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We consider a stochastic interacting particle system, the totally asymmetric
simple exclusion process (TASEP) on Z in continuous time. At any given time
t, every site j ∈ Z can be occupied at most by one particle. Thus a configuration
of the TASEP can be described by η = {ηj , j ∈ Z|ηj ∈ {0, 1}}. ηj is called the
occupation variable of site j, which is defined by ηj = 1 if site j is occupied and
ηj = 0 if site j is empty.

The dynamics of the TASEP is defined as follows. Particles jumps on the
neighboring right site with rate 1 provided that the site is empty. This means
that jumps are independent of each other and occur after an exponential wait-
ing time with mean 1, which is counted from the time instant when the right
neighbor site is empty.

On a macroscopic scale the density of particles u(x, t) evolves deterministi-
cally according to the Burger’s equation ∂tu + ∂x(u(1− u)) = 0 [15]. Therefore
it is natural to focus on fluctuations properties and large deviations, which have
some interesting and unexpected features. The observables analyzed in our re-
cent works [2, 3] are the positions of given particles, which are closely related
to integrated particle currents. It turns out that the observables fluctuation
depends on the initial condition. Thus the natural question is to analyze which
kind of initial conditions leads to a common limit distribution and limit process.

The first result in this direction has been obtained with step initial condi-
tions. To be precise, let us denote by xk(t) the position at time t of the particle
with label k. Then step initial condition means xk(0) = −k, k ∈ N, which
is studied by Johansson [8, 9] in terms of a corner growth model. The posi-
tions of particles fluctuate on a t1/3-scale while two particles are (in this scale)
non-trivially correlated if they are at a distance of order t2/3. For example,

lim
t→∞

x[t/4+u(t/2)2/3](t)− (−2u(t/2)2/3 + u2(t/2)1/3)
−(t/2)1/3

= A2(u) (1)

where A2 is the Airy2 process (usually simply called Airy process), first discov-
ered in the polynuclear growth (PNG) model under droplet growth [13]. The
1/3 and 2/3 exponents are the one of the KPZ universality class [10]. The Airy2

process is the marginal of the determinantal point process with extended Airy
kernel. A2 appears also in Dyson’s Brownian Motion [4], where the motion of
the largest eigenvalue properly rescaled converges to the Airy2 process [9]. In
particular, the one-point distribution of A2 is the GUE Tracy-Widom distribu-
tion [19]. The same result holds if one focuses around k ∼ αt, α ∈ (0, 1), but
with different numerical factors.
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Besides the step-initial condition explained above, two other situations are
of particular interest. One is the stationary initial condition, where the one-
point distribution has been obtained in [7]. The second are deterministic initial
conditions leading to a macroscopically uniform density profile, thus called flat
initial conditions. The simplest realization is obtained by setting xk(0) = −2k,
k ∈ Z.

In [16] an important new result has been discovered, allowing the analysis of
such initial conditions. First of all, as expected by universality, the fluctuations
of the position of a particle is governed by the GOE Tracy-Widom distribution,
F1 [20]. This result is a combination of [6, 16], that is,

lim
t→∞

P(x[t/4](t) ≤ −st1/3) = F1(2s). (2)

More importantly, for flat initial condition, the analogue of the Airy2 process
has been determined, which we denote by A1 and call Airy1 process. It is the
marginal of the determinantal point measure with the extended kernel KF1 given
as follows. Let B0(x, y) = Ai(x+y) and ∆ the one-dimensional Laplacian, then

KF1(u1, s1;u2, s2) = −(e(u2−u1)∆)(s1, s2)1(u2 > u1) + (e−u1∆B0e
u2∆)(s1, s2).

(3)
The process A1 has m-point joint distributions at u1 < u2 < . . . < um given by
a Fredholm determinant (regarded as its Fredholm series)

P

( m⋂
k=1

{A1(uk) ≤ sk}
)

= det(1− χsKF1χs)L2({u1,...,um}×R) (4)

where χs(ui, x) = 1(x > si).
In [3] we analyze the continuous-time TASEP with xk(0) = −2k, k ∈ Z, and

show that the joint distributions of particle positions are given by a Fredholm
determinant of a kernel. Then in the appropriate scaling limit we obtain point-
wise convergence of the kernel to KF1 . The analysis starts from a determinantal
formula of the joint distributions of particle position obtained by Schütz [17].
In [2] we consider the discrete-time TASEP with sequential update for which
the corresponding of Schütz formula has been determined in [14]. The analogue
formula for parallel update has been obtained in a recent work [11], but whether
a similar approach as in [2,3] can be applied has still to be investigated. There
are other update rules introduced in the literature, but we will not discuss them.
For a review, see [18].

Instead of restricting to density 1/2 (the d = 2 case) we consider a more
general set of initial conditions: for any integer d ≥ 2, we take xk(0) = −dk, k ∈
Z. By universality it is expected that the limit process is independent of d (if d ≥
2). This is proven in [2], where we show convergence of Fredholm determinants
too, thus convergence in the sense of finite-dimensional distributions to the Airy1

process. The final result, rewritten for continuous-time TASEP, is

lim
t→∞

xbαt+µt2/3c(t) + dµut2/3

−κt1/3
= A1(u) (5)

with κ = 21/3(d(d−1))2/3

d , α = d−1
d2 , and µ = 25/3(d(d−1))1/3

d2 .
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As briefly discussed in [3], the TASEP can also be reinterpreted as a sto-
chastic growth model, a directed last passage percolation, and a directed poly-
mer model. Step initial conditions corresponds to point-to-point directed poly-
mers [8,9] and corner growth [13]. There the Airy2 process appears. Flat initial
condition translates into growth on a flat substrate [1, 5, 12] and point-to-line
directed polymers. In particular, d ≥ 3 is growth on a flat but tilted surface,
and to our knowledge, the analysis of the limit distribution and/or limit process
has not been carried out before for models in the KPZ class.
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