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In their seminal 1986 paper [13], Kardar, Parisi, and Zhang (KPZ) proposed
the stochastic evolution equation for a height function h(t, x) ∈ R (t ∈ R+ is time
and x ∈ R is space)

∂th(t, x) =
1
2∂

2
xh(t, x) +

1
2 (∂xh(t, x))

2
+ ξ(t, x).

The randomness ξ models the deposition mechanism and it is taken to be space-
time Gaussian white noise, so that formally E[ξ(t, x)ξ(t′, x′)] = δ(t− t′)δ(x − x′).
The Laplacian reflects the smoothing mechanism and the non-linearity reflects
the slope-dependent growth velocity of the interface. Using earlier physical work
of Forster, Nelson and Stephen [10] KPZ predicted that for large time t, the
height function h(t, x) has fluctuations around its mean of order t1/3 with spatial
correlation length of order t2/3. For additional background, see the reviews [8, 9,
15, 17].

The physically relevant solution to the KPZ equation [17] is defined indirectly
via the well-posed stochastic heat equation (SHE) with multiplicative noise [2, 5,
16],

∂tZ(t, x) = 1
2∂

2
xZ(t, x) + Z(t, x)ξ(t, x),

with initial condition Z(0, x) = Z0(x) = eh(0,x). The SHE is well-posed and we
defines h(t, x) = ln(Z(t, x)). This is called the Cole –Hopf solution of the KPZ
equation.

By a version of the Feynman –Kac formula, the solution of the SHE can be
written as

Z(t, x) = Et,x

[

Z0(b(0)) : exp :

(

−

∫ t

0

ξ(b(s), s)ds

)]

where the expectation Et,x is over a Brownian motion b(·) going backwards in time
from b(t) = x, and where : exp : is the Wick ordered exponential. This provides
an interpretation for Z(t, x) as the partition function of the continuum directed
random polymer (CDRP) [1, 2].

Let B(x) be a two-sided Brownian motion with B(0) = 0 and zero drift. Sta-
tionary (zero drift) initial data h(0, x) = B(x) for the KPZ equation corresponds
with SHE initial data Z(0, x) = eB(x). This is called stationary because for any

later time t, h(t, ·) is marginally distributed as B̃(·) + h(t, 0) where B̃(·) is a two-
sided Brownian motion (though not independent of B or h(t, 0)).

In our work [7] we provide an exact formula for the one-point probability dis-
tribution of the stationary solution to the KPZ equation, and a limit theorem for
h(t, x), after proper centering and scaling by t1/3. This is made by analyzing a
semidiscrete directed polymer model, which in its turn is obtained as a limit of the
q-Whittaker process [6] with appropriate initial measure. A different expression
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using replica trick approach was obtained previously in [12]. The equivalence of
the two formulas has not been shown so-far.

For simplicity, let us present the results in the case of zero-drift and position
x = 0 only.

Theorem 1. Let h(t, x) be the stationary (zero drift) solution to the KPZ equation
and let K0 denote the modified Bessel function. Then, for t > 0, σ = (2/t)1/3 and
S ∈ C with positive real part,

E

[

2σK0

(

2
√

S exp
[

t
24 + h(t, 0)

]

)]

= f (S, σ) ,

where the function f is given below.

To define f , define on R+ the function

Q(x) =
1

2πi

∫

− 1
4σ

+iR

dw
σπS−σw

sin(π − σw)
e−w3/3+wx Γ(σw)

Γ(−σw)
,

and the kernel

K(x, y) =
1

(2πi)2

∫

− 1
4σ

+iR

dw

∫

1
4σ

+iR

dz
σπSσ(z−w)

sin(σπ(z − w))

ez
3/3−zy

ew3/3−wx

Γ(−σz)

Γ(σz)

Γ(σw)

Γ(−σw)
.

Let γE = 0.577 . . . be the Euler constant, γ = σ(2γE + lnS) and define

f(S, σ) =− det(1−K)
[

γ +
〈

(1−K)−1(K1 +Q), 1
〉

+
〈

(1−K)−1(1 +Q), Q
〉

]

.

where the determinants and scalar products are all meant in L2(R+).
There is an explicit inversion formula, although this is not needed to get the

large time limit.

Corollary 2. For any r ∈ R, we have

P

(

h(t, 0) ≤ −
t

24
+ r

(

t

2

)1/3
)

=
1

σ2

1

2πi

∫

−δ+iR

dξ

Γ(−ξ)Γ(−ξ + 1)

∫

R

dx exξ/σf
(

e−
x+r

σ , σ
)

for any δ > 0 and where σ = (2/t)1/3.

Universality arises in the large time limit. Indeed, we recover the distribution
formula obtained before for the totally asymmetric simple exclusion process and
for the polynuclear growth model [3, 4, 11, 14].

Corollary 3. For any r ∈ R,

lim
t→∞

P

(

h(t, 0) ≤ −
t

24
+ r

(

t

2

)1/3
)

= F0(r),

where F0 is given by

F0(r) =
∂

∂r

(

g(r) det (1− PrKAiPr)L2(R)

)

,
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where Ps(x) = 1{x>s}, KAi(x, y) =
∫∞

0 dλAi(x + λ)Ai(y + λ) is the Airy kernel,
and g(r) is given below.

To define the function g we need some notations. For s ∈ R, define

R = s+

∫ ∞

s

dx

∫ ∞

0

dyAi(x + y), Ψ(y) = 1−

∫ ∞

0

dxAi(x+ y),

Φ(x) =

∫ ∞

0

dλ

∫ ∞

s

dyAi(x+ λ)Ai(y + λ)−

∫ ∞

0

dyAi(y + x).

Then the function g is defined by

g(s) = R−
〈

(1− PsKAiPs)
−1PsΦ, PsΨ

〉

.

References

[1] T. Alberts, K. Khanin, and J. Quastel, The continuum directed random polymer, J. Stat.
Phys. 154 (2014), 305–326.

[2] G. Amir, I. Corwin, and J. Quastel, Probability distribution of the free energy of the con-

tinuum directed random polymer in 1+1 dimensions, Comm. Pure Appl. Math. 64 (2011),
466–537.

[3] J. Baik, P.L. Ferrari, and S. Péché, Limit process of stationary TASEP near the character-

istic line, Comm. Pure Appl. Math. 63 (2010), 1017–1070.
[4] J. Baik and E.M. Rains, Limiting distributions for a polynuclear growth model with external

sources, J. Stat. Phys. 100 (2000), 523–542.
[5] L. Bertini and G. Giacomin, Stochastic Burgers and KPZ equations from particle system,

Comm. Math. Phys. 183 (1997), 571–607.
[6] A. Borodin and I. Corwin, Macdonald processes, Probab. Theory Relat. Fields 158 (2014),

225–400.
[7] A. Borodin, I. Corwin, P.L. Ferrari, and B. Vető, Height fluctuations for the stationary KPZ
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