Institute for Applied Mathematics SS 2020

Prof. Dr. Anton Bovier, Kaveh Bashiri

Stochastic Processes Sheet 2

Hand in Friday, 8th of May, before the lecture

Exercise 1 [3 Pkt]

Let $V = \{v : \mathbb{N} \to \mathbb{R} \mid ||v|| < \infty\}$, where $||v|| = \sup_{n \in \mathbb{N}} |v_n|$. Obviously, $(V, ||\cdot||)$ is a metric space. Show that the closed unit sphere $B = \{v \in V \mid ||v|| = 1\}$ is not compact.

Exercise 2 [3 Pkt]

Show that each σ -finite measure μ on some measurable space (Ω, \mathcal{F}) has a representation of the form $\mu = \sum_{n=0}^{\infty} a_n \mu_n$, where for all n, $a_n \geq 0$ and μ_n is a probability measure on (Ω, \mathcal{F}) .

Exercise 3 [1+1+2+2+2 Pkt]

Let \mathcal{C} and \mathcal{D} be classes of random variables.

- 1. Show that \mathcal{C} is uniformly integrable, if and only if $\sup_{X \in \mathcal{C}} \mathbb{E}[|X| 1_{\{|X| > K\}}] \to 0$ as $K \to \infty$.
- 2. Show that $C + D := \{X + Y, X \in C, Y \in D\}$ is uniformly integrable, if C and D are uniformly integrable.
- 3. Let $g:[0,\infty)\to [0,\infty)$ be such that $g(x)/x\to\infty$ as $x\to\infty$. If $\sup_{X\in\mathcal{C}}\mathbb{E}[g(|X|)]<\infty$, show that \mathcal{C} is uniformly integrable.
- 4. If there exists an integer p>1 such that $\sup_{X\in\mathcal{C}}\mathbb{E}[|X|^p]<\infty$, show that \mathcal{C} is uniformly integrable.
- 5. If $\mathbb{E}[\sup_{X \in \mathcal{C}} |X|]] < \infty$, show that \mathcal{C} is uniformly integrable.

Exercise 4 [2+2+2 Pkt]

Let Y, X, X_1, X_2, \ldots be random variables in $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and $X_n \to X$ in \mathcal{L}^2 . Show that

- 1. $\lim_{n\to\infty} \mathbb{E}[X_n^2] = \mathbb{E}[X^2]$.
- 2. $\lim_{n\to\infty} \mathbb{E}[X_n Y] = \mathbb{E}[XY]$.
- 3. $\mathcal{L}^2 \subset \mathcal{L}^1$.