Height fluctuations for the stationary KPZ equation
PATRIK L. FERRARI
(joint work with Alexei Borodin, Ivan Corwin, and Bélint Vetd)

In their seminal 1986 paper [13], Kardar, Parisi, and Zhang (KPZ) proposed
the stochastic evolution equation for a height function h(t,z) € R (¢t € Ry is time
and x € R is space)

Aih(t,x) = 192Nh(t, x) + & (9,h(t, x))” + £(t, 2).

The randomness ¢ models the deposition mechanism and it is taken to be space-
time Gaussian white noise, so that formally E[£(¢, 2)E(t,2")] = 6(t — t')d(x — 2').
The Laplacian reflects the smoothing mechanism and the non-linearity reflects
the slope-dependent growth velocity of the interface. Using earlier physical work
of Forster, Nelson and Stephen [10] KPZ predicted that for large time ¢, the
height function h(t, ) has fluctuations around its mean of order t*/3 with spatial
correlation length of order t2/3. For additional background, see the reviews [8,9,
15,17].

The physically relevant solution to the KPZ equation [17] is defined indirectly
via the well-posed stochastic heat equation (SHE) with multiplicative noise [2, 5,
16],

QZ(t,x)=L102Z(t,2) + Z(t,2)E(t, z),

with initial condition Z(0,2) = Zo(z) = "®*). The SHE is well-posed and we
defines h(t,xz) = In(Z(t,z)). This is called the Cole—Hopf solution of the KPZ
equation.

By a version of the Feynman—Kac formula, the solution of the SHE can be
written as

2(1,0) =B | 2000) s (- [ ), is) |

where the expectation E; , is over a Brownian motion b(-) going backwards in time
from b(t) = x, and where : exp : is the Wick ordered exponential. This provides
an interpretation for Z(¢,z) as the partition function of the continuum directed
random polymer (CDRP) [1,2].

Let B(x) be a two-sided Brownian motion with B(0) = 0 and zero drift. Sta-
tionary (zero drift) initial data h(0,z) = B(z) for the KPZ equation corresponds
with SHE initial data Z(0,2) = ¢Z(®). This is called stationary because for any
later time ¢, h(t,-) is marginally distributed as B(-) + h(t,0) where B(-) is a two-
sided Brownian motion (though not independent of B or h(t,0)).

In our work [7] we provide an exact formula for the one-point probability dis-
tribution of the stationary solution to the KPZ equation, and a limit theorem for
h(t,x), after proper centering and scaling by t'/3. This is made by analyzing a
semidiscrete directed polymer model, which in its turn is obtained as a limit of the
q-Whittaker process [6] with appropriate initial measure. A different expression
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using replica trick approach was obtained previously in [12]. The equivalence of
the two formulas has not been shown so-far.

For simplicity, let us present the results in the case of zero-drift and position
z = 0 only.

Theorem 1. Let h(t,x) be the stationary (zero drift) solution to the KPZ equation
and let Ko denote the modified Bessel function. Then, fort >0, o = (2/t)Y/3 and
S € C with positive real part,

E [201{0 (2\/5 exp [L + h(t, o)m — f(S,0),

where the function f is given below.

To define f, define on R4 the function
Qx) = i/ dw————— O T w3 rF(Uw)—7
2mi J_ g sin(m —ow) (—ow)
and the kernel
o(z—w) 23/3—zy _
1. dw/ doe omS e i I'(—o0z) T'(ow) '
2mi)? J_ L g Lir  sin(om(z —w)) ew?/3-we T(oz) T'(—ow)
Let vyg = 0.577 ... be the Euler constant, v = o(2yg + In S) and define

£(8,0) = — det(1 — K) [7 +{((1 - K) (K1 +Q), 1)+ (1 - K)'(1+Q), Q>]

where the determinants and scalar products are all meant in L?(R..).
There is an explicit inversion formula, although this is not needed to get the
large time limit.

K(Iay) =

Corollary 2. For any r € R, we have

P (h(t,()) < —;—4 br (%)1/3>

11 aé / e
== = [ dze™t/? Ca
o? 2mi /6+iR D= (=¢+1) Jr rentd (e U)
for any 6 > 0 and where o = (2/t)/5.

Universality arises in the large time limit. Indeed, we recover the distribution
formula obtained before for the totally asymmetric simple exclusion process and
for the polynuclear growth model [3,4,11,14].

Corollary 3. For any r € R,

; A\ 1/3
tliglo]P’ h(t,0) < ~%4 +r <§) = Fo(r),

where Fy is given by

0
For) = = (9(r) det (1 = PLEAP,) ey )
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wh

ere Py(z) = Lizsgy, Kai(z,y) = [ dMAL(z + NAi(y + ) is the Airy kernel,

and g(r) is given below.

To define the function g we need some notations. For s € R, define

R=s+/ dx/ dyAi(x + y), \I!(y)zl—/ dzAi(z + y),
s 0 0

B(z) = /OOO d) /Oo dyAi(z + N)Ai(y + \) — /OOO dyAi(y + z).

Then the function g is defined by

g(s) =R — ((1 — P;KaiPs)"' P,®, P, V).
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