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1 Introduction

The aim of this work is to explain some connections between random matrices
and determinantal processes. First we consider the eigenvalue distributions
of the classical Gaussian random matrices ensembles. Of particular interest
is the distribution of their largest eigenvalue in the limit of large matrices.
For the Gaussian Unitary Ensemble, GUE, it is known as GUE Tracy-Widom
distribution [31] and appears in a lot of different models in combinatorics [3],
growth models [10, 25, 13, 27], equilibrium statistical mechanics [7], and in
non-colliding random walks or Brownian particles [21, 15]. Secondly we in-
troduce the determinantal processes, which are point processes which n-point
correlation functions are given by a determinants of a kernel of an integral
operator. It turns out that the eigenvalue distribution of the GUE random
matrices is a determinantal process which kernel has a particular structure.
This is the reason why the GUE Tracy-Widom distribution appears in a lot
of models which are not related with random matrices.

2 Classical Random Matrices Ensembles

Initially studied by statisticians in the 20’s-30’s, random matrices are then
introduced in nuclear physics in the 50’s to describe the energy levels distri-
bution of heavy nuclei. The reader interested in a short discussion on random
matrices in physics can read [16], in mathematics [22], and a good reference
for a more extended analysis is [19].
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2.1 Gaussian Orthogonal, Unitary, Symplectic Ensem-
bles

Let H be a N × N matrix. Three important cases of random matrices are
the following:

• β = 1: H is a real symmetric matrix,

• β = 2: H is a complex hermitian matrix,

• β = 4: H is a real quaternionic matrix.

Analyzing the consequences of the time-inversion invariance T , Dyson [6]
showed that the previous classes of random matrices can describe a system
which,

• for β = 1, is T -invariant and rotational invariant or with integer mag-
netic moment,

• for β = 2, is not T -invariant, e.g., with a magnetic field without other
discrete symmetries,

• for β = 4, is T -invariant and with half-integer magnetic moment.

In these three cases the eigenvalues are real and H can be diagonalized by
an orthogonal (β = 1), unitary (β = 2), or symplectic (β = 4) transforma-
tion. The classical Gaussian ensembles are obtained defining the probability
distribution on matrices

p(H)dH =
1

Z ′
e−TrH2

dH (2.1)

where dH is the Lebesgue product measure on the independent elements
of H and Z ′ the normalization. For example, for β = 2, dH =
∏N

i=1 dHi,i

∏

1≤i<j≤N dReHi,j dImHi,j.
The ensembles of random matrices obtained are called Gaussian Or-

thogonal (GOE), Unitary (GUE), and Symplectic (GSE) Ensembles
for β = 1, β = 2, and β = 4 respectively.

The distribution (2.1) is also recovered by taking the independent ele-
ments of H as Gaussian random variables with mean zero and variance 1/β
for the diagonal terms, 1/2β for the non-diagonal terms. Another way to
obtain (2.1) is to maximize the functional “entropy”

S(p) = −
∫

p(H) ln p(H)dH (2.2)

under the condition
�

(TrH2) = const (like for the canonical and grand-
canonical measures in statistical mechanics).
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2.2 Eigenvalues distributions

One interesting quantity of random matrices is the eigenvalues distribution.
The probability distribution (2.1) is invariant under the orthogonal group
G = O(N) for GOE, unitary group G = U(N) for GUE, and symplectic
group G = USp(2N) for GSE. This implies that p(H) is a function on the
eigenvalues only. It is then possible to factorize (2.1) as

p(H)dH = p(λ)∆β(λ)dλdG (2.3)

where dG is the Haar measure on G, dλ is the Lebesgue product measure on
the eigenvalues,

∏N
k=1 dλk, and

∆N (λ) = det(λj−1
i )N

i,j=1 =
∏

1≤i<j≤N

(λj − λi) (2.4)

is the Vandermonde determinant. The eigenvalues distribution coming from
the measure (2.1) is then

p(λ1, . . . , λN)dλ1 · · ·dλN =
1

Zβ,N

|∆N(λ)|β
N
∏

j=1

e−λ2
j dλj (2.5)

where λ1, . . . , λN are the eigenvalues of H and Zβ,N is the normalization.
In the case β = 2, the measure (2.5) is a product of two determinants

and a product measure on the eigenvalues. This particular structure leads
to a connection with the determinantal process discussed in Section 3.

2.3 Asymptotic distributions Fβ: Tracy-Widom distri-

butions

Typically the eigenvalues lies in the interval from −
√

2N to
√

2N and the
mean distance between eigenvalues scales is ∼

√
8/
√
N . Let µj = λj/

√
2N

be the rescaled eigenvalues, then the mean distance between them is ∼ 2/N .
Let N · ρβ be the asymptotic density of the rescaled eigenvalues

ρβ(µ) = lim
N→∞

�
N,β(#{µi ∈ [µ, µ+ dµ]})

N
.

Then ρβ satisfies the Wigner semi-circle law

ρβ(µ) =
2

π

√

(1 − µ2)+ (2.6)

where x+ = max{0, x}.
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Figure 1: Distribution densities for β = 1, 2, 4 generated using [24].

The largest eigenvalue λmax is then located close to
√

2N . Tracy and
Widom study (see the review paper [32] and references therein) the distri-
bution of λmax in the limit N → ∞ for β = 1, 2, 4 with the following result.
Let FN,β(t) = � N,β(λmax ≤ t), then Fβ(s) defined by

Fβ(s) = lim
N→∞

FN,β

(√
2N + s/21/2N1/6

)

(2.7)

exists for β = 1, 2, 4. They are given by

F2(s) = exp

(

−
∫ ∞

s

(x− s)q2(x)dx

)

(2.8)

where q is the unique solution of the Painlevé II equation

q′′ = sq + 2q3

satisfying the asymptotic condition q(s) ∼ Ai(s) for s → ∞. F2 is called
the GUE Tracy-Widom distribution. In particular, for x→ ∞, F2(x) ∼
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exp(−4
3
x3/2) and for x → −∞, F2(x) ∼ exp(− 1

12
|x|3). F2(s) can also be

rewritten as a Fredholm determinant of the Airy operator, see Section 4.1.
Finally, for β = 1

F1(s) = exp

(

−1

2

∫ ∞

s

q(x)dx

)

F2(s)
1/2 (2.9)

and for β = 4

F4(s/
√

2) = cosh

(

1

2

∫ ∞

s

q(x)dx

)

F2(s)
1/2. (2.10)

3 Determinantal processes

3.1 Definitions

First we define a point process (or random point field). Let X be a one-
particle space like � d, � d, � or simply {0, . . . ,M}. Let Γ be the space
of finite or countable configurations of particles in X, where the particles
are ordered in some natural way and each configuration ξ = (xi), xi ∈ X,
i ∈ � (or � if d > 1) is locally finite, i.e., for every compact B ⊂ X, the
number of xi ∈ B, denoted #ξ(B), is finite. Next we define the σ-algebra
on Γ via the cylinder sets. For any bounded Borel set B ⊂ X and n ≥ 0,
CB

n = {ξ ∈ Γ,#ξ(B) = n} is a cylinder set. Then we define F as the
σ-algebra generated by all cylinder sets.

Definition 3.1. A point process (random point field) is a triplet (Γ,F , � )
where � is a probability measure on (Γ,F).

The second quantity we need to define are the n-point correlation func-
tions.

Definition 3.2. The n-point correlation function of the point process
(Γ,F , � ) is a locally integrable function ρ(n) : Xn → � + such that for any
disjoint infinitesimally small subsets [xi, xi + dxi], i = 1, . . . , n,

� (#ξ([xi, xi + dxi]) = 1, i = 1, . . . , n) = ρ(n)(x1, . . . , xn)µ(dx1) . . . µ(dxn)
(3.1)

where µ is a reference measure on X, e.g., the Lebesgue for X = � or the
counting measure for X = � .

Remark that the n-point correlation functions are symmetric in their
arguments. In [28] are given the conditions, found by Lenard [17, 18], for
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locally integrable functions ρn : Xn → � + to be correlation function of some
point process.

The correlation functions appears in the computation of expected values
of observables. For example, consider a function u with u(x) ∈ [0, 1] for all
x. Then

�
(

∏

j

(1 − u(xj))

)

=

∞
∑

n=0

(−1)n

n!

∫

Xn

ρ(n)(x1, . . . , xn)

n
∏

j=1

u(xj)d
nµ(x) (3.2)

An interesting class of point processes which will be considered in the rest
of the section are the determinantal point processes, also called fermionic
since the probability that two particles coincide is zero.

Definition 3.3. A point process is called determinantal point process if
the n-point correlation functions are given by

ρ(n)(x1, . . . , xn) = det(K(xi, xj))1≤i,j≤n (3.3)

where K(x, y) is a kernel of an integral operator K : L2(X, µ) → L2(X, µ),
non-negative and locally trace class.

The positivity is required because the n-point correlation functions are
positive. The last condition reflect the fact that each configuration is locally
finite. For X = � d with dµ = ddx it can be proven, see [28], that the integral
kernel of the operator K in (3.3) can be chosen such that

Tr(KχB) =

∫

B

K(x, x)ddx (3.4)

with χB(x) the indicator function of B. Since K(x, x) is the particle density
at x, (3.4) has to be finite, i.e., K locally trace class.

3.2 Fredholm determinant, hole probability

For a determinantal process, (3.3) in (3.2) leads to

�
(

∏

j

(1 − u(xj))

)

=

∞
∑

n=0

(−1)n

n!

∫

Xn

det(K(xi, xj))1≤i,j≤n

n
∏

j=1

u(xj)d
nµ(x)

≡ det( � − uK)L2(X,µ) (3.5)

where for each ϕ ∈ L2(X, µ),

[(uK)ϕ](x) =

∫

X

u(x)K(x, y)ϕ(y)dµ(y). (3.6)
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The last determinant in (3.5) is called Fredholm determinant of the op-
erator uK on the space L2(X, µ). Remark that uK in (3.5) can be replaced
by the symmetrized u1/2Ku1/2.

A special important case is the hole probability. Consider a B ⊆ X,
then the probability that there are no particles in B is

� (#ξ(B) = 0) =
�

(

∏

j

(1 − χB(xj))

)

= det( � −K)L2(B,µ). (3.7)

Let us consider a determinantal point process on � or � which has a last
particle and denote its position by xmax. Then the distribution of the last
particle is given by

� (xmax ≤ t) = � (#ξ((t,∞)) = 0) = det( � −K)L2((t,∞),µ). (3.8)

3.3 When a measure comes from a determinantal pro-
cess

The structure of the measure (2.5) is a product of two determinants of one-
variable functions times a product measure dNµ. A result of Borodin (Prop.
2.2 of [5]), and Tracy and Widom ([31] for GUE), gives a condition on a
measure to be the one of a determinantal process.

Theorem 3.4. [5, 31] If we have a measure of the form

1

ZN

det(ϕj(xk))
N
j,k=1 det(ψj(xk))

N
j,k=1d

Nµ(x), (3.9)

then it is a determinantal process with kernel

KN(x, y) =

N
∑

i,j=1

ψi(x)[A
−1]i,jϕj(y) (3.10)

where

A = [Ai,j]
N
i,j=1, Ai,j =

∫

X

ψj(t)ϕi(t)dµ(t) (3.11)

Unfortunately, although an explicit formula is given, it is not always easy
(feasible) to invert the matrix A as N → ∞. A particular case is when A = �
in a particular basis. In this case the kernel KN (x, y) becomes of simple form
and the limiting distribution can be analyzed.
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3.4 Some important examples: sine kernel and Airy
kernel

Let x, x′ ∈ � , the sine kernel is defined by

S(x, x′) =
sin(π(x− x′))

π(x− x′)
(3.12)

and the Airy kernel by

A(x, x′) =
Ai(x) Ai′(x′) − Ai′(x) Ai(x′)

x− x′
(3.13)

where Ai(x) is the Airy function [1]. In some models appears the discrete
sine kernel, which means only that x, x′ ∈ � .

In the asymptotic limit when the bulk of the system (or spectrum) is
considered, one can find the sine kernel, see Section 4.1 for the GUE random
matrices case. The Airy kernel arises at the edge of the system (or spectrum),
see Section 5 for a discussion.

4 GUE and determinantal processes

Let us consider the case of N × N hermitian matrices and let V (x) be an
even degree polynomial with positive leading coefficient. Then we define a
measure on the random matrices by

p(H)dH =
1

Z ′
N

e−TrV (H)dH (4.1)

with dH =
∏N

i=1 dHi,i

∏

1≤i<j≤N dReHi,j dImHi,j.

The GUE ensemble is recovered by setting V (x) = x2. Then for the
eigenvalue distribution of H one obtains

p(λ1, . . . , λN)dλ1 · · ·dλN =
1

ZN
∆N (λ)2

N
∏

j=1

e−V (λj)dλj. (4.2)

The determinantal nature of the eigenvalues is a result of Gaudin, Mehta,
and Dyson works, see Chapter 5 of [19] for the GUE case. Let pk(x), k =
0, 1, . . . be the orthogonal polynomials with respect to e−V (x)dx, normalized
as

∫ �
pi(x)pj(x)e

−V (x)dx = δi,j. Then
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Theorem 4.1. The eigenvalue process is a determinantal process with cor-
relation kernel

KN(x, y) =
N−1
∑

k=0

pk(x)pk(y)e
− 1

2
(V (x)+V (y)). (4.3)

(4.3) can be rewritten using Christoffel-Darboux formula [30] as

KN(x, y) =
uN−1

uN

pN(x)pN−1(y) − pN−1(x)pN (y)

x− y
. (4.4)

where uk is the leading coefficient of pk.
The connection with Theorem 3.4 is as follows. Originally one has ϕj(x) =

ψj(x) = xj−1. After a change of basis (Gram-Schmidt orthonormalization)
one obtains (3.9) with ϕj(x) = ψj(x) = pj−1(x)e

−x2/2, A = � , and the pj’s
being the Hermite polynomials. Then (3.10) leads to (4.3) with V (x) = x2.

4.1 Asymptotics for GUE

In the limit N → ∞, the sine and Airy kernels appears depending on the
focused region: bulk or edge.

The sine kernel arises in the bulk of the spectrum as follows. Let a ∈
(−1, 1), then

lim
N→∞

1

u(a)
√

2N
KN

(

a
√

2N +
x

u(a)
√

2N
, a
√

2N +
x′

u(a)
√

2N

)

= S(x, x′).

(4.5)
The Airy kernel arises in the edge-scaling:

lim
N→∞

1

21/2N1/6
KN

(√
2N +

x

21/2N1/6
,
√

2N +
x′

21/2N1/6

)

= A(x, x′). (4.6)

From the asymptotic at the edge of the spectrum, the GUE Tracy-Widom
distribution F2(s) can be expressed as the Fredholm determinant

F2(s) = det( � − A)L2((t,∞),dx) (4.7)

with A the Airy kernel.

4.2 A note on GOE and GSE: Pfaffian processes

The eigenvalue point process for GOE and GSE are not determinantal but
Pfaffian processes, which are generalization of the determinantal processes.
They were introduced in [26], see also the introduction of [29].
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Pfaffians

First we define the Pfaffian. Let A = [Ai,j]
2N
i,j=1 be an antisymmetric matrix,

then its Pfaffian is defined by

Pf(A) =
∑

σ∈S2N
σ2i−1<σ2i

(−1)|σ|
N
∏

i=1

Aσ2i−1,σ2i
. (4.8)

The Pfaffian is the square root of the determinant: Pf(A) =
√

detA if A is
antisymmetric.

Pfaffian processes

Let (X, µ) be a measure space, f1, . . . , f2N complex-valued functions on X
and ε(x, y) be an antisymmetric kernel such that

p(x1, . . . , x2N ) =
1

Z2N
det[fj(xk)]

2N
j,i=1 Pf[ε(xj, xk)]

2N
j,k=1 (4.9)

defines the density of a 2N -dimensional probability distribution on X2N with
respect to the product measure generated by µ.

The normalization constant Z2N equals (2N)! Pf[M ] where the matrix
M = [Mi,j]

2N
i,j=1 is defined as

Mi,j =

∫

X2

fi(x)ε(x, y)fj(y)dµ(x)dµ(y). (4.10)

The n-point correlation functions ρ(n)(x1, . . . , xn) are given by Pfaffians:

ρ(n)(x1, . . . , xn) = Pf[K̃(xi, xj)]
n
i,j=1 (4.11)

where K̃(x, y) is the antisymmetric kernel

K̃(x, y) =

(

K̃1(x, y) K̃2(x, y)

K̃3(x, y) K̃4(x, y)

)

(4.12)

with

K̃1(x, y) =
∑2N

i,j=1 fi(x)M
−T
i,j fj(y)

K̃2(x, y) =
∑2N

i,j=1 fi(x)M
−T
i,j (εfj)(y)

K̃3(x, y) =
∑2N

i,j=1(εfi)(x)M
−T
i,j fj(y)

K̃4(x, y) = −ε(x, y) +
∑2N

i,j=1(εfi)(x)M
−T
i,j (εfj)(y)

(4.13)

provided that M is invertible, and (εfi)(x) =
∫

X
ε(x, y)fi(y)dµ(y).

If the kernel has the form

(

ε K0

−K0 0

)

, then it is a determinantal pro-

cess.
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GOE and GSE as Pfaffian processes

As explained in [29], the GOE and GSE are Pfaffian processes.
The GOE case is recovered as follows. Let X = � , fj(x) = xj−1, j =

1, . . . , 2N , ε(x, y) = 1
2
sgn(y− x), and dµ(x) = e−x2

dx. Then the probability
density (4.9) is the one of (2.5) for β = 1.

The GSE case is slightly more complicated. Let X = Y ∪ Z with Y =
Z = � , dµ(x) = e−x2

dx. The configuration of 2N particles x1, . . . , x2N in X
consists into two identical copies of N particles y1, . . . , yN in Y and z1, . . . , zN

in Z. Then define fj(y) = yj for y ∈ Y , fj(z) = jzj−1 for z ∈ Z, and the
antisymmetric kernel as ε(y1, y2) = ε(z1, z2) = 0, ε(y, z) = −ε(z, y) = δy,z.
With this setting, the probability density (4.9) is the one of (2.5) for β = 4.

In [9] (section 4), the eigenvalue distribution for GOE and GSE was also
studied and they showed that (3.5) becomes

�
(

∏

j

(1 − u(xj))

)

=
√

det( � −Ku) (4.14)

for some 2× 2 matrix kernels K. These kernels are closely related to the one

introduced above. K can indeed be taken to be K =

(

0 1

−1 0

)

K̃.

5 Some models where Fβ arises

The F2 distribution arises together with the Airy kernel. For example at the
edge of the system (or spectrum), like for the GUE random matrices [20, 8].
Other examples where the Airy kernel and the GUE Tracy-Widom distribu-
tion appear are the reported below. These models are not directly connected
with GUE random matrices, but they have the same limiting distribution
because, at least in the asymptotic limit, they are determinantal processes
in the same class of GUE eigenvalues.

1) The 3D Ising corner. In [7] we analyze a simplified model of a crys-
tal corner at low temperature which is equivalent to the following prob-
lem. Let us consider a ferromagnetic three-dimensional Ising model on � 3

and a starting configuration where all the spins σx in the positive octant
are −1 and the others are +1, i.e., σx = −1 for x ∈ � 3

+ and σx = +1
for x = (x1, x2, x3) ∈ � 3 \ � 3

+. At zero temperature, spins can flip if
the number of nearest neighbour with opposite spins is conserved. Let
V (σ) =

∑

x∈ � 3
+
(σx + 1)/2 be the number of spin which have flipped with

respect to the starting configuration. To have an equilibrium state, we add
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Figure 2: 3D Ising corner viewed from the (111)-direction for L = 50.

a binding chemical potential µ = − 1
L
, which implies that the weight of a

configuration is exp(− 1
L
V (σ)). A computer generated realization is shown in

Figure 2. We denote by kth level line the line bordering the + and − phase
at height k above the 1 − 2 plane. Then we consider the projection on the
(1 1 1) plane of these lines. For fixed t = x2 − x1, the positions of the lines is
a determinantal process. We are interested in the statistics of the line bor-
dering the flat facet and the rounder piece, i.e., the position of the 1st level
line. Let then bL the position of the 1st level line at t = 0. It grows like cL,
c = ln 4 plus some fluctuations of order L1/3. We prove that, as L → ∞, for
κ = 4−1/3, (bL − cL)/(κL1/3) → ζ2, a random variable F2 distributed. The
same result, with other values of c and κ, holds for any t = τL, τ fixed.

2) The longest increasing subsequences of random permutations.
Let us consider the set of all permutations of N numbers. Let σ be a per-
mutation. An increasing subsequence of length k is a sequence of numbers
1 ≤ j1 < . . . < jk ≤ N such that σ(jn) ≤ σ(jn+1) for n = 1, . . . , k − 1. The
problem of finding the behavior of the length of the longest increasing subse-
quence, `N , in the limit N → ∞, was introduced by Ulam in 1961 [33]. Baik,
Deift, and Johansson in [3] prove a previous conjecture, i.e., `N ∼ 2

√
N for

large N , and more importantly find the law of the fluctuations. More pre-
cisely, they show that, as N → ∞, (`N − 2

√
N)/(21/2N1/6) → ζ2 where ζ2 is
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Figure 3: Aztec diamond with N = 10.

a random variable F2-distributed. A nice review of this problem is [2].

3) The polynuclear growth model (PNG). In [23, 25] a 1+1 dimen-
sional growth model is studied. An initial flat one-dimensional substrate
is considered where nucleations generate a droplet with the following rule.
There is a first island which grows with unit speed laterally. Nucleations
can occurs only above the first island, independently and with unit rate.
Each nucleation generates an island, of height one, which start spreading
with unit speed. When two islands meet, they simply merge. Consider the
distribution of the height above the origin ht after time t. Then as t → ∞,
(ht −2t)/t1/3 → ζ2, a random variable F2 distributed. For the height above a
position different from the origin a similar result holds. A discretized version
of this model is studied in [13]. In [27] a half-space version of the PNG is
also analyzed.

4) Some other corner growth models where F2 appears are studied in [10].

5) The arctic circle of the Aztec diamond. The Aztec diamond is de-
fined as follows. Let us consider the diamond shaped subset containing 2N 2

squares of a checkerboard table, see Figure 3 for an example with N = 10.
It is called Aztec diamond. Then one considers the set of random tilings
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with dominos of the Aztec diamond with uniform weight. For large N the
Aztec diamond divides into five regions delimited by the arctic circle [11].
Inside the arctic circle there is a disordered region of the tiling. Outside this
boundary the tilings forms a completely regular brick wall pattern. There
are four type of dominos, depending on the direction and on the position
with respect to the checkerboard table, called East, West, North and South.
It is possible to draw continuous lines in the Aztec diamond by adding in
each domino a line pattern depending on its type as shown in Figure 3. Let
t be the horizontal coordinate with t = 0 in the middle of the diamond and
denote by b`,N(t), ` = 0, . . . , N − 1 be the position of the `th line at “time” t.
Then it is proven [12] that (b0,N (0) − N/

√
2)/(2−5/6N1/3) → ζ2 as N → ∞,

with ζ2 a random variable F2-distributed.

6) The problem of vicious random walks [21] and of non-colliding Brow-
nian particles [15]. In the vicious random walks, i.e., non-intersecting,
problem one considers particles on � which starts from 0,−2,−4, . . .. At
every unit time-step, they move randomly to one of the nearest neighbouring
sites. Up to time T there is the constraint that two particles can not occupy
the same position at same time. It is shown in [21] that the distribution of
the first particle at time τT with τ ∈ (0, 1) converges to F2 and at τ = 1
there is a transition to F1.

The F1 distribution shows up also in the PNG model when the nucle-
ations are not constraint to occur above the first island [23], i.e., translation
invariant, or above the origin of the half space growth model with sources at
the origin [27]. In this last model, if no sources are there, then F4 arises.

Finally, in [4] it is studied the problem of the longest increasing subse-
quence with additional constraints and symmetries. They find the distribu-
tions F1, F2, F4 and others [4].

Remark: The results of PNG and the 3D Ising corner model uses a space-
time extension of the determinantal processes. The results of these papers
are stronger than the one discussed here. For example in the Ising problem
it is proven the convergence of the 1st line to the so called Airy process intro-
duced in [25]. For the Aztec diamond it is proved in [14] that the first line
converges to the Airy process too.
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