
Abstracts

Interacting particle systems and random matrices

Patrik L. Ferrari

TASEP. We consider the totally asymmetric simple exclusion process on Z

(in continuous time). Particles jump independently to their right neighboring site
with rate 1, provided the site is empty. Denote by ηt(j) ∈ {0, 1} the occupation
variable of site j at time t (with 1 meaning occupied). The standard representation
as height function h (at position x and time t) is given by

(1) h(x, t) =







2Nt +
∑x

y=1
(1 − 2ηy(t)), for x ≥ 1,

2Nt, for x = 0,

2Nt −
∑0

y=x+1
(1− 2ηy(t)), for x ≤ −1,

where Nt is the number of particles which have crossed the bond 0 to 1 during the
time span [0, t]. This model belongs to the Kardar-Parisi-Zhang [15] universality
class of growth models in 1 + 1 dimensions.

Universality is expected in the long time limit, i.e., the asymptotic height fluctu-
ations should be independent of the particular model used to derive them. Unlike
in the equilibrium statistical mechanics, the scaling exponents are not enough
to single out the large time statistics: initial conditions matter! One still have to
distinguish between (a) curved limit shape, (b) flat limit shape obtained from non-
random initial fluctuations, (c) flat limit shape coming from stationary (random)
initial conditions.

From KPZ scaling, the correlation length scales as t2/3 and height fluctuations
as t1/3 [11, 20]. Therefore, given the limit shape

(2) hma(ξ) := lim
t→∞

h(ξt, t)

t
,

the scaling limit to be considered is

(3) hresc
t (u) =

h(ξt+ ut2/3, t)− thma(ξ + ut−1/3)

t1/3
,

with of course a freedom in the choice of scaling coefficients (independent of t) for
horizontal and vertical scaling.

TASEP with step Initial Conditions. Consider first step initial condition,
ηj(0) = 1 for j ≤ 0 and ηj(0) = 0 for j > 0, i.e., h(x, 0) = |x|. The limit shape is

curved : 1

2
(1 + ξ2) for |ξ| ≤ 1. Let us focus around ξ = 0, i.e., consider

(4) hresc
t (u) :=

h(2u(t/2)2/3, t)−
(

t/2 + u2(t/2)1/3
)

−(t/2)1/3
.

For the one-point distribution it is proven [12] that

(5) lim
t→∞

P

(

h(0, t) ≥ t/2− s(t/2)1/3
)

= F2(s),
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where F2 is known as the GUE Tracy-Widom distribution, first discovered in
random matrices [18]. Moreover, concerning the joint distributions, it is proven [6,
4, 13] that

(6) lim
t→∞

hresc
t (u) = A2(u),

whereA2 is called the Airy2 process, first discovered in the PNG model by Prähofer
and Spohn [16].

GUE matrices. The distribution function F2 and the Airy2 process describe
also the statistics of the largest eigenvalue in the Gaussian Unitary Ensemble of
random matrices. Consider N × N hermitian matrices distributed according to
the probability measure

(7) const exp
(

−Tr(H2)/2N
)

dH,

where dH =
∏N

i=1
dHi,i

∏

1≤i<j≤N dℜ(Hi,j)dℑ(Hi,j) is the reference measure. De-

note by λGUE
N,max the largest eigenvalue of a N ×N GUE matrix. Then Tracy and

Widom [18] showed that fluctuations of λGUE
N,max are asymptotically F2-distributed:

(8) lim
N→∞

P

(

λGUE
N,max ≤ 2N + sN1/3

)

= F2(s).

The parallel between GUE and TASEP with step initial condition goes even
further. Dyson’s Brownian Motion (DBM) is a matrix-valued Ornstein-Uhlenbeck
process introduced by Dyson in 1962 [7]. More precisely, the GUE DBM is the
stationary process on matrices H(t) whose evolution is governed by

(9) dH(t) = −
1

2N
H(t)dt+ dB(t)

where dB(t) is a (hermitian) matrix-valued Brownian motion. More precisely, the
entries Bi,i(t), 1 ≤ i ≤ N , ℜ(Bi,j)(t) and ℑ(Bi,j)(t), 1 ≤ i < j ≤ N , perform
independent Brownian motions with variance t for diagonal terms and t/2 for the
remaining entries. Denote by λGUE

N,max(t) the largest eigenvalue at time t (when

started from the stationary measure (7)). Its evolution is, in the large N limit,
governed by the Airy2 process:

(10) lim
N→∞

λGUE
N,max(2uN

2/3)− 2N

N1/3
= A2(u).

TASEP with step Alternating Conditions. The alternating initial condi-
tion is the following: ηj(0) = 0 for odd j and ηj(0) = 1 for even j. The limit shape

flat, not curved: hma(ξ) = 1/2. Thus, the rescaled height function becomes

(11) hresc
t (u) :=

h(2ut2/3, t)− t/2

−t1/3
.

In the large time limit

(12) lim
t→∞

P

(

h(0, t) ≥ t/2− st1/3
)

= F1(2s),
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where F1 is known as the GOE Tracy-Widom distribution, first discovered in
random matrices [19]. Moreover, as a process, it was discovered by Sasamoto,
see [17, 5], it holds

(13) lim
t→∞

hresc
t (u) = A1(u),

where A1 is called the Airy1 process.

GOE matrices. The Gaussian Orthogonal Ensemble (GOE) of random ma-
trices has density on N ×N symmetric matrices

(14) const exp
(

−Tr(H2)/4N
)

dH,

where dH =
∏

1≤i≤j≤N dHi,j is the reference measure. Denote by λGOE
N,max its

largest eigenvalue. The asymptotic distribution of the largest eigenvalue is F1 [19]:

(15) lim
N→∞

P

(

λGOE
N,max − 2N ≤ sN1/3

)

= F1(s).

Also DBM is defined for symmetric matrices by

(16) dH(t) = −
1

4N
H(t)dt+ dB(t)

where dB(t) is a symmetric matrix-valued Brownian motion (as before without
imaginary parts). However, numerical evidence shows [2] that, the limit process
of a properly rescaled λGOE

N,max(t) is not the Airy1 process:

(17) lim
N→∞

λGOE
N,max(8uN

2/3)− 2N

2N1/3
=: B1(u) 6= A1(u).

The process B1 is yet unknown.

Conclusion. First of all, initial conditions matter for the long time statistics
of interfaces in the KPZ class. Secondly, there are partial connections with ran-
dom matrices. The parallel between TASEP with step initial conditions and GUE
random matrices holds for joint distributions. To understand this connection, one
way is to compare the interlacing structure on the GUE minors [14] and the inter-
lacing structure on an extension of TASEP to a 2 + 1 interacting particle system
introduced in [3], see the lecture notes [8] for details. Note that the connection
extends partially to the evolution of minors as shown in [10, 1]. On the other
hand, the parallel between TASEP with alternating initial conditions and GOE
random matrices stops at the level of one-point distributions. For a more extended
discussion, see the recent review paper [9].
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