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Abstract

In this review paper we consider the polynuclear growth (PNG)
model in one spatial dimension and its relation to random matrix
ensembles. For curved and flat growth the scaling functions of the
surface fluctuations coincide with limit distribution functions coming
from certain Gaussian ensembles of random matrices. This connection
can be explained via point processes associated to the PNG model and
the random matrices ensemble by an extension to the multilayer PNG
and multi-matrix models, respectively. We also explain other mod-
els which are equivalent to the PNG model: directed polymers, the
longest increasing subsequence problem, Young tableaux, a directed
percolation model, kink-antikink gas, and Hammersley process.

1 Introduction

In this paper we consider a stochastic growth model, the polynuclear growth
(PNG) model, on a one-dimensional substrate. The relevant features of the
dynamics of this model are: a stochastic local growth rule with a smoothing
mechanism [54]. The latter prevents the formation of large spikes. As a con-
sequence the surface, on a macroscopic scale, follows a deterministic growth
rule: it has a limit shape. Nevertheless, on a mesoscopic scale the surface
is still rough. This roughness is the observable we are mainly interested in.
The PNG model belongs to the KPZ universality class. The KPZ model
was introduced by Kardar, Parisi, and Zhang in a seminal paper [41] where

1



they described random surface growth by a non-linear stochastic differential
equation. For details on the universality we refer to Prähofer’s thesis [55],
Chapters 2 and 3, see also [58]. In one dimension one can determine the dy-
namical exponent, z = 3/2, by a scaling argument or renormalization group
methods, see for example the books [54, 10]. As a consequence, for large
growth time t, the fluctuations of the surface height scale as t1/3 and the
spatial correlation length is of order t2/3. These exponents should hold for
all growth models in the KPZ universality class. It is commonly expected
that not only exponents but also scaling functions and limiting distributions
are universal. To study these more detailed informations on KPZ growth,
one looks for simplified but still solvable models in the KPZ class. Hence the
study of the PNG model.

A main step forward in understanding KPZ growth and suggesting a
deep connection to random matrices was achieved by Johansson [36]. He
considered a discrete growth model on a one-dimensional substrate, which
can be interpreted, among others, as a kind of first-passage site percolation
model [16]. For specific initial conditions, he obtained the surprising link
between the shape fluctuations of the percolated region and the GUE Tracy-
Widom distribution, F2, which was first introduced in the random matrix
context [69]. Shortly before that, the same distribution appeared in a work
by Baik, Deift, and Johansson [6] on the problem of the longest increasing
subsequence in a random permutation. On the other hand there was the
PNG model, a model considered by physicists since the 60’s. It was known
that it belongs to the KPZ class. Then Prähofer and Spohn [56] noticed the
mapping between (a version of) the PNG model and the increasing subse-
quences problem. Hence the connection between KPZ and random matrices.

Here we mainly focus on two geometries of the PNG model: curved growth
and flat growth. The first generates a droplet-like profile, hence called PNG
droplet. The macroscopic profile of the second is flat, thus flat PNG. For these
two geometries more refined information is available. In the limit of large
growth time, properly rescaled, the height fluctuations of the PNG droplet are
described by the F2 distribution [56, 6]. F2 is the limiting distribution of the
properly rescaled largest eigenvalue of the Gaussian Unitary Ensemble (GUE)
of random matrices. Moreover, the limiting process describing the surface
height of the PNG droplet has been identified as the Airy process [57], which
also arises in the multi-matrix extension of GUE. It describes the evolution
of the largest eigenvalue of Dyson’s Brownian motion.

For the second geometry considered, the flat PNG, the picture is not
yet complete. It is known [56, 9] that the scaling function of the height
fluctuation is the GOE Tracy-Widom distribution, F1 [70]. This distribution
arises in the Gaussian Orthogonal Ensemble (GOE) of random matrices. F1
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is the limiting distribution of the largest eigenvalue of GOE. It is conjectured
that it should correspond to the evolution of the largest eigenvalue of Dyson’s
Brownian motion (for orthogonal matrices). A result going in the direction
of this conjecture is obtained by Ferrari [20]. The problem remains open
for the GOE multi-matrix model. Very recently, Sasamoto [63] obtained a
process in the context of the totally asymmetric exclusion process, which, by
universality, should describe also the surface height of the flat PNG.

The connection between the PNG model and the Gaussian ensembles of
random matrices can be understood via point processes. Although random
matrices are not directly related to the PNG model, it turns out that both
can be described by point processes with the same mathematical structure.
Under an appropriate scaling one obtains the same limit point processes when
the growth time, resp. matrix dimension, tends to infinity.

The paper is organized as follows. In Section 2 we introduce the PNG
model and report known results. In Section 3 further equivalent models are
described. In Section 4 we explain the extension to the PNG multilayer model
and the related point processes. The link between line ensembles and (real-
valued) Young tableaux is also discussed. In Section 5 we introduce Gaussian
ensembles of random matrices, the point processes of their eigenvalues, and
the extension to multi-matrix models. Section 6 is devoted to the discussion
of the connection between random matrices and the PNG model as well as
Young tableaux.

2 The polynuclear growth model

Let us describe the polynuclear growth (PNG) model in continuous time
in 1 + 1 dimension. It is a growth model on a one-dimensional substrate.
The surface at time t is described by an integer-valued height function x 7→
h(x, t) ∈ Z, see Figure 1. To be precise, at the discontinuity points of h, the
height function has upper limits, i.e., {x ∈ R|h(x, t) ≥ k} is a closed set for
all k ∈ Z. For fixed time t ∈ R, consider the height profile x 7→ h(x, t). The
height h, as x increases, has jumps of height one at the discontinuity points,
called up-step if h increases and down-step if h decreases. Finally, if at time
t there is a spike, i.e., a pair of up- and down-steps at the same position x,
then we call it a nucleation event at (x, t).

The PNG dynamics has a deterministic and a stochastic part:

(a) Deterministic part: the up-steps move to the left with unit speed and
the down-steps to the right with unit speed. When a pair of up- and
down-steps collide, they disappear.
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Figure 1: The PNG dynamics. The up- (down-)steps move to the left (right)
with unit speed. The big arrow represents a nucleation.

(b) Stochastic part: the nucleation events form a locally finite point process
in space-time (usually a Poisson process). Once a pair of up-down steps
is created, it immediately follows the deterministic dynamics.

The stochastic part of the dynamics produces the roughness of the surface.
This is counterbalanced by the smoothing due to the deterministic part.

Typically one considers flat initial conditions, h(x, 0) = 0 for all x ∈R, with the nucleation events given by a Poisson process (not necessarily
with uniform intensity). By varying the space-time intensity ̺(x, t) of the
Poisson process, different geometries can be obtained. Below we consider
two cases of particular interest. For the PNG droplet the nucleations occur
with constant intensity in the region spreading with unit speed from the
origin in both directions. For the flat PNG the nucleations have constant
intensity everywhere, thus the surface is statistically translation-invariant. A
visualization of these two geometries is provided at [19] as a Java applet.

At this point it is convenient to introduce some vocabulary taken over
from special relativity. The steps move with speed of light ±c, c = 1. So
their trajectories in space-time have slope ±1, called light-like. The forward
light cone of a point (x, t) is the set of points {(x′, t′)| |x − x′| ≤ t′ − t}, and
the backward light cone of (x, t) is {(x′, t′)| |x − x′| ≤ t − t′}. With light
cone we denote the union of the forward and the backward cone. A path is
called time-like if it is included in the light cone of each of its points. A path
is called space-like if the light cone attached to each of its points does not
contain any other point of the path.
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Figure 2: A sample of the PNG droplet.

2.1 The PNG droplet

The PNG droplet is obtained from a flat initial height profile, h(x, 0) = 0
for all x ∈ R, if the density of Poisson points is constant (here we choose
̺ = 2) in the forward light cone of the origin and zero outside, i.e., for
(x, t) ∈ R×R+

̺(x, t) =

{

2 if |x| ≤ t,
0 if |x| > t.

(2.1)

For large growth time t the typical shape of the PNG droplet is a half circle,
see Figure 2. More precisely, it converges to the limit shape given by

lim
t→∞

t−1h(τt, t) = 2
√

1 − τ 2, τ ∈ [−1, 1], (2.2)

in probability.
To see the roughness of the surface one has to look at a mesoscopic scale

around the macroscopic shape 2t
√

1 − (x/t)2, x ∈ [−t, t]. A first natural
question concerns the scale of fluctuations and their limit behavior. The
result is that the vertical fluctuations live on a t1/3 scale with limiting distri-
bution function

lim
t→∞

P(

h(0, t) ≤ 2t + t1/3s
)

= F2(s), (2.3)

where F2 is the GUE Tracy-Widom distribution function [69]. The conver-
gence is in distribution as well as for all finite moments. (2.3) was obtained
in [56] by mapping the PNG droplet to the Poissonized version of the prob-
lem of longest increasing subsequences [6]. Similarly if one looks away from
x = 0 one has, for any fixed τ ∈ (−1, 1),

lim
t→∞

P(

h(τt, t) ≤ 2t
√

1 − τ 2 + t1/3(1 − τ 2)1/6s
)

= F2(s). (2.4)

5



The second interesting question concerns the spatial height correlations.
The correlation length scales as t2/3 for large growth time t. Therefore one
defines the rescaled surface height as

ξ 7→ hresc
t (ξ) = t−1/3

(

h(ξt2/3, t) − 2t
√

1 − ξ2t−2/3
)

. (2.5)

In [57] it is shown that, in the sense of finite dimensional distributions,

lim
t→∞

hresc
t (ξ) = A(ξ), (2.6)

where A is the Airy process. The definition and properties of the Airy process
are given in Section 4.3. This process arises also in the multi-matrix model
for GUE random matrices as we will explain in Section 5.5.

More recently Borodin and Olshanski showed [13] that the Airy process
describes the space-time correlations not only for the space-time cut with
constant t, but also along any space-like (and light-like) path in the droplet
geometry. They prove convergence of finite-dimensional distributions in the
language of Young diagrams. The link with Young diagrams is explained in
Section 4.2. For each point (u, v) ∈ R2

+, they consider the random Young
diagram Y (u, v) obtained by the RSK correspondence. Then for each space-
like path in R2

+ a Markov chain is constructed, which describes the evolution
of the Young diagram Y . The case u+v = t is the one of the PNG droplet [57].
The case uv = constant corresponds to the terrace-ledge-kink (TLK) model
which can be regarded as model for the facet boundary of a crystal in thermal
equilibrium [23, 24]. For time-like paths no result is known. The major
difficulty seems to lie in the lack of a Markov property.

2.2 Flat PNG

A flat initial condition, h(x, 0) = 0 for x ∈ R, and constant density of
Poisson points in R×R+ (as before we choose ̺ = 2) generates the flat PNG
geometry, see Figure 3. Since no other constraint is imposed the surface
height h(x, t) is statistically translation-invariant, thus we focus on x = 0.

The fluctuations live on the same scale as for the PNG droplet, namely
t1/3. However, the limiting distribution is different as shown in [56], namely

lim
t→∞

P(

h(0, t) ≤ 2t + t1/32−2/3s
)

= F1(s), (2.7)

with F1 the GOE Tracy-Widom distribution function [70]. This result fol-
lows from a related problem on longest increasing subsequences [9]. The
convergence is in distribution and for all moments as in (2.3).
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Figure 3: A sample of the flat PNG.

In [20] a first step towards understanding the spatial correlation is made,
as we will explain in Sections 4.3 and 6.1. In a recent preprint, Sasamoto [63]
obtained the spatial correlation for a closely related model. By universality
this new process should be the analogue of the Airy process for flat PNG.

2.3 A geometrical point of view for the PNG model

Let us illustrate the space-time picture of the PNG model, which is the
starting point for the link to other equivalent models described in the next
section.

First we consider the case of flat initial conditions, h(x, 0) = 0 for all
x ∈ R. For a given realization of Poisson points, we construct h(x, t) for
t ∈ [0, T ], T > 0 fixed, as follows. One starts plotting the nucleation events
in space-time. Then, increasingly in time, one draws the trajectories of the
up- and down-steps in space-time. These are light-like paths. When two of
these paths meet, as t increases, they stop. This reflects the disappearing
of the corresponding up- and down-step. In this way one divides space-time
into regions bounded by piecewise straight lines with slopes ±1, see Figure 4.
The height h(x, t) is constant in each region and is given by the number of
lines crossed by any time-light path from (x, 0) to (x, t). For any given t,
since the Poisson process is a.s. locally finite, so is the number of steps of
x 7→ h(x, t), thus h is a.s. locally bounded.

In the case that the initial surface profile is not flat, the surface height
at some later time t is obtained in a similar way. The only difference is
the following. To the lines generated by the Poisson points we need to add
additional lines starting from the t = 0 axis with slope −1, resp. +1, if
initially at x there is an up-step, resp. a down-step. Then, the number
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Figure 4: Graphical construction generating the surface height from the nu-
cleation events (Poisson points).

of lines crossed along any time-like paths from (x, 0) to (x, t) is the height
difference h(x, t) − h(x, 0).

2.4 Other geometries studied for the PNG model

As explained above, the one-point distribution function of the surface height
for both geometries, the PNG droplet and flat PNG, was obtained by iden-
tifying the surface height with the length of a longest directed polymer. The
directed polymer can be mapped to a longest increasing subsequence in a
random permutation (without/with involution), for which Baik and Rains
have obtained the asymptotics [9, 8] by using Riemann-Hilbert techniques.
For the PNG droplet, the joint-distribution of the height profile is obtained
in [57] using a multilayer generalization of the PNG as will be explained
in Section 4. The multilayer technique has been motivated by the work of
Johansson on the Aztec diamond [38, 40].

Sasamoto and Imamura studied the (discrete) half-droplet PNG geome-
try, which consists in allowing nucleations only in the region x ∈ [0, t] [33].
They prove that the rescaled height is GUE distributed away from x = 0 and
that there is a transition to GSE at x = 0. If extra nucleations are added at
the origin with intensity γ ≥ 0, the distribution above x = 0 has a transition
at γ = 1. For γ < 1 it is still GSE, for γ = 1 it is GOE distributed, and
for γ > 1 the fluctuations become Gaussian, because the contribution of the
nucleations at the origin dominates. The asymptotic one-point distributions
at the origin follow from [9, 8], too.

A modification of the PNG droplet consists in adding sources at both
extremities of the droplet. Extra nucleations with fixed line density α+ and
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α− are independently added along the boundary of the forward light cone of
the origin, i.e., in (x, t) such that |x| = t. This model was used in [56] to
describe stationary PNG growth. Baik and Rains [7] obtained detailed results
for the asymptotic distributions which we describe briefly. For α± small, the
effects coming from the edges are small and the fluctuations are still GUE
distributed. On the other hand, if α+ > 1 or α− > 1, the boundary effects are
dominant and the fluctuations become Gaussian. The cases where α+ = 1
and/or α− = 1 are also studied and other statistics arise. Of particular
interest is when α+α− = 1 for 1 − α± = O(t−1/3), in which case the PNG
growth is stationary and has a flat limit shape. Stationary PNG together
with flat PNG and PNG droplet are the three most interesting situations in
the context of surface growth.

Johansson in [36] pointed out the connection between random matrices
and the shape fluctuations in a discrete model of directed polymers, equiva-
lent to the discrete PNG model. A class of corner growth models in discrete
space-time (similar to the PNG droplet) is analyzed in [30, 45]. The discrete
versions of the different geometries for the PNG model discussed above are
studied in a series of papers [39, 33, 34, 35].

3 Equivalent models

In this section we discuss the mapping between models which are equivalent
to the PNG model. We start explaining the directed polymers on Poisson
points. The link to the PNG was used in [56] to obtain the first results on the
height fluctuations of the PNG model. Then we continue with the longest in-
creasing subsequence problem, Young tableaux, a directed percolation model,
the kink-antikink gas, and the Hammersley process.

3.1 Directed polymers on Poisson points

Let us define a partial ordering in R2, ≺, as follows. For y, z ∈ R2 we say
that y ≺ z if both coordinates of y are less or equal than those of z. Consider
a Poisson process with intensity 1 in R2. For a given realization of Poisson
points, a directed polymer on Poisson points starting at (0, 0) and ending at
(t, t) is a piecewise linear path γ connecting (0, 0) ≺ q1 ≺ . . . ≺ ql(γ) ≺ (t, t),
where qi are Poisson points. The length l(γ) of the directed polymer γ is the
number of Poisson points visited by γ. The basic observable of interest is the
maximal length of the directed polymers,

L(t) = max
γ

l(γ). (3.1)
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Figure 5: Height and directed polymers for the droplet geometry

This is called point-to-point setting because both initial and final points are
fixed.

A modification of the problem consists in considering the set of directed
polymers starting from (0, 0) and ending in the segment Ut = {(y, z) ∈R2

+|y + z = 2t}. This is called the point-to-line problem and the maximal
length is denoted by Lℓ(t).

The link with the PNG model is apparent once we use the graphical point
of view explained in Section 2.3. In fact, for the PNG model, h(0, t) equals
the number of lines (up- and down-steps trajectories) crossed by any light-
like paths from (0, 0) to (0, t). In particular, one considers the paths which
cross them at the nucleation points and consist in straight segments between
these points. These are the directed polymers introduced above, up to a π/4
rotation, see Figure 5. Because of the π/4 rotation, if the density of Poisson
points in the PNG model and the directed polymer is the same, then h(0, t)
equals L(t/

√
2). To have a nicer formula, we set the density of Poisson points

to 2 for the PNG model and to 1 for the directed polymers. This implies
that L(t) = h(0, t) of the PNG droplet and Lℓ(t) = h(0, t) of the flat PNG,
both in distribution. Thus

lim
t→∞

P(

L(t) ≤ 2t + st1/3
)

= F2(s), lim
t→∞

P(

Lℓ(t) ≤ 2t + s2−2/3t1/3
)

= F1(s).

(3.2)

3.2 Longest increasing subsequences

Let SN denote the permutation group of the set {1, . . . , N}. For each per-
mutation σ ∈ SN , the sequence (σ(1), . . . , σ(N)) has an increasing subse-
quence of length k, (σ(n1), . . . , σ(nk)), if σ(n1) < σ(n2) < . . . < σ(nk) and
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n1 < n2 < . . . < nk. Denote by LN(σ) the length of the longest increasing
subsequences for the permutation σ. The problem of finding the asymptotic
law of LN for a uniform distribution on SN is also called Ulam’s problem
(1961) [75]. For a review around this problem, see [4]. Baik, Deift and Jo-
hansson in the seminal paper [6] determined the fluctuation law of LN . They
prove

lim
N→∞

P(LN ≤ 2
√

N + sN1/6) = F2(s), (3.3)

where F2 is the GUE Tracy-Widom distribution function. Compare (3.3)
with (3.2), the role of t is taken over by

√
N .

(3.3) is obtained using the Poissonized version of the problem, which is
the approach of the problem used by Hammersley [32]. Instead of fixing
the length of the permutations to N , one considers the set of permutations
S = ∪n≥0Sn and assigns the probability e−NkN/k! that a permutation is
in Sk. Baik et al. first prove that (3.3) holds for this problem, and then
obtain the result via a de-Poissonization method, consisting in bounding
from above and below the distribution of LN in terms of the Poissonized one.
In a statistical physics language, the problem with fixed N corresponds to
the canonical ensemble, the one with Poisson distributed length to the grand
canonical ensemble, and the N → ∞ limit to the thermodynamical limit. It
is not surprising that the equivalence of ensembles holds for the observable
LN . In fact, in the grand canonical ensemble the typical value of the number
of Poisson points is O(

√
N) apart from N . Thus the correction to LN is of

order 1, which is vanishing small compared to N1/6 as N → ∞.
The problem of the longest increasing subsequences in SN is equivalent

to the problem of finding the longest directed polymer from (0, 0) to (t, t)
when N points are distributed uniformly in the square [0, t]2. The directed
polymers on Poisson points is the Poissonized version. In fact, consider a
configuration of N points in the square [0, t]2. The length of the longest
directed polymer depends only on the order of their projections along both
axis. Without changing this order we can put them on {1, . . . , N}2. Thus to
each directed polymer there corresponds an increasing subsequence with the
same length. Hence the length of the longest directed polymer equals the
one of the longest increasing subsequence. See Figure 6 for an example.

3.3 Young tableaux

Let λ = (λ1, λ2, . . . , λk) be a partition of the integer N , i.e., satisfying
λ1 ≥ λ2 ≥ . . . λk ≥ 1 and

∑k
i=1 λi = N . λ is represented by a diagram with

k rows and with λi cells for row i, called Young diagram. A (standard)
Young tableau of shape λ is a Young diagram, where the cells are filled
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σ = (2, 3, 1, 5, 4)

P(σ) =

(

1 3 4
2 5

)

Q(σ) =

(

1 2 4
3 5

)

Figure 6: Longest increasing subsequences and directed polymers. (2, 3, 5)
and (2, 3, 4) are the two longest increasing subsequences. The directed poly-
mers of maximal length passes through the points labelled by (2, 3, 5) and
(2, 3, 4).

by the numbers 1, 2, . . . , N , increasingly in each row and column. The
Robinson-Schensted correspondence is a bijection between permutations
σ ∈ SN and pairs of Young tableaux (P(σ),Q(σ)) with N cells and the
same shape. The algorithm leading to (P(σ),Q(σ)) is the following [64].

One starts with a pair of empty tableaux P and Q and fills the
cells as follows:

P-tableau: for i from 1 to N , the number σ(i) is always placed
via row-bumping in the first row, i.e.,
a) if σ(i) is larger than all numbers in the first row of the
P-tableau, then append to the right of them,
b) otherwise put it at the place of the smallest entry in the first
row of P, which is larger than σ(i).
In case b), the entry which was replaced is now placed via
row-bumping in the second row. If an entry is replaced in the
second row, then it is placed via row-bumping in the third row,
and so on.

Q-tableau: At each step in the generation of the P-tableau, its
shape is enlarged by one cell. For each i from 1 to N , put the
number i at the position where a new cell appeared at step i in
the P-tableau.
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i 1 2 3 4 5

σ(i) 2 3 1 5 4

P 2 2 3 1 3
2

1 3 5
2

1 3 4
2 5

Q 1 1 2 1 2
3

1 2 4
3

1 2 4
3 5

Table 1: Construction of the Young tableaux P(σ) and Q(σ) for the permu-
tation σ = (2, 3, 1, 5, 4).

As an illustration in Table 1 we show the construction of the Young tableaux
for the permutation σ = (2, 3, 1, 5, 4) of Figure 6. By construction, the
Young tableaux P(σ) and Q(σ) have the same shape. Given a permutation
σ ∈ SN , one places the points on N2 with coordinates (i, σ(i)) and draws the
lines as in Figure 6. Notice that the first row of P(σ) contains precisely the
positions of the horizontal lines at abscissa N + 1/2, likewise the first row of
Q(σ) contains the positions of the vertical lines at ordinate N + 1/2. This
property holds for all permutations which means that [4]

LN(σ) = λ1(σ). (3.4)

Consequently, a way to determine the asymptotic behavior of LN is by
analyzing the length of the first row of Young tableaux [76, 44]. The measure
on the set of partitions of {1, . . . , N}, YN , induced by the uniform measure on
SN via the RS correspondence is the Plancherel measure PlN ; let dλ denote
the number of Young tableaux of shape λ, then

PlN(λ) =
d2

λ
∑

µ∈YN
d2

µ

, λ ∈ YN . (3.5)

The lengths λ2(σ), λ3(σ), . . . also have an interpretation in terms of di-
rected polymers. This is discussed in Section 4.2.

3.4 A directed percolation model

Motivated by the discrete anisotropic directed polymers model of Rajesh
and Dhar [60], one can reformulate the PNG model starting from a directed
polymer picture as follows. We take a stack of horizontal planesR2×N ⊂ R3.
Neighboring planes are connected by vertical bonds placed randomly. One
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introduces the percolation cluster P ⊂ R2×N as follows. In each plane there
is perfect directed percolation, i.e., if (x, y, k) ∈ P then {(x′, y′, k)|x′ ≥ x, y′ ≥
y} ⊂ P . Percolation between adjacent planes occurs through the bonds, i.e.,
if there is a bond from (x, y, k) to (x, y, k+1), then (x, y, k+1) ∈ P whenever
(x, y, k) ∈ P .

If the position of the bonds between planes are given by independent
Poisson processes of intensity 1, then the cluster spreading from the origin,
(0, 0, 0), corresponds to the point-to-point directed polymer. The height of
the cluster at (x, y) is the largest k such that (x, y, k) ∈ P . Thus the height
at (x, y) equals, in distribution, the length of the longest directed polymer
from (0, 0) to (x, y). Similarly, the point-to-line directed polymer corresponds
to the cluster spreading from the line {(x, y, k)|x + y = 0, k = 0}. Define
the time axis as {(x, x)|x ∈ R+}. Then the PNG dynamics is recovered by
slicing the percolating cluster perpendicularly to the time axis.

The percolation cluster arises as the continuum limit of the discrete model
of Rajesh and Dhar [60]. It appears also in the limit of large alphabets for a
model of sequence aligning [46].

3.5 Interacting particle models

The kink-antikink gas

Bennet et al. [11] studied an idealized model for solitons in the sine-Gordon
model. There are two types of solitons, called kinks and antikinks. Kinks
move to the left with velocity −1, antikinks to the right with velocity 1.
The solitons are point-like and do not interact, with the exception that, if a
kink and an antikink collide, they annihilate each other. On the other hand,
there is a constant uniform rate of production of kink-antikink pairs, which
immediately move apart with unit speed. In [11] the stationary distribution
of the kink-antikink gas is studied on a finite ring and in the thermodynamic
limit. From the description of the PNG model it is clear that the kinks
and antikinks can be identified with the up- and down-steps of the PNG
height profile. Thus any result for the PNG model has a translation to
statements for the kink-antikink gas and vice versa, provided initial and
boundary conditions match. For example, the height above the origin for
flat PNG equals the number of kinks and antikinks that passed through the
origin (with vacuum as initial condition).
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Hammersley process

In order to tackle the longest increasing subsequence problem, Hammers-
ley [32] used a particle system to prove that limN→∞E(LN)/

√
N exists, see

also [3, 65]. There is only one kind of particles on [0, T ], which sometimes
jump to the left a certain distance, but otherwise are at rest. The position
x = T serves as particle reservoir and initially no particles are in [0, T ). If a
particle jumps, it jumps to the left to a position uniformly chosen in the in-
terval between the particle and its left neighbor (or, for the left-most particle,
the origin). The jump rate for each particle is proportional to the distance to
its left neighbor. Particles do not cross under the dynamics. Moreover, the
space-time points where the particles land form a Poisson point process in
[0, T )×R+ with uniform density. It is easy to see that for a given realization
of Poisson points, the space-time trajectories of the particles correspond, up
to a π/4 rotation, to the light-like lines generated by the nucleations in the
PNG model of Figure 5. The PNG with sources corresponds to the Ham-
mersley process with sources and sinks [15].

4 Description of the PNG via line ensembles

4.1 Non-intersecting line ensembles

The surface height of the PNG model at time T , x 7→ h(x, T ), does not
contain anymore the information of the position of the Poisson points, be-
cause whenever two steps collide, information is lost. Therefore the measure
induced by the Poisson process on the set of heights is not easy to describe.
A way of recording the lost information is to extend the model to a multi-
layer version. This is achieved using the Robinson-Schensted-Knuth (RSK)
construction [77].

Instead of a single line x 7→ h(x, t) evolving in time according to the
PNG dynamics, one considers a set of lines {x 7→ hℓ(x, t)|ℓ ≤ 0}, with the
identification h0 ≡ h. The initial condition is hℓ(x, 0) = ℓ, x ∈ R, ℓ ≤ 0.
The deterministic dynamics is identical for all the lines. Only the stochastic
part differs as follows. The first line follows the PNG dynamics as explained
in Section 2. If at time t an up- and a down-step annihilate at position x,
one records the information in the second line in the form of a nucleation
event at (x, t). This procedure is repeated recursively, that is, the nucleation
events in the line hℓ−1 correspond to the annihilation events in the line hℓ.

As for the single line, also for the multilayer version of the PNG model
there is a geometric point of view. In space-time, when two light-like lines
generated by the Poisson points meet, they become light-like lines for the
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Figure 7: RSK construction up to time t = T . The nucleation events of level
−1 are the empty dots and the light-like lines of level 2 are the dotted lines.
The corresponding line ensemble is represented above.

second level. More generally, when two light-like lines of level ℓ meet, they
continue as lines of level ℓ−1. This is illustrated in Figure 7. By construction,
the number of lines of level ℓ crossed along any time-like path from (x, 0) to
(x, t) is greater than the one of level ℓ− 1, for all ℓ ≤ 0. Therefore the set of
lines has the non-intersecting property

hℓ(x, t) ≥ hℓ−1(x, t) + 1 (4.1)

for all x ∈ R, t ≥ 0, ℓ ≤ 0.

Non-intersecting line ensemble for t = T

The RSK construction gives us the set of height functions {hℓ, ℓ ≤ 0}. If we
want to look at the PNG height at fixed time, say t = T , we consider the set
of height functions x 7→ hℓ(x, T ), ℓ ≤ 0. By (4.1) {hℓ(·, T ), ℓ ≤ 0} is a set
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of non-intersecting lines with x 7→ h0(x, T ) the surface profile at time T , see
Figure 7.

Non-intersecting line ensemble for other space-time cuts

In some situations, as in the work on the flat PNG [20], it can be convenient
to analyze a line ensemble which corresponds to another space-time cut.
Consider a continuous and piecewise differentiable path γ : I → R × [0, T ],
I ⊂ R an interval. Then the line ensemble corresponding to γ, denoted
by {Hℓ, ℓ ≤ 0}, is given by Hℓ(s) = hℓ(γ(s)), s ∈ I, ℓ ≤ 0. It is a non-
intersecting line ensemble because of (4.1).

4.2 Line ensembles and (real valued) Young tableaux

We now explain the connection between line ensembles and Young tableaux.
The height of the PNG surface above x = 0 at time t depends only on the
Poisson points in the backward light cone of (0, T ), i.e., on △(0,T ) = {(x, t) ∈R×R+ s.t. |x| ≤ T −t}. Let us consider the two space-time cuts γ1, γ2 given
by

s 7→ γ1(s) = (T − s, s), s ∈ [0, T ],

s 7→ γ2(s) = (s − T, s), s ∈ [0, T ]. (4.2)

Denote by {H(1)
ℓ , ℓ ≤ 0}, resp. {H(2)

ℓ , ℓ ≤ 0}, the line ensemble along γ1, resp.
γ2. From these two line ensembles we construct a pair of Young tableaux
(Y1, Y2) as follows. Let us start with Y1. Let 0 < s1 < s2 < . . . < T be the

positions of steps in the line ensemble {H(1)
ℓ , ℓ ≤ 0}. Let ℓi denote the line

in which the step at si occurs. Then Yk has the entry i in row j if the step at
si happens in the line H

(1)
1−j, i.e., if ℓi = 1− j. Y2 is obtained in the same way

with step positions along γ2. On the other hand we can define a permutation
σ ∈ SN , with N the number of Poisson points in △(0,T ), by recording the
relative positions of the projections of the Poisson points along γ1 and γ2.
More precisely, we set (y, z) = (t+x, t−x) and label the Poisson points such
that zi ≤ zi+1. Then, σ is the permutation such that yσ(i) ≤ yσ(i+1). See
Figure 8 for a simple example. At first glance surprisingly, we have

Y1 = P(σ), Y2 = Q(σ). (4.3)

But a closer inspection reveals that the multilayer PNG dynamics is just a
translation of the algorithm in Section 3.3. In particular, this implies that

H
(1)
ℓ (T ) = H

(2)
ℓ (T ) = λ1−ℓ + ℓ (4.4)
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Figure 8: Young tableaux and line ensembles.

where λ0, λ1, . . . are the length of the rows of the Young tableaux.
For the PNG droplet studied in [57], the measure on the Young tableaux

is the Poissonized Plancherel measure. For flat PNG the measure induced by
the Poisson points can still be studied if we introduce the symmetric images
of the Poisson points with respect to the t = 0 axis, see [20] for details.
In [33] a version of the PNG droplet is studied where the Poisson points are
symmetric with respect to x = 0. These two symmetries correspond to two
different involutions on the corresponding permutations, denoted by � and
� in [9].

Length of the rows of Young tableaux. Given the permutation σ as
above, the interpretation of λi(σ), i = 1, . . . , k, follows from a theorem of
Greene [31]. Let, for i ≤ k, ai(σ) be the length of the longest subsequence of
σ consisting of i disjoint increasing subsequences. Greene proves that

ai(σ) = λ1 + · · · + λi. (4.5)

In terms of directed polymers, ak is the maximal sum of the lengths of k non-
intersecting directed polymers from (0, 0) to (t, t), where non-intersecting
means without common Poisson points.

Real-valued Young tableaux. From a different point of view, the line en-
sembles can be regarded as a generalization of Young tableaux for real valued
entries. Consider a configuration of Poisson points with N points in △(0,T )

ordered as above. Then one can run the Robinson-Schensted algorithm with
the replacements,

i −→ zi, σ(i) −→ yi, (4.6)

for i = 1, . . . , N . In this way one obtains a pair of Young tableaux with yi, zi

as entries. This pair of real-valued Young tableaux contains exactly the same

18



information as the line ensembles (H
(1)
ℓ , H

(2)
ℓ ). More precisely, yi (resp. zi) is

in row j of P (resp. Q) if there is a step in the line H
(1)
1−j at yi (resp. in the

line H
(k)
1−j at zi).

4.3 Point process associated with the line ensemble

Our goal is to analyze the surface height h(x, T ). Therefore it is natural to
consider the line ensemble for t = T , {x 7→ hℓ(x, T ), ℓ ≤ 0}. Let us define
the extended point process ηT on R× Z given by

ηT (x, j) =

{

1, if there is a line passing through (x, j),
0, otherwise.

(4.7)

ηT is an extended point process in the sense that, for any fixed x ∈ R, ηT (x, ·)
is a point process on Z [50]. One can interpret the lines as trajectories of
fermions in imaginary time (reflecting the non-intersecting condition) where
the particles, thus the associated point process, evolve following a given (sto-
chastic) dynamics [57]. We now explain the structure of the point process ηT

and the edge scaling for the PNG droplet and flat PNG.

Point process for PNG droplet: determinantal

For the PNG droplet it is enough to consider the line ensemble for x ∈
[−T, T ], since for x ≤ −T and x ≥ T the lines are straight with hℓ(±T ) = ℓ,
ℓ ≤ 0. As shown in [57], the measure on the configurations is the uniform
one. Using the transfer matrix method it is shown that ηT is an extended
determinantal point process, which means that the n-point correlation func-
tions ρ(n)(x1, j1; . . . ; xn, jn) can be expressed as a n×n determinant. For the
PNG droplet the kernel is the extended Bessel kernel BT (x1, j1; x2, j2), thus

ρ(n)(x1, j1; . . . ; xn, jn) = det
(

BT (xk, jk; xl, jl)
)

1≤k,l≤n
. (4.8)

To analyze the surface one defines the edge scaling of the point process,
compare with (2.5), by

ηedge
T (τ, s) = T 1/3ηT (τT 2/3, ⌊2T

√

1 − τ 2T−2/3 + sT 1/3⌋). (4.9)

In the T → ∞ limit, this extended point process converges to the extended
determinantal point process on R×R with extended Airy kernel

A(τ2, s2; τ1, s1) =

{
∫ 0

−∞
dλ eλ(τ2−τ1) Ai(s1 − λ) Ai(s2 − λ), for τ2 ≥ τ1,

−
∫ ∞

0
dλ eλ(τ2−τ1) Ai(s1 − λ) Ai(s2 − λ), for τ2 < τ1.

(4.10)
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where Ai is the Airy function as given in [1]. In particular for τ1 = τ2 (4.10)
is equal to

A(s2; s1) =
Ai(s2) Ai′(s1) − Ai′(s2) Ai(s1)

s2 − s1

, (4.11)

the classical Airy kernel [69].
Let hresc

T be the rescaled height as defined in (2.5). The joint-distribution
of hresc

T at positions τ1, . . . , τn can be written as a Fredholm determinant and
in the limit of large growth time T

lim
T→∞

P(

n
⋂

k=1

{hresc
T (τk) ≤ sk}

)

= det(1− f 1/2Af 1/2)L2((τ1,...,τn)×R) (4.12)

with fj(s) = Θ(s − sj). In this way in [57] the convergence of hresc
T to the

Airy process is determined in the sense of finite-dimensional distributions.

The Airy process

The Airy process is defined by its finite-dimensional distribution [57, 40].
For given s1, . . . , sn ∈ R and τ1 < . . . < τn ∈ R, we define f on Λ =
{τ1, . . . , τn} ×R by f(sj, x) = χ(sj ,∞)(x). ThenP(A(τ1) ≤ s1, . . . ,A(τn) ≤ sn) = det(1− f 1/2Af 1/2)L2(Λ,dnx)

with A the integral operator with extended Airy kernel.
The Airy process A was first introduced in [57] in the context of the PNG

droplet. There it was shown that A(t) has a version which is almost surely
continuous, stationary in t, and invariant under time-reversal. Its single time
distribution is given by the GUE Tracy-Widom distribution. In particular,
for fixed t, P(A(t) > y) ≃ e−y3/24/3 for y → ∞,P(A(t) < y) ≃ e−|y|3/12 for y → −∞, (4.13)

Thus the Airy process is localized. Define the function g by

Var(A(t) −A(0)) = g(t). (4.14)

From [57] we know that g grows linearly for small t and that the Airy process
has long range correlations:

g(t) =

{

2t + O(t2) for |t| small,
g(∞) − 2t−2 + O(t−4) for |t| large.

(4.15)

with g(∞) = 1.6264 . . .. The coefficient 2 in front of t−2 is determined
in [2, 78]. The Airy process has been recently investigated and a set of
PDE’s [2] and ODE’s [72, 73] describing it are determined.
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Point process for flat PNG: Pfaffian

The case of the flat PNG is more difficult and, up to now, the analysis shown
above is carried out only at fixed position. Because of spatial translation
invariance, we can choose the reference position to be x = 0. We define the
edge scaling of the point process as

ηedge
T (s) = 2−2/3T 1/3ηT (0, ⌊2T + s2−2/3T 1/3⌋). (4.16)

The factor 2−2/3 is only for convenience, compare with (2.7). It will make
the connection with GOE random matrices more transparent.

The structure of this point process is not determinantal as for the PNG
droplet. In [20] we analyze it and prove that it converges weakly to a Pfaffian
point process denoted by ηGOE. More precisely, it is shown that for smooth
test functions of compact support f1, . . . , fm, m ∈ N,

lim
T→∞

E(

m
∏

k=1

ηedge
T (fk)

)

= E(

m
∏

k=1

ηGOE(fk)
)

. (4.17)

This point process appears also in the edge scaling limit of the eigenvalues
of GOE random matrices (see Section 5.3), hence the name ηGOE. ηGOE

is a Pfaffian point process with kernel KGOE, i.e., the n-point correlation
functions ρ(n)(s1, . . . , sn) are given by

ρ(n)(s1, . . . , sn) = Pf
(

KGOE(si, sj)
)

1≤k,l≤n
(4.18)

where KGOE is a 2×2 matrix kernel. For an antisymmetric matrix A of even
dimensions, one has the identity Pf(A)2 = det(A). The entries of KGOE are
given by

KGOE
1,1 (s1, s2) =

∫ ∞

0

dλ Ai(s1 + λ) Ai′(s2 + λ) − (s1 ↔ s2), (4.19)

KGOE
1,2 (s1, s2) =

∫ ∞

0

dλ Ai(s1 + λ) Ai(s2 + λ) +
1

2
Ai(s1)

∫ ∞

0

dλ Ai(s2 − λ),

KGOE
2,1 (s1, s2) = −KGOE

1,2 (s2, s1)

KGOE
2,2 (s1, s2) =

1

4

∫ ∞

0

dλ

∫ ∞

λ

dµ Ai(s1 − λ) Ai(s2 − µ) − (s1 ↔ s2),

with (s1 ↔ s2) standing for the previous term with s1, s2 interchanged.

5 Random Matrices

In this section we introduce the Gaussian ensembles of random matrices, the
Tracy-Widom distributions, and the multi-matrix models. The literature
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on random matrix is large, the standard reference book is [47], see also the
review [53].

5.1 Gaussian ensembles of random matrices

Let us define the two random matrix ensembles which are linked to the PNG
droplet and the flat PNG.

Gaussian unitary ensemble (GUE)

One defines a Gaussian measure on the set Ω of N × N complex Hermitian
matrices which is invariant under unitary transformations. Let H ∈ Ω, thenP(H)dH =

1

Z
exp(−Tr(H2)/2N)dH (5.1)

where dH =
∏N

i=1 dHi,i

∏

1≤i<j≤N dRe(Hi,j)dIm(Hi,j) is the product measure
on the independent coefficients of N . Here and below Z stands for the proper
normalization constant. The scaling factor 1/2N in (5.1) is chosen in order
to simplify the comparison with the results on the PNG.

One interesting quantity of random matrices is the distribution of the
eigenvalues λ1, . . . , λN , which is obtained by integrating over the unitary
group. The result isP2,N(λ1, . . . , λN)dλ1 · · · dλN =

1

Z
|∆N(λ)|2

N
∏

j=1

e−λ2

j/2Ndλj, (5.2)

with ∆N(λ) the Vandermonde determinant

∆N(λ) = det(λj−1
i )N

i,j=1 =
∏

1≤i<j≤N

(λj − λi). (5.3)

Gaussian orthogonal ensemble (GOE)

In this case the matrices are real symmetric and the measure is invariant
under orthogonal transformations. The probability distribution takes the
same form as in (5.1), with the reference measure dH =

∏

1≤i≤j≤N dHi,j.
The integration over the orthogonal group leads to the distribution of the
eigenvalues λ1, . . . , λNP1,N(λ1, . . . , λN)dλ1 · · · dλN =

1

Z
|∆N(λ)|

N
∏

j=1

e−λ2

j/2Ndλj. (5.4)
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5.2 Edge scaling, Tracy-Widom distributions

One can focus on the largest eigenvalue’s distribution when the size of the
matrices N is large. The largest eigenvalue, λmax, takes value close to 2N and
its fluctuations are of order N1/3 [48, 27, 69]. Tracy and Widom determined
the scaling function of λmax with the following result [69, 70], see also their
review paper [71]. Let Fβ,N(t) = Pβ,N(λmax ≤ t), then Fβ(s) defined by

Fβ(s) = lim
N→∞

Fβ,N

(

2N + sN1/3
)

(5.5)

exists for β = 1, 2. F1 and F2 are called the GOE and GUE Tracy-Widom
distribution respectively. More precisely,

F2(s) = exp
(

−
∫ ∞

s

(x−s)q2(x)dx
)

, F1(s) = exp
(

−1

2

∫ ∞

s

q(x)dx
)

F2(s)
1/2

(5.6)
where q is the unique solution of the Painlevé II equation q′′ = sq + 2q3

satisfying the asymptotic condition q(s) ∼ Ai(s) for s → ∞.

5.3 Eigenvalues’ point process and its edge scaling

We now define the point process of the eigenvalues λ1, . . . , λN .

GUE point process: determinantal

We denote by ζGUE
N the point process onR of the GUE eigenvalues λ1, . . . , λN ,

i.e.,

ζGUE
N (λ) =

N
∑

j=1

δ(λ − λj), λ ∈ R, (5.7)

with the abuse of notation δ(λ − λj) for the Dirac measure δλi
. ζGUE

N is a
determinantal point process, see for example Chapter 5 of [47], with kernel
given by the Hermite kernel

KH
N(x, y) =

pN(x)pN−1(y) − pN−1(x)pN(y)

x − y
e−(x2+y2)/4N , (5.8)

where pk(x) = (2πN)−1/4(2kk!)−1/2pH
k (x/

√
2N) with the (standard) Hermite

polynomials pH
k (x) = ex2 dk

dxk e−x2

.
The edge scaling of the point process ζGUE

N corresponding to (5.5) is

ηGUE
N (ξ) = N1/3ζGUE

N (2N + ξN1/3). (5.9)
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The limit point process
lim

N→∞
ηGUE

N = ηGUE (5.10)

is well defined. It is the determinantal point process with Airy kernel (4.11).
The GUE Tracy-Widom distribution F2(s) can also be written as a Fredholm
determinant

F2(s) = det(1− A)L2((s,∞),dx) (5.11)

with A the integral operator with Airy kernel. For more information on
determinantal point processes, see for example [66].

GOE point process: Pfaffian

In the same way as for GUE we define the point process of the GOE eigen-
values ζGOE

N . For even N , ζGOE
N is a Pfaffian point process, see for example

Chapter 6 of [47]. For more recent developments on Pfaffian point processes
see [59, 67]. The edge rescaled point process is then given by

ηGOE
N (ξ) = N1/3ζGOE

N (2N + ξN1/3). (5.12)

In the N → ∞ limit, the point process ηGOE
N converges [70] to the point

process ηGOE which has correlation functions given by (4.18). One conse-
quence is that the distribution of the largest eigenvalue can be written as a
Fredholm Pfaffian (see Chapter 8 of [59]) or Fredholm determinant on the
measurable space ((s,∞), dx)

F1(s) = Pf(J − KGOE) =
√

det(1+ JKGOE) (5.13)

with J(x, y) = δx,y

(

0 1
−1 0

)

. An interpretation of the Fredholm determi-

nant as the one on the operator with integral kernel KGOE needs some care
as pointed out by Tracy and Widom in [74], where they actually prove that
the finite-N Fredholm determinant converges to F1(s).

The GOE kernel being a 2 × 2 matrix is not uniquely defined. In fact
using Pf(X tKX) = det(X) Pf(K) [68] one obtains a family of kernels K
leading to the same correlation functions. For example, the kernels reported
in [28, 33] differ slightly from (4.19), but they are equivalent since they yield
the same point process.

Very recently a new formula for the GOE Tracy-Widom distribution F1

was established. Let B(s) be the operator with kernel B(s)(x, y) = Ai(x +
y + s). It then holds

F1(s) = det(1− B(s)) (5.14)

where the Fredholm determinant is on L2(R+). This is proven in [25] starting
from the work on the flat KPZ growth [63].
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5.4 Multimatrix model: Dyson’s Brownian motion

Dyson [17] noticed that the distribution of eigenvalues (5.2) and (5.4) is
identical to the equilibrium probability distribution of the positions of N
point charges, free to move in R under the forces deriving from the potential
U at inverse temperature β, with

U(x1, . . . , xN) = −
∑

1≤i<j≤N

ln |xi − xj| +
1

2Nβ

N
∑

i=1

x2
i . (5.15)

In the attempt to interpret the Coulomb gas as a dynamical system Dyson
considered the positions of the particles in Brownian motion subjected to
the interaction forces −∇U and a frictional force f (which fixes the rate
of diffusion, or equivalently, the time scale). He showed that in terms of
random matrices, this is equivalent to the evolution of the eigenvalues when
the independent coefficients of the matrix H = H(t) evolve as independent
Ornstein-Uhlenbeck processes given by

P (H(t) = H|H(0) = H0)dH =
1

Z
exp

(

−Tr(H − qH0)
2

2N(1 − q2)

)

dH (5.16)

with q = exp(−t/2N). The evolution of the eigenvalues satisfies the set of
stochastic differential equation

dλj(t) =

(

− 1

2N
λj(t) +

β

2

N
∑

i=1,
i6=j

1

λj(t) − λi(t)

)

dt + dbj(t) , j = 1, ..., N,

(5.17)
with {bj(t), j = 1, ..., N} a collection of N independent standard Brownian
motions. The parameter β is 1 for GOE and 2 for GUE. We refer to the sta-
tionary process of (5.17) as Dyson’s Brownian motion (for the eigenvalues).
Note that for β ≥ 1 the process is well defined because there is no crossing
of the eigenvalues, as proved by Rogers and Shi [61].

5.5 GUE extended point process

The GUE eigenvalues {λi(t), i = 1, . . . , N} define an extended point process
on R+ ×R,

ζGUE
N (t, λ) =

N
∑

j=1

δ(λ − λj(t)). (5.18)
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It is a determinantal point process [18] with kernel given by the extended
Hermite kernel1,

KH
N (t2, λ2; t1, λ1) =

{
∑−1

k=−N ek(t2−t1)/2Npk(λ1)pk(λ2)e
−(λ2

1
+λ2

2
)/4N , t2 ≥ t1,

−∑∞
k=0 ek(t2−t1)/2Npk(λ1)pk(λ2)e

−(λ2

1
+λ2

2
)/4N , t2 < t1,

(5.19)
where pk(x) = pH

N+k(x/
√

2N)(
√

2πN2kk!)−1/2 and pH
k (x) the standard Her-

mite polynomials.
The GUE Dyson’s Brownian motion is stationary and the edge scaling is

the following. Let ti = 2τiN
2/3, λi = 2N + siN

1/3, i = 1, 2. In the limit of
large N , KH

N converges in the edge scaling limit to the extended Airy kernel

lim
N→∞

N1/3KH
N(2τ2N

2/3, 2N+s2N
1/3; 2τ1N

2/3, 2N+s1N
1/3) = A(τ2, s2; τ1, s1).

(5.20)
This convergence is uniform for s1, s2 ∈ [a,∞) for any fixed a ∈ R, see for
example Appendix A.7 of [21]. Moreover, since it has (super-)exponential
decay for large s1, s2 → ∞, one deduces that the largest eigenvalue converges
to the Airy process in the sense of finite-dimensional distributions,

lim
N→∞

N−1/3(λmax(2τN2/3) − 2N) = A(τ). (5.21)

6 PNG model, Young tableaux, and random

matrices

6.1 PNG model

Although the PNG model and the random matrix ensembles describe systems
completely different, we can associate some point process via the multilayer
extension and the integration over the symmetry groups, respectively. The
point processes happen to have the same mathematical structure:

(a) determinantal point processes for PNG droplet and GUE random ma-
trices,

(b) Pfaffian point processes for flat PNG and GOE random matrices.

Moreover we have seen that, in the appropriate scaling limit, they converge
to the same limit objects. Thus the distribution of the largest eigenvalue and

1According to [73] this was already described in a MSRI lecture (2002) by Kurt Jo-
hansson. It can be derived for example using Theorem 1.7 of [39], details can be found for
example in Appendix A.6 of [21].
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the height of the PNG at fixed position have the same fluctuations in the
asymptotic limit.

One natural question is whether such a connection still exists at the level
of joint-distribution (extended point processes). The extended point process
for the PNG model is naturally defined from the line ensemble. As explained
in Section 5.4 one defines the so-called Dyson’s Brownian motion (multi-
matrix ensembles) and associates to it an extended point process. For GUE
random matrices it turns out that the extended point process has, in the
limit of large matrix dimension N , the extended Airy kernel, the same as for
the PNG droplet. As a consequence, the (droplet) surface height and the
evolution of the largest (GUE) eigenvalue are described by the same process
in the asymptotic limit [22]: the Airy process.

For GOE random matrices the answer is not known. It is conjectured that
the surface height of the flat PNG and the evolution of the largest (GOE)
eigenvalue converge to the same limit process. The result of Ferrari [20] makes
this conjecture more plausible. In fact, we now know that, not only h(0, T )
in the limit T → ∞ and properly rescaled is GOE Tracy-Widom distributed,
but also that the complete point process ηT converges to the edge scaling
of Dyson’s Brownian motion with β = 1 for fixed time. For β = 1 Dyson’s
Brownian motion this structure has not been unraveled and the question
remains open. Very recently, Sasamoto [63] obtained a process in the context
of the totally asymmetric exclusion process, which, by universality, should
describe also the surface height of the flat PNG.

From the point of view of multi-matrices, the difficulty is the fact that
the Harish-Chandra/Itzykson-Zuber formula doesn’t have a particularly nice
analogue for symmetric matrices. From the point of view of the SDE (5.17)
the problem lies in the different factor in front of the drift term, which seems
to make it impossible to regard the process as Doob transforms of N inde-
pendent processes [43].

There are other models with the same mathematical structure and show-
ing the same limit behaviour (and scaling functions): the 3D-Ising cor-
ner [52, 24] and the Aztec diamond [38, 40] which are linked via domino
tilings, the vicious random walks and the non-colliding Brownian particles,
see for example [49, 42], and the totally asymmetric exclusion process [26, 63].
Some of the problems presented above can be solved by using orthogonal
polynomials point of view instead of the more geometric line ensembles, see
for example the review [43]. In this context the relevant processes are the
Schur process [52] and its Pfaffian analogue [34, 14].
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6.2 Young tableaux

In Section 4.4 we described the connection between the length of the row of
the Young tableaux and the point process of the multilayer PNG. Above we
explained the connection between the multilayer PNG and the eigenvalues
of random matrices. Putting the two arguments together it follows that
there is a connection between Young tableaux and random matrices. After
having seen that the length of the first row of Young tableaux under the
Plancherel measure (3.5) and the largest eigenvalue have the same statistics
in the asymptotic limit, it was conjectured by Baik, Deift, and Johansson that
the connection would extend to the top rows, respectively top eigenvalues.
They proved it for the second row in [5] and the first proof for all top rows
is due to Okounkov [51]. Other proofs are in [37, 12]. In the work on
flat PNG [20] the point process with symmetric images was studied, which
corresponds to the involution � for permutations. In this case, the measure
on the Young tableaux becomes Pl

(1)
N (λ) = dλ, λ ∈ Y

(1)
N , Y

(1)
N being the

restriction of YN to the Young tableaux with λi even for all i. From the
proof for the flat PNG [20] it follows that the top rows of Y

(1)
N and the top

eigenvalues of GOE have the same limit joint-statistics.
We first learned of the connection between the Young tableaux and the

random matrix ensembles for the GOE and GSE random matrix ensembles
by Sasamoto [62], where he deduced the connection starting from the PNG
half-droplet [33]. For the GOE case the restriction that all λi have to be even
is not required. This result is also obtained by Forrester, Nagao, and Rains
in [29] using an approach with orthogonal polynomials.
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