
imposing the experimentally recorded velocity profile (Fig. 4, [2]) on the side of
the incident bar. For simplicity, we consider the limiting cases of and unconfined
specimen, corresponding to a traction-free lateral surface; and rigid confinement,
corresponding to constraining the radial displacement of the lateral surface. Owing
to the symmetry of the problem we may model one fourth of the specimen only. In
order to investigate matters of mesh-size dependency we consider two meshes: a
course mesh consisting of 217 10-node tetrahedral finite elements (504 nodes); and
a second finer mesh consisting of 2004 10-node tetrahedra and 3428 nodes. The
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Fig. 6. Numerical simulation of the confined specimen allowing for rank-1 faulting only. a)
Computed contour levels of damage in rank-1 faulting calculations. The damage variable
ranges from 0 to 1 and represents the fraction of specific fracture energy expended by
the material. b) Cross section, top view and bottom view of the fault distribution. The
lines represent the fault planes and the arrows the opening displacement vector. The fault
structures labelled (a)-(h) are shown in Fig. 7.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Numerical simulation of the confined specimen allowing for rank-1 faulting only.
Detailed view of rank-1 fault structures computed at points (a)-(h) of Fig. 6b.

geometry of the sleeve-core assembly and the two meshes used in the simulations
are shown in Fig. 4a and 5, respectively.

The results of a first set of simulations of the confined case obtained by allowing
rank-1 faulting only are shown in Figs. 6, 7 and 8. Fig. 6 shows the general distri-
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Fig. 8. Numerical simulation of the confined specimen allowing for rank-1 faulting only.
Experimental and predicted axial stress vs. axial strain curves.

bution of damage at the end of the simulation of the confined case. Damage is rep-
resented by means of a damage parameter defined as the ratio between the energy
expended in fracture and the specific fracture energy of the material. By virtue of
this definition, the damage parameter ranges from 0 for the undamaged material to
1 for fully developed cracks in tension or shear. In the confined case the computed
distribution of damage exhibits characteristic cone failure and a region of extensive
compressive damage, or crushing, under the front surface of the specimen, Fig. 6,
in general agreement with experiment, Fig. 4b. The detailed orientation and activity
of the faults is shown in Fig. 6b. The rank-1 faulting microstructures that develop
at selected material points are shown in Fig. 7. The computed faults in the crushing
zone tend to align vertically, specially in the periphery of the specimen, but do not
exhibit a preferred orientation on cross section of the specimen normal to the axis.
These trends are generally consistent with the observed fracture patterns, Fig. 4b.

In the simulations of the unconfined case, intense damage occurs over vast regions
of the specimen, especially in the vicinity of the posterior surface. Deformation
trapping at the boundary is known to occur in one-dimensional wave propagation
through softening materials ([50]). Comparison of fracture patterns with experi-
ment is not possible in this case since the specimen was not recovered.

Fig. 8 shows the plots of axial stress vs. axial strain for the unconfined and confined
cases. The figure also shows the corresponding experimental data for comparison.
The sharp contrast between the unconfined and confined cases is immediately ap-
parent in the figure. Thus, in the unconfined case the specimen fails catastrophically
upon the attainment of the tensile strength of the material. Subsequent to the failure
point, the load-bearing capacity of the specimen drops precipitously. By way of
contrast, the confined specimen exhibits quasi-ductile behavior. Indeed, following
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Fig. 9. Numerical simulation of the confined specimen allowing for rank-3 recursive fault-
ing. Top view of the first, second and third-level fault distribution. Fault structures at points
labelled (a)-(f) are shown in Fig. 10.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Numerical simulation of the confined specimen allowing for rank-3 recursive fault-
ing. Detailed view of recursive faulting structures computed at points (a)-(h) of Fig. 9.
(a)-(c) Rank-3 microstructures. (d)-(e) Rank-2 microstructures. (f) Rank-1 microstructure.

the point of inception of damage the specimen enters a yielding regime, though it
eventually strain-softens and fails. Thus, the addition of confinement alters the be-
havior of the specimen from perfectly brittle to quasi-ductile, an effect that may be
thought of as a brittle-to-ductile transition. These predicted general trends are also
clearly visible in the experimental curves. The ability of the model to predict the
transition from perfectly brittle to quasi-ductile behavior resulting from the addition
of confinement is particularly noteworthy.

The results of numerical simulation allowing for rank-3 recursive faulting microstruc-
tures are shown in Fig. 9, 10 and 11. Fig. 9 shows that rank-1 microstructures are
the most common, with rank-2 and rank-3 microstructures arising with diminish-
ing frequency. In addition, complex recursive fault patterns of rank higher than
one develop primarily in the vicinity of the anterior surface of the specimen, and
become increasingly rare with depth in the axial direction. This concentration of
damage may again be regarded as an instance of deformation trapping ([50]). The
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Fig. 11. Numerical simulation of the confined specimen allowing for rank-3 recursive fault-
ing. Experimental and predicted axial stress vs. axial strain curves.

intricate patterns of damage and deformation that correspond to rank-2 and rank-
3 microstructures are shown in Fig. 10 at selected sampling points. The ability
of the model to general complex sub-grid microstructures on the fly as part of a
macroscopic finite-element calculation is noteworthy. In order to calculate the sep-
arations at all levels of faulting, we take the compliance C in (52) to be of the
order of the shear modulus; and the ’core cut-off’ distance L0 to be of the order of
100Δc. The resulting fault separations are: 2.38, 0.09 and 0.24 mm, corresponding
to levels one, two and three, respectively. The effect of recursive faulting on the
macroscopic stress-strain curve is to soften the post-peak response and accelerate
failure, Fig. 11, partly owing to damage concentration and deformation trapping at
the boundary.

Finally, Fig. 12 shows a comparison of results corresponding to the coarse and
fine meshes depicted in Fig. 5. The calculations concern the confined specimen
and allow for rank-1 faulting only. The comparison demonstrates the mesh-size
independence of the calculations. This mesh-size independence is expected since,
under sufficient confinement, damage takes place in a distributed fashion and does
not exhibit localization. This diffuse nature of compressive damage in turn owes to
the stabilizing effect of inertia and internal friction, as remarked in § 3.

5 Summary and concluding remarks

We have developed a model of distributed damage in brittle materials deforming in
triaxial compression based on the explicit construction of special microstructures.
These microstructures are obtained by recursive faulting, i. e., by recursively fit-
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Fig. 12. Axial stress vs. axial strain curves for confined specimens using the meshes shown
in Fig. 5.

ting faults within faults. The model accounts for the elasticity of the matrix, fault
nucleation and the cohesive and frictional behavior of the faults. We have also de-
veloped a time discretization of the model that confers the incremental problem a
variational structure. We resort to this variational structure in order to predict the
inception of the faults and their optimal orientation and separation. We also exploit
the variational structure of the incremental quasistatic boundary-value problem for
purposes of mathematical analysis and determine the relaxation of the potential
energy, which describes the macroscopic material behavior averaged over all pos-
sible fine-scale structures. This analysis delineates two well-differentiated regimes
in the macroscopic behavior of the material: a compressive regime, in which the
material retains is volumetric load-bearing capacity but tends to lose its shear load-
bearing capacity completely; and the tensile regime, in which the material tends to
disintegrate completely. Finally, we present numerical calculations of the dynamic
multi-axial compression experiments on sintered aluminum nitride (AlN) of Chen
and Ravichandran [1; 2; 3; 4]. In this calculations, the microstructure is not resolved
by the mesh and is modelled at the sub-grid level. Specifically, the recursive fault-
ing construction is used to generate sub-grid microstructures ’on the fly’ as part of a
finite-element analysis. In this sense, the approach provides an example of concur-
rent multiscale computing, i. e., of a computational scheme in which two or more
length scales are carried simultaneously within the same calculation. The model
correctly predicts the general trends regarding the observed damage patterns; and
the brittle-to-ductile transition resulting under increasing confinement.

In closing, we point to some of the limitations of the model and related open ques-
tions. Firstly, it should be carefully noted that the model makes sense under condi-
tions resulting in diffuse or distributed damage. Our analysis and numerical exper-
iments indicate that these conditions are met in triaxial compression under suffi-
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ciently strong confinement, specifically, when det(F ) < 1. Under strongly tensile
conditions, i. e., when det(F ) > 1, localization into a small number of dominant
cracks is to be expected and the model ceases to apply. Indeed, damage or softening
models are poor models of fracture in general, as they lack a specific fracture en-
ergy per unit surface, and a model of discrete fracture is preferable in that regime.
We also expect the presence of friction to modify substantially the relaxation of
the model. In particular, friction may be expected to confer the material resistance
to macroscopic shearing deformation in compression. However, the relaxation of
the frictional model is unknown to us at present. Moreover, there is a paucity of
mathematical tools for characterizing the macroscopic behavior of solids with mi-
crostructure in the presence of inertia. In addition, the question of kinetics of fault
nucleation appears to be open at present as well.
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A Appendix: Proof of Proposition 1

We recall that the relaxation extends trivially in the presence of continuous pertur-
bations such as body forces and boundary tractions (e. g., [51; 52]). Since, with
the convergence criterion under consideration, G(u) in (59) is continuous, we may
therefore focus on the relaxation of the strain-energy F (u). The results thus ob-
tained are immediately applicable to the general boundary value problem which
governs the quasistatic deformations of bodies subjected to body forces and dis-
placement boundary conditions on part of ∂Ω.

Proof. We claim that for any k ∈ N we have

if F = F e
k∏

i=1

(I + ai ⊗ bi) with ai · bi ≥ 0, then W qc(F ) ≤W e(F e) . (A.1)
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Fig. A.1. Sketch of the construction used to prove (A.1). The dashed area is the set S where
the gradient Fk(I + ε−1ak ⊗ bk) is used. The dotted parts are copies of R, and indicate
the global construction that can be used in the unit square.

We prove this claim by induction. If k = 0 there is nothing to prove. Assume the
claim holds for some k ≥ 0, and consider

F k = F e
k∏

i=1

(I + ai ⊗ bi) , F k+1 = F k(I + ak+1 ⊗ bk+1) , (A.2)

with all ai · bi ≥ 0. Without loss of generality we can assume |bk+1| = 1, and after
a rotation bk+1 = e3. Fix two small parameters ε and δ ∈ (0, 1), and consider in
(66) the domain

E = (0, 1)2 × (0, δ). (A.3)

We shall prove the claim by constructing a suitable test function v on the domain
E. Let g : E → R be defined by

g(x) =

⎧⎨
⎩x3/ε if x3 ≤ εδ

δ if x3 ≥ εδ ,
(A.4)

and set
h(x) = min(g(x), x3 + ξdist(x, ∂E)) , (A.5)

where ξ is a positive number smaller than 1/|ak+1|. We define

u(x) = F kx + F kakh(x) . (A.6)

and compute
∇u(x) = F k + F kak ⊗∇h(x) . (A.7)

This gradient is constant in each of finitely many pieces of E (four in two di-
mensions, cf Fig. A.1; six in three dimensions), and it takes values F k, F k(I +
ε−1ak+1⊗bk+1), F k(I +ak+1⊗(e3±ξe1)), F k(I +ak+1⊗(e3±ξe2)), which all
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have positive determinant. The function u(x) is Lipschitz continuous, and equals
Fk+1x on ∂E. Let ω be the subset of E where ∇u = F k. By the inductive assump-
tion, W qc(F k) ≤ W e(F e), hence (using the definition (66) on the domain ω), for
any η > 0 there is a Lipschitz continuous function v ′ : ω → R

3 such that

v′(x) = F kx on ∂ω , and
1

|ω|
∫

ω
W (∇v′)dV ≤W e(F e) + η . (A.8)

We define w : E → R
3 by

w(x) =

⎧⎨
⎩v′(x) if x ∈ ω ,

u(x) if x ∈ E \ ω . (A.9)

The function w is Lipschitz continuous, and w(x) = F k+1x on ∂E. Therefore
v(x) = w(x) − F k+1x ∈W 1,∞

0 (E) and, from the definition (66), we have

W qc(F k+1) ≤ 1

|E|
∫

E
W (F k+1 + ∇v)dV =

1

|E|
∫

E
W (∇w)dV . (A.10)

It remains to evaluate the last integral. The contribution from ω is controlled by
(A.8). On the rest the gradient ∇w = ∇u takes only five distinct values, as men-
tioned above. The large gradient ∇u = F k(I + ε−1ak+1 ⊗ bk+1) is taken only in
a thin strip S ⊂ (0, 1)2 × (0, εδ), which has volume controlled by |S| ≤ ε|E|. The
corresponding energy is controlled by

∫
S
W (∇w)dV ≤ |E|ε

[
W e(F k) + f

(
1

ε
ak+1 · bk+1,

1

ε
|ak+1 × bk+1|

)]
. (A.11)

By (64), we get

lim
ε→0

ε
[
W e(F k) + f

(
1

ε
ak+1 · bk+1,

1

ε
|ak+1 × bk+1|

)]
= 0 , (A.12)

hence we can choose ε sufficiently small so that the integral in (A.11) is less than
|E|η. The remaining pieces are located close to the short sides of E, and have the
form of closure domains (see Figure A.1). Their volume is controlled by is δ|E|,
and F there takes the four values F k(I + ak+1 ⊗ (e3 ± ξe1,2))), which do not
depend on ε and δ. Therefore we can choose δ so that

δ|E|W e (F k(I + ak+1 ⊗ (e3 ± ξe1)))

+δ|E|W e (F k(I + ak+1 ⊗ (e3 ± ξe2))) ≤ η . (A.13)

We conclude that

W qc(F k+1) ≤ 1

|E|
∫

ω
W (∇w)dV + 3η ≤W e(F e) + 4η (A.14)

which, since η was arbitrary, proves the claimed (A.1).
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It remains to be shown that (A.1) implies the thesis. This follows from the fact that
any matrix of unit determinant can be written as product of simple shears of the
form I +λei ⊗ej, with i �= j and λ ∈ R (to see this, just consider that multiplying
F by I + λei ⊗ ej on the left corresponds to adding a multiple of the i-th column
to the j-th one, and multiplying on the right does the same on rows. Therefore the
claim is equivalent to Gauss reduction). We conclude that given any pair of matrices
F , F e with 0 < det F e ≤ det F , one can find vectors ai and bi with ai · bi ≥ 0
such that

F = F e
k∏

i=1

(I + ai ⊗ bi) . (A.15)

Then, the claim (A.1) implies that

W qc(F ) ≤ W e(F e) for all F e with det F e ≤ det F . (A.16)

We conclude
W qc(F ) ≤ ϕ(det F ) , (A.17)

where ϕ was defined in (68). Consider now a matrix F , and view it as the average
of

F± = F
(
I ± 1

2
e1 ⊗ e1

)
. (A.18)

By lamination it follows that

W qc(F ) ≤ W qc(F +) +W qc(F−)

2
≤ 1

2

[
ϕ
(

3

2
det F

)
+ ϕ

(
1

2
det F

)]
,

(A.19)
and the same can be done with any other weight. This shows that

W qc(F ) ≤ ϕ∗∗(det F ) . (A.20)

But ϕ∗∗(det F ) is polyconvex function, and ϕ∗∗(det F ) ≤ W (F ), hence equality
holds. �
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