Institute for Applied Mathematics SS 2020

Prof. Dr. Anton Bovier, Dr. Kaveh Bashiri

Stochastic Processes Sheet 11

Hand in Friday, July 10, 2020

Exercise 1 [7 Pkt]

The Wright-Fisher model describes the evolution of a population of individuals with phenotype A or B. The total population size at each generation is kept constant and is equal to N. The Wright-Fisher model is a stochastic process $(X_n)_{n\in\mathbb{N}_0}$ with state space $S = \{0, \ldots, N\}$, where

 $X_n =$ number of individuals of type A in the nth generation.

Thus the number of individuals of type B is just $N - X_n$. In this model, the evolution is given as follows. Given a population at time n, each of the descendants (population at time n + 1) takes the type from a randomly (with a uniform distribution) chosen parent of the nth generation. Show that

- 1. $(X_n)_n$ is a Markov Chain and compute the transition probability,
- 2. $(X_n)_n$ is a martingale,
- 3. the states 0 and N are absorbing,
- 4. $\mathbb{E}_x[\tau_{\{0,N\}}] < \infty \text{ for all } x \in \{0,\dots,N\},$
- 5. Compute (using e.g. Doob's Optional Stopping Theorem) the probability that the process started at $x \in \{0, ..., N\}$ is absorbed in N (resp. in 0).

Exercise 2 [5 Pkt]

Consider the simple random walk on $\{-N, -N+1, \ldots, N\}$. Let for $x \in \{-N, -N+1, \ldots, N\}$

$$h(x) = \mathbb{P}_x[\tau_N = \tau_{\{N\} \cup \{-N\}}] = \mathbb{P}_x[\tau_N < \tau_{-N}].$$

Assume we want to condition this process on hitting +N before -N. Compute h(x) and use this to compute the transition rates of the h-transformed walk

Exercise 3 [5 Pkt]

Let $(X_n)_n$ be a Markov Chain taking values in \mathbb{N}_0 and with transition matrix P given by

$$P(0,0) = 1,$$

$$P(k,m) = e^{-k} \frac{k^m}{m!} \quad \text{for } k \in \mathbb{N} \text{ and } m \in \mathbb{N}_0.$$

- 1. Which states are recurrent?
- 2. Show that the identity function $f: \mathbb{N}_0 \to \mathbb{N}_0, k \mapsto k$, is harmonic.

Exercise 4 [3 Pkt]

Let $(B_t)_{t\in\mathbb{R}_+}$ be the Brownian motion. Define the processes $(B_t^{(1)})_{t\in\mathbb{R}_+}, (B_t^{(2)})_{t\in\mathbb{R}_+}, (B_t^{(3)})_{t\in\mathbb{R}_+}$ by

- 1. $B_t^{(1)} = -B_t$,
- 2. $B_t^{(2)} = B_{t+r} B_r$ for some r > 0,
- 3. $B_t^{(3)} = \frac{1}{c} B_{c^2 t}$ for some c > 0.

Show that $(B_t^{(1)})_{t\in\mathbb{R}_+}, (B_t^{(2)})_{t\in\mathbb{R}_+}, (B_t^{(3)})_{t\in\mathbb{R}_+}$ are Brownian motions as well.