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Abstract

Time correlations for KPZ growth in 1+1 dimensions are reconsidered.
We discuss flat, curved, and stationary initial conditions and are interested
in the covariance of the height as a function of time at a fixed point on the
substrate. In each case the power laws of the covariance for short and long
times are obtained. They are derived from a variational problem involving
two independent Airy processes. For stationary initial conditions we derive
an exact formula for the stationary covariance with two approaches: (1) the
variational problem and (2) deriving the covariance of the time-integrated
current at the origin for the corresponding driven lattice gas. In the sta-
tionary case we also derive the large time behavior for the covariance of the
height gradients.

1 Introduction

Because of novel experiments [48–50] and exact solutions (see surveys and lecture
notes [11, 15, 26, 41, 44]), there is a continuing interest in growing surfaces in the
Kardar-Parisi-Zhang (KPZ) universality class [35], in particular for the case of
1 + 1 dimensions. The object of interest is a height function h(x, t) over the one-
dimensional substrate space, x ∈ R, at time t ≥ 0, which evolves by a stochastic
evolution. Examples are the KPZ equation itself, the single step model, polynu-
clear growth, Eden type growth, and more. The spatial statistics, x 7→ h(x, t) at
large, but fixed time t is fairly well understood. The typical size of the height
fluctuations is of order t1/3 and the correlation length grows as t2/3. The precise
spatial statistics depends on the initial conditions. Three canonical cases have
been singled out, which are flat, step (also curved), and stationary. On the other
hand, our understanding of the correlations in time is more fragmentary. For the
point-to-point semi-discrete directed polymer, which corresponds to curved initial
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data, Johansson [33] recently derived the long time asymptotics of the joint dis-
tribution of (h(0, τ t), h(0, t)), τ fixed, t → ∞. In an earlier work on the same
quantity [20] Dotsenko obtains a replica solution of the KPZ equation. In both
cases the final result is an infinite series, from which it seems to be difficult to
extract more explicit information1. For us, this state of affairs is one motivation
to reconsider the issue of the KPZ time correlations.

The most basic observable is the temporal correlation function

C⋄(t0, t) = Cov(h(0, t0), h(0, t))

= E(h(0, t0)h(0, t))−E(h(0, t0))E(h(0, t)).
(1.1)

Here the superscript ⋄ stands for the initial conditions, which are denoted by either
“flat”, “step”, or “stat”. In the stationary case the covariance depends only on
t− t0. But for flat and curved both arguments have to be kept.

The correlation (1.1) has been measured in the turbulent liquid crystal experi-
ment by Takeuchi and Sano [50] and is also determined numerically by Singha [47]
(for the step case) and Takeuchi [49] in the closely related Eden cluster growth.
The large t scaling behavior is reported as

Cflat(t0, t) ≃ (t0)
4/3t−2/3, Cstep(t0, t) ≃ (t0)

2/3, (1.2)

where we ignored the model-dependent prefactors, see Section 2.6 of [50] for more
details. Thus in the curved case the correlation of the unscaled height function
does not decay to 0 for large t, which is surprising at first sight. The rough
explanation is as follows (see also [34]): In the flat case the height h(0, t) depends
on the nucleation events in the backward light cone with base points x such that
|x| ≤ t2/3 and so does h(0, t0) with |x| ≤ (t0)

2/3. On the other side, in the curved
case the domain of dependence has the form of a cigar of width t2/3, resp. (t0)

2/3,
since at short times only the few nucleation events close to the initial seed are
available. Estimating the overlap in each case results in the distinct behavior as
stated in (1.2).

In our contribution we consider the covariance

C⋄
t (τ) = t−2/3C⋄(τt, t). (1.3)

rescaled according to the KPZ scaling theory. Thus one expects the limit

lim
t→∞

C⋄
t (τ) = C⋄(τ) (1.4)

to exist. Without loss of generality one may set 0 ≤ τ ≤ 1. To study C⋄(τ), we
consider last passage percolation (LPP) as a particular model in the KPZ univer-
sality class. In this model at zero temperature, the height function is represented
through the energy of an optimal directed polymer in a random medium, which is

1In [21] progress has been achieved recently at the level of joint distribution functions for
curved initial data in the limit τ → 1.
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tightly related with the totally asymmetric simple exclusion process (TASEP), see
Section 2. We first obtain an expression for C⋄(τ) based on a variational problem
involving two independent Airy processes. This looks complicated, but we succeed
in studying the power law behavior of C⋄(τ) for τ close to 0 and 1, see (2.6)-(2.7).
In the first limit our result is in agreement with the behavior stated in (1.2). For
stationary initial conditions we even obtain the entire limiting Cstat(τ). Proving
our result mathematically rigorously is technically difficult and goes beyond the
scope of this paper.

An alternative approach comes from switching to local slopes, ∂xh(x, t), which
are then governed by a type of stochastic particle dynamics. For example, the slope
of the single step model is equivalent to the TASEP. The process t 7→ ∂th(0, t) =
j(t) is stationary and the covariance Cov(j(t), j(t′)) depends only on t − t′. In
the particle picture Cov(j(t), j(0)) is the correlation of the current (density) across
the origin. We argue that

∫

R
dtCov(j(t), j(0)) = 0 and Cov(j(t), j(0)) ≃ −|t|−4/3

for large |t|, see (3.25). Thereby we arrive at an expression for Cstat(τ) which is
identical to the one obtained by the LPP method. In fact, Cstat(τ) equals the
covariance of fractional Brownian motion with Hurst exponent 1

3
. However, since

the rescaled height function is expected to converge to a limit with Baik-Rains
distribution, the limiting height process cannot be Gaussian (this is proven for a
few models [8, 25, 27, 40]).

Our contribution consists of three parts. In Section 2 we investigate C⋄(τ)
in the framework of directed polymers. In Section 3 we study the current time
correlations for stationary lattice gases and in Section 4 we report on Monte-Carlo
simulations of the TASEP in support of our theoretical findings.

Acknowledgments. The work of P.L. Ferrari is supported by the German Re-
search Foundation via the SFB 1060–B04 project. The final version of our con-
tribution was written when both of us visited in early 2016 the Kavli Institute of
Theoretical Physics at Santa Barbara. The research stay of H. Spohn at KITP
is supported by the Simons Foundation. This research was supported in part by
the National Science Foundation under Grant No. NSF PHY11-25915. We thank
Kazumasa Takeuchi for illuminating discussions on the comparison with his ex-
perimental results and Joachim Krug for explaining to us earlier work on time
correlations.

2 Variational formulas for the universal part of

the two-time distribution

As a model in the KPZ universality class we consider the totally asymmetric sim-
ple exclusion process (TASEP). Particle configurations are denoted by η ∈ {0, 1}Z,
where ηj = 1 stands for a particle at lattice site j and ηj = 0 for site j being
void. Particles jump independently one step to the right after an exponentially
distributed waiting time and subject to the exclusion rule. Equivalently the ex-
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change rate between sites j and j + 1 takes the form cj,j+1(η) = ηj(1− ηj+1). The
particle configuration at time t is denoted by η(t). Of central interest is the height
function, h(j, t), defined through2

h(j, t) =















J(t) +
∑j

i=1
1
2
(1− 2ηi(t)), if j ≥ 1,

J(t), if j = 0,

J(t)−∑0
i=j+1

1
2
(1− 2ηi(t)), if j ≤ −1,

(2.1)

where J(t) is the particle current across the bond (0, 1) integrated over the time
interval [0, t]. Note that h(0, 0) = 0. We study the TASEP because it allows
for a simple mapping to last passage percolation (LPP), which will be the main
technical tool in this section.

We will study the three different initial conditions mentioned in the introduc-
tion:

(i) step initial conditions, η = 1Z
−

,

(ii) flat initial conditions with density 1
2
, η = 12Z,

(iii) stationary initial conditions with density 1
2
, i.e., η is distributed according to

ν1/2, where νρ is the Bernoulli product measure with density ρ.

Density 1
2
is chosen for convenience, since in this case the characteristic line has

velocity 0.
For these three initial conditions we would like to understand the scaling limit

τ 7→ X ⋄(τ) = lim
t→∞

−24/3t−1/3
(

h(0, τ t)− 1
4
τt
)

, (2.2)

which defines X ⋄(τ), τ ≥ 0, as a stochastic process in τ (provided the limit exists).
τ is a fraction of the physical time t and the asymptotic mean has been subtracted.
The fact that the scaling (2.2) should give a non-trivial limit process is due to
the slow-decorrelation phenomenon, namely that along special space-time paths,
fluctuations of order t1/3 occurs only over a macroscopic time scale. The special
paths are the characteristics of the PDE describing the macroscopic evolution of
the particle density [17, 22].

Up to model dependent scale factors, the limit processes are expected to be
universal, meaning that the limit is the same for any model in the KPZ universality
class. In case the particular initial condition has to be specified, a superscript
is added as X step, X flat, X stat, respectively. The one-point distribution of these
processes is well-known [4, 5, 30, 40] and given by

P
(

X step(1) ≤ s
)

= FGUE(s),

P
(

X flat(1) ≤ s
)

= FGOE(2
2/3s),

P
(

X stat(1) ≤ s
)

= FBR(s),

(2.3)

2In the literature the height function is mostly defined to be twice the one defined in this
paper. As we will discuss also the particle current, in our context it seems to be more natural to
avoid unnecessary factors of 2 relating the two quantities.
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see Appendix A for their definition. We denote by ξGUE, ξGOE, and ξBR random
variables distributed according to GOE/GUE Tracy-Widom distribution and the
Baik-Rains distribution respectively.

For the spatial argument, the corresponding scaling limit reads

w 7→ Y⋄(w) = lim
t→∞

−24/3t−1/3
(

h(w21/3t2/3, t)− 1
4
t
)

(2.4)

with w ∈ R. For flat and stationary initial conditions, convergence has been
proved in the sense of finite-dimensional distribution [2, 10, 45]. For step initial
condition weak*-convergence has been proved in [32]. More specifically, one has
Y step(w) = A2(w)− w2, Yflat(w) = 21/3A1(2

−2/3w), and Y stat(w) = Astat(w), see
also the review [23]. Again we refer to Appendix A for the definition of these Airy
processes.

In Section 2.1 we will argue that the joint distribution of X ⋄(τ) and X ⋄(1) can
be expressed through a suitable variational formula, involving two independent
copies of Y◦(w), with ◦ ∈ {step, flat, stat} depending on the cases. Unfortunately,
it is not so straightforward to extract some useful information from these formulas.
Hence we first try to study the covariance

C⋄(τ) := Cov
(

X ⋄(τ),X ⋄(1)
)

= E

(

X ⋄(τ)X ⋄(1)
)

−E

(

X ⋄(τ)
)

E

(

X ⋄(1)
)

. (2.5)

The parameter τ can be restricted to the interval [0, 1], since the case τ > 1
is recovered by a trivial scaling from the fact that X ⋄(τ) is given through the
limit (2.2). As will be seen from the explicit formula for the stationary case or
from the numerical simulation in the other cases, for τ away from 0, 1, C⋄(τ) looks
smooth and strictly increasing, but shows interesting scaling behavior close to the
boundary points of this interval. As one of our main results we determine the
respective scaling exponents. For τ → 0 we obtain

Cstep(τ) = Θ
(

τ 2/3
)

, Cflat(τ) = Θ
(

τ 4/3
)

, (2.6)

and for τ → 1 we obtain3

Cstep(τ) = Var(ξGUE)− 1
2
Var(ξBR)(1− τ)2/3 +O(1− τ) ,

Cflat(τ) = 2−4/3Var(ξGOE)− 1
2
Var(ξBR)(1− τ)2/3 +O(1− τ) .

(2.7)

This implies that for the normalized correlation function A⋄(τ) := C⋄(τ)/C⋄(1)
we have

A⋄(τ) = 1− c⋄(1− τ)2/3 +O(1− τ) (2.8)

as τ → 1, where

cstep =
Var(ξBR)

2Var(ξGUE)
≃ 0.707, cflat =

Var(ξBR)

2−1/3Var(ξGOE)
≃ 0.901. (2.9)

3The coefficient in front of (1− τ)2/3 for the flat case was conjectured by Takeuchi in [48] and
verified experimentally in his context.
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For the stationary case, we obtain the exact expression

Cstat(τ) = Var(ξBR)
1
2

(

1 + τ 2/3 − (1− τ)2/3
)

. (2.10)

The behavior close to τ = 1 is based on the same reasoning in all three cases.
As key ingredient we use that the limit processes Y⋄ defined in (2.4) are locally
Brownian [18, 27, 28, 39, 42]. Close to τ = 0, step and stationary initial conditions
exhibit the same scaling exponent. Interestingly, the Θ(τ 2/3) behavior relies on
two very distinct mechanisms: for the step it is due to the correlations generated
at small times, while for the stationary case it is due to the randomness of the
initial conditions.

2.1 TASEP and LPP

Let us first recall the relation between TASEP and LPP. A last passage percolation
(LPP) model on Z

2 with independent random variables {ωi,j, i, j ∈ Z} is the
following. An up-right path π = (π(0), π(1), . . . , π(n)) on Z

2 from a point A to a
point E is a sequence of points in Z

2 with π(k + 1)− π(k) ∈ {(0, 1), (1, 0)}, with
π(0) = A and π(n) = E, and where n is called the length ℓ(π) of π. Now, given a
set of points SA, one defines the last passage time LSA→E as

LSA→E = max
π:A→E
A∈SA

∑

1≤k≤ℓ(π)

ωπ(k). (2.11)

Finally, we denote by πmax
SA→E any maximizer of the last passage time LSA→E. For

continuous random variables, the maximizer is a.s. unique.
For the TASEP the ordering of particles is preserved. If initially one orders

from right to left as

. . . < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < · · · ,

then for all times t ≥ 0 also xn+1(t) < xn(t), n ∈ Z. The ωi,j in the LPP is the
waiting time of particle j to jump from site i− j−1 to site i− j. By definition ωi,j

are exp(1) i.i.d. random variables. Let SA = {(u, k) ∈ Z
2 : u = k + xk(0), k ∈ Z}.

Then
P
(

LSA→(m,n) ≤ t
)

= P (xn(t) ≥ m− n) . (2.12)

Further, for m = n,

P
(

LSA→(n,n) ≤ t
)

= P (xn(t) ≥ 0) = P (J(t) ≥ n) . (2.13)

In particular, for the initial conditions under consideration, the set SA is given by

(i) Step initial conditions: SA = {(0, 0)}.
(ii) Flat initial conditions with density 1

2
: SA = L = {(i, j)|i+ j = 0}.
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(i) Step IC
(ii) Periodic IC

(iii)-(a) Stationary IC (iii)-(b) Equivalent to stationary IC

π

π

π

π

(0, 0)

L

L̃

Figure 1: Last passage percolation settings corresponding to TASEP with (i) step,
(ii) periodic and (iii) stationary initial conditions. The random variables in the
gray regions are exp(1) i.i.d., while in the dark gray they are exp(2) i.i.d.. In
(iii)-(b) the blank regions at the boundary have a length which is i.i.d. geometric
of mean 1.

(iii) Stationary initial conditions with density 1
2
: SA = L̃ is a two-sided sim-

ple symmetric random walk passing through the origin and rotated by π/4.
Using Burke’s property [12] one can equivalently replace all the random-
ness which is above the random line L̃ but outside the first quadrant by
exponentially distributed random variables with parameter 1

2
only along the

bordering lines {(i,−1), i ≥ 0} and {(−1, i, ), i ≥ 0}, see [40] for more details.

See Figure 1 for an illustration.
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2.2 Step initial conditions

TASEP with step initial conditions corresponds to the point-to-point problem in
the LPP picture, see Figure 1(i). In this framework, consider Aτ = (τt/4, τ t/4)
and Iτ (u) = Aτ + u(τt/2)2/3(1,−1). Then as t → ∞ one has [9, 16, 32]

L0→Aτ − τt

22/3t1/3
≃ τ 1/3A2(0),

L0→Iτ (u) − τt

22/3t1/3
≃ τ 1/3

(

A2(u)− u2
)

,

LIτ (u)→A1
− (1− τ)t

22/3t1/3
≃ (1− τ)1/3

[

Ã2

(

uτ̂ 2/3
)

−
(

uτ̂ 2/3
)2]

,

(2.14)

where A2 and Ã2 are two independent Airy2 processes. These identities are under-
stood for fixed τ , where the first is convergence of random variables, while the last
two identities hold as processes in u. Also we introduced the convenient shorthand
τ̂ = τ/(1− τ). Using (2.2) and (2.11) we thus conclude

X step(τ) = lim
t→∞

L0→Aτ − τt

22/3t1/3
. (2.15)

Therefore
X step(τ) = τ 1/3A2(0) (2.16)

and, using the relation L0→A1
= maxu

(

L0→Iτ (u) + LIτ (u)→A1

)

, also

X step(1) = τ 1/3 max
u∈R

{

A2(u)− u2 + τ̂−1/3Ã2

(

uτ̂ 2/3
)

− u2τ̂
}

. (2.17)

Together these formulas are a tool for determining the joint distribution of
X step(τ),X step(1).

Limit τ → 0.

First of all, as τ → 0, as a process in u,

τ̂−1/3
(

Ã2

(

uτ̂ 2/3
)

− Ã2(0)
)

≃
√
2B(u) (2.18)

where B is a standard Brownian motion [18, 28, 39] (with standard meaning with
normalization Var(B(u)) = u). Further, for the two terms proportional to u2, the
right term is of order τ smaller than the left one. Therefore the maximum in (2.17)
is taken at u = Θ(1) and consequently as τ → 0 we have

Cstep(τ) = Cov
(

X step(τ),X step(1)
)

≃ τ 2/3 Cov
(

A2(0),max
u∈R

{

A2(u)− u2 +
√
2B(u)

}

+ τ̂−1/3Ã2(0)
)

,

(2.19)
where the processes A2 and B are independent, and B is independent of Ã2(0).
Since A2(0) and Ã2(0) are independent, their covariance is zero.
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To understand what happens, we rewrite the expectation in the covariance
as the expectation of the conditional expectation with respect to the Brownian
motion B, namely

Cov
(

A2(0),max
u∈R

{

A2(u)− u2 +
√
2B(u)

}

)

= E

[

Cov
(

A2(0),max
u∈R

{

A2(u)− u2 +
√
2B(u)

}
∣

∣B
)]

.
(2.20)

For typical realizations of B, the maximum is reached for u of order 1 (for B = 0
there is an explicit formula, see [3, 37, 46]). On the other hand, the random vari-
ables maxu∈R(· · · ) and A2(0) are non-trivially correlated. Therefore we conclude
Cstep(τ) = Θ(τ 2/3) as τ → 0.

Remark 2.1. In the LPP picture, the fact that the maximum is obtained for u
of order 1 is a consequence of the constraint that the polymer maximizing L0→A1

starts at the origin.

Remark 2.2. We have

Cov
(

A2(0),max
u∈R

{

A2(u)−u2+
√
2B(u)

}

)

= E

(

A2(0)max
u∈R

{

A2(u)−u2+
√
2B(u)

}

)

,

(2.21)
where we used the fact that E(Astat(0)) = 0 and the identity [43]

X stat(1) = Astat(0)
d
= max

v∈R

{

A2(v)− v2 +
√
2B(v)

}

(2.22)

in distribution, where the Airy2 process A2 and the Brownian motion B are in-
dependent. The joint distribution of the two random variables in (2.21) might be
obtained analytically from the formulas in [33] and [20].

Limit τ → 1.

In this case, the maximum in (2.17) is achieved for u = Θ((1 − τ)2/3) as can one
see for instance by symmetry of the point-to-point problem. Therefore let us set
v = uτ̂ 2/3 so that now

X step(1) = (1− τ)1/3 max
v∈R

{

τ̂ 1/3A2

(

vτ̂−2/3
)

− v2τ̂−1 +
(

Ã2(v)− v2
)}

. (2.23)

To argue about the behavior for τ → 1, we will use the convergence of the Airy2
process to Brownian motion (see (2.18)) and we use the identity

Cstep(τ) = 1
2
Var(X step(1)) + 1

2
Var(X step(τ))− 1

2
E

(

(X step(τ)− X step(1))2
)

= 1
2
(1 + τ 2/3) Var(X step(1))− 1

2
E

(

(X step(τ)−X step(1))2
)

.
(2.24)

Now, by (2.23) and X step(τ) = (1− τ)1/3τ̂ 1/3A2(0), we have

X step(1)−X step(τ) = (1−τ)1/3 max
v∈R

{

τ̂ 1/3[A2(vτ̂
−2/3)−A2(0)]+Ã2(v)−v2(1+τ̂−1)

}

,

(2.25)
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where A2 and Ã2 are independent Airy2 processes. In the τ → 1 limit, using (2.18)
the first term becomes

√
2B(v) and since the maximum is obtained for v of order

one, the term v2τ̂−1 should be at most a correction of order O(1− τ). (2.22) gives
us

Cstep(τ) ≃ 1
2
(1+ τ 2/3) Var(X step(1))− 1

2
(1− τ)2/3 Var(X stat(1))+O(1− τ), (2.26)

where we used the property that Astat(0) has mean zero.

Remark 2.3. To make the present result into a theorem one has to control the
convergence of the Airy process to Brownian motion. In recent work in progress,
Corwin and Hammond establish rigorously the behavior close to τ = 0 and τ = 1
for the point-to-point problem [19].

2.3 Flat initial conditions

TASEP with flat initial conditions corresponds to the point-to-line problem in
the LPP picture, as illustrated in Figure 1(ii). Consider Aτ = (τt/4, τ t/4) and
Iτ (u) = Aτ + u(τt/2)2/3(1,−1). From [10, 16], we know that by setting c = 21/3,
in the t → ∞ limit we have

LL→Aτ − τt

22/3t1/3
≃ cτ 1/3A1(0),

LL→Iτ (u) − τt

22/3t1/3
≃ cτ 1/3A1(c

−2u),

LIτ (u)→A1
− (1− τ)t

22/3t1/3
≃ (1− τ)1/3

[

Ã2

(

uτ̂ 2/3
)

−
(

uτ̂ 2/3
)2]

,

(2.27)

where the Airy1 process A1 is independent of the Airy2 process Ã2. As before,
the first identity is understood for fixed τ , while the last two identities hold as
processes in u. We have

X flat(τ) = lim
t→∞

LL→Aτ − τt

22/3t1/3
(2.28)

and thus
X flat(τ) = cτ 1/3A1(0). (2.29)

Further, using the relation LL→A1
= maxu

(

LL→Iτ (u) + LIτ (u)→A1

)

, we obtain

X flat(1) = τ 1/3 max
u∈R

{

cA1(c
−2u) + τ̂−1/3Ã2

(

uτ̂ 2/3
)

− u2τ̂
}

. (2.30)

Limit τ → 0.

Unlike for step initial conditions, this time the quadratic term responsible for
the localization of the maximizer over a distance of order 1 (in the u variable)
is absent. This implies that the maximization no longer occurs for u of order 1.
Rather, from [31,37] we know that the point-to-line maximizer starts from the line
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(i) Step IC (ii) Periodic IC

π1π1

πτπτ

A1A1

AτAτ

Iτ
Iτ

Figure 2: The maximizer of the LPP for Aτ is denoted by πτ , and for A1 by π1.
The LPP for A1 can be decomposed in the LPP to the dashed line and the one
from the dashed line to A1. For periodic initial condition, the probability that πτ

and π1 merges is expected to be of order Θ(τ 2/3).

L at a distance of order t2/3 from the origin. As a consequence the maximization
will occur typically at values u = Θ(τ−2/3). Therefore

Cflat(τ) = τ 2/3 Cov
(

A1(0),max
u∈R

{

cA1(c
−2u) + τ̂−1/3Ã2

(

uτ̂ 2/3
)

− u2τ̂
}

)

= τ 2/3E
[

Cov
(

A1(0),max
u∈R

{

cA1(c
−2u) + τ̂−1/3Ã2

(

uτ̂ 2/3
)

− u2τ̂
}

)

∣

∣Ã2

]

.

(2.31)
To understand the behavior at small values of τ of the covariance between X flat(τ)
and X flat(1), we need to consider the following two cases (see Figure 2 for an illus-
tration).

(1) Realizations of Ã2 such that the maximization occurs for u ≫ 1. In this case,
since the covariance of the Airy1 process A1 decays super-exponentially [7], the
covariance conditioned on those events goes to zero faster than any power of τ .

(2) Realizations of Ã2 such that the maximization occurs for u = Θ(1). In this
case, the covariance conditioned on those events is of order Θ(τ 2/3) by the same
argument as for step initial conditions. The only minor difference is to replace
A2(u)− u2 by cA1(c

−2u).

The first situation occurs with probability of order 1 − Θ(τ 2/3), while the second
case only with probability Θ(τ 2/3). This is due to the superdiffusive transversal
fluctuations of the maximizers (compare with the point-to-point transversal fluctu-
ations in Poisson points see [31] and Section 9 of [6] for a refined result). Therefore
as τ → 0,

Cflat(τ) = Cov(X (τ),X (1)) = Θ
(

τ 4/3
)

. (2.32)
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Limit τ → 1.

We use the same argument as for the step-initial condition. (2.23) is replaced by

X flat(1) = (1− τ)1/3 max
v∈R

{

τ̂ 1/3A1

(

vτ̂−2/3
)

+
(

Ã2(v)− v2
)}

. (2.33)

Thus we get

Cflat(τ) = 1
2
(1 + τ 2/3) Var(X flat(1))− 1

2
E

(

(X flat(τ)− X flat(1))2
)

. (2.34)

Now,

X flat(τ)−X step(1) = (1−τ)1/3 max
v∈R

{

τ̂ 1/3[A1(vτ̂
−2/3)−A1(0)]+Ã2(v)−v2

}

, (2.35)

where the two Airy processes, A1 and Ã2, are independent. Using the property
that the Airy1 process is locally Brownian [42], one concludes that

Cflat(τ) ≃ 1
2
(1 + τ 2/3) Var(X flat(1))− 1

2
(1− τ)2/3 Var(X stat(1)) +O(1− τ). (2.36)

2.4 Stationary initial conditions

For the stationary initial conditions we employ the LPP with boundary conditions,
see Figure 1(iii)(b) for an illustration, and denote the corresponding maximal last
passage time by LB. Let Aτ = (τt/4, τ t/4) and Iτ (u) = Aτ + u(τt/2)2/3(1,−1).
Then from [2, 29] we know that in the limit t → ∞ one has

LB
0→Aτ

− τt

22/3t1/3
≃ τ 1/3Astat(0),

LB
0→Iτ (u)

− τt

22/3t1/3
≃ τ 1/3Astat(u),

LIτ (u)−A1
− (1− τ)t

22/3t1/3
≃ (1− τ)1/3

[

Ã2

(

uτ̂ 2/3
)

−
(

uτ̂ 2/3
)2]

,

(2.37)

where the processes Astat and Ã2 are independent. As before, the first identity is
understood for fixed τ , while the last two identities hold as processes in u.

Further it holds

X stat(τ) = lim
t→∞

LB
0→Aτ

− τt

22/3t1/3
, X stat(τ) = τ 1/3Astat(0), (2.38)

and, using the relation LB
0→A1

= maxu

(

LB
0→Iτ (u)

+ LIτ (u)→A1

)

, we obtain

X stat(1) = τ 1/3 max
u∈R

{

Astat(u) + τ̂−1/3Ã2

(

uτ̂ 2/3
)

− u2τ̂−1
}

. (2.39)
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π1

πτ

A1

Aτ

C1

Cτ

Iτ

Figure 3: The maximizer of the LPP to Aτ , A1 are denoted by πτ , π1 respectively.
C1 and Cτ are the points where the maximizers leaves the axis.

Limit τ → 0.

In the LPP picture with boundary terms, denote by C1 and Cτ the sites on the
boundary at which the maximizers of L(−1,−1)→A1

and L(−1,−1)→Aτ enter into the
positive quadrant. Similarly to flat initial conditions, the maximizer in (2.39) is
attained for u of order Θ(τ−2/3).

However, this time the correlations do not decay super-exponentially. We have

Cstat(τ) = τ 2/3 Cov
(

Astat(0),max
u∈R

{

Astat(u) + τ̂−1/3Ã2

(

uτ̂ 2/3
)

− u2τ̂
}

)

= τ 2/3E
[

Cov
(

Astat(0),max
u∈R

{

Astat(u) + τ̂−1/3Ã2

(

uτ̂ 2/3
)

− u2τ̂
}

)

∣

∣Ã2

]

.

(2.40)
To understand the behavior for the covariance of X (τ) and X (1) at small values
of τ , we need to consider the following two cases (see Figure 3 for an illustration).

(1) Realization of Ã2 such that the maximization occurs for u = Θ(1). The same
argument as for step initial conditions indicates that the covariance conditioned
on those events is of order Θ(τ 2/3). Since these events occur with probability of
order Θ(τ 2/3), the overall contribution is of order Θ(τ 4/3).

(2) Realizations of Ã2 such that the maximization occurs for u ≫ 1. This event oc-
curs with probability 1−Θ(τ 2/3). The maximizers of L(−1,−1)→A1

and of L(−1,−1)→Aτ

use disjoint background noise, except for the randomness on the boundaries (in
case they are at the same boundary). Thus in this case the covariance of the LPP
to A1 and Aτ should be as the covariance of the LPP to C1 and Cτ at leading
order.

With this reasoning, one expects that

Cstat(τ) = Cov(X stat(τ),X stat(1))

≃ Θ(1)max
{

τ 4/3, t−2/3 Cov
(

L(−1,−1)→Cτ , L(−1,−1)→C1

)}

.
(2.41)
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Since the LPP on the boundaries is merely sum of iid random variables, by the
central limit theorem, in the t → ∞ limit,

t−1/3L(−1,−1)→(xt2/3 ,−1) → 2B(x),
t−1/3L(−1,−1)→(−1,xt2/3) → 2B(−x),

(2.42)

where x 7→ B(x) is a two-sided Brownian motion with constant drift. For its covari-

ance, Cov(B(x),B(y)) = 1+sgn(xy)
2

min{|x|, |y|} independent of the drift. Finally,
since |C1| ∼ t2/3 and |Cτ | ∼ (τt)2/3, we obtain

Cstat(τ) ≃ Θ(1)max
{

τ 4/3, τ 2/3
}

= Θ
(

τ 2/3
)

. (2.43)

Entire τ interval.

The argument used to determine the τ → 1 limit in the step and flat initial
condition case, can be used to derive a formula for the covariance in the stationary
case. (2.23) is replaced by

X stat(1) = (1− τ)1/3 max
v∈R

{

τ̂ 1/3Astat

(

vτ̂−2/3
)

+
(

Ã2(v)− v2
)}

. (2.44)

Thus we get

Cstat(τ) = 1
2
(1 + τ 2/3) Var(X stat(1))− 1

2
E

(

(X stat(τ)− X stat(1))2
)

. (2.45)

But now

X stat(τ)−X stat(1) = (1− τ)1/3 max
v∈R

{

τ̂ 1/3[Astat(vτ̂
−2/3)−Astat(0)] + Ã2(v)− v2

}

,

(2.46)
where the two Airy processes, Astat and Ã2, are independent. For Airystat the
increments are not only locally Brownian, but exactly Brownian. More precisely,

τ̂ 1/3[Astat(vτ̂
−2/3)−Astat(0)]

d
=

√
2B(u) (2.47)

where B is a standard Brownian motion. Then, using the identity (2.22), we obtain

Cstat(τ) = 1
2
(1 + τ 2/3 − (1− τ)2/3) Var(X stat(1)) (2.48)

for 0 ≤ τ ≤ 1.

3 Current covariance for stationary lattice gases

The height function h(0, t) of the TASEP is identical to the time-integrated current
across the bond (0, 1), denoted by J(t) in (2.1). This suggests to study the co-
variance of the same observable for a more general class of one-dimensional lattice
gases. The mapping to LPP is then lost. On the other hand, in case of station-
ary initial conditions, one can exploit the local conservation law for the particle
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number together with space-time stationarity to obtain some information on the
current covariance. Thereby we extend the validity of (2.48). The covariance of
J(t) is identical to the one of fractional Brownian motion in the scaling limit. For
reversible models the Hurst parameter is H = 1

4
, while for non-reversible lattice

gases H = 1
3
. In fact, for reversible models it is expected, and proved for particu-

lar cases [1, 38], that as a stochastic process J(t) converges under the appropriate
scaling to fractional Brownian motion, which is a Gaussian process. Such a re-
sult cannot hold in the non-reversible case, since the large t distribution of J(t) is
Baik-Rains, as proved for a few models [8, 25, 27, 40].

We consider exclusion processes on Z, for simplicity with nearest neighbor
jumps only. They are defined as a generalization of the TASEP by allowing for
an arbitrary exchange rate cj,j+1(η) > 0. For the ASEP the exchange rates are
cj,j+1(η) = pηj(1− ηj+1) + q(1− ηj)ηj+1 with p+ q = 1, p = 1

2
being the reversible

SSEP. We assume that cj,j+1 has finite range and is invariant under lattice transla-
tions. The generator, L, of the corresponding Markov jump process is then defined
through

Lf(η) =
∑

j∈Z

cj,j+1(η)
(

f(ηj,j+1)− f(η)
)

(3.1)

acting on local functions f , where ηj,j+1 denotes the configuration η with occu-
pancies at sites j and j + 1 exchanged.

We start the dynamics in the steady state. For reversible models, by definition
there is a finite range translation invariant energy function, H , such that

cj,j+1(η) = cj,j+1(η
j,j+1)e−[H(ηj,j+1)−H(η)]. (3.2)

For given average density, 0 ≤ ρ ≤ 1, there is a unique stationary measure, µρ,
satisfying µρ = µρe

Lt. µρ is the Gibbs measure for H−µ̄
∑

j ηj , where the chemical
potential µ̄ has to be adjusted such that the average density equals ρ. On the other
hand, for non-reversible lattice gases one immediately encounters the long-standing
problem to prove the existence of a unique stationary measure at fixed ρ. Here we
simply assume such a property to be valid, including the exponential space-mixing
of µρ. We use E(·) as a generic symbol for the process expectation and 〈·〉ρ as
expectation with respect to µρ. For the ASEP the steady state is Bernoulli and
obviously our assumptions hold.

Let us consider the empirical current across the bond (j, j + 1), denoted by
jj,j+1(t). This is a sequence of δ-functions with weight 1 for a jump from j to j+1
and weight −1 for the reverse jump. The time-integrated current across the bond
(j, j + 1) is then

Jj,j+1(t) =

∫ t

0

ds jj,j+1(s) (3.3)

with the convention J(t) = J0,1(t), j(t) = j0,1(t). The average current reads
E
(

j(t)
)

= 〈c0,1(η)(η0 − η1)〉ρ = j(ρ). We also introduce the stationary covariance

S(j, t) = Cov(ηj(t), η0(0)) = E
(

ηj(t)η0(0)
)

− ρ2. (3.4)

15



There is a sum rule which connects S with the variance of J(t),

Var(J(t)) =
∑

j∈Z

|j|S(j, t)−
∑

j∈Z

|j|S(j, 0). (3.5)

The proof is deferred to Appendix B.
Since J(t) has stationary increments, it is convenient to study the correlations

of the increments dJ(t) = j(t)dt. As discussed in Appendix B, the covariance is
given by

Cov
(

j(t), j(t′)
)

= 〈c0,1〉ρδ(t− t′) + h(t− t′). (3.6)

For the continuous part we first define the generator of time reversed process, LR,
through 〈f(Lg)〉ρ = 〈(LRf)g〉ρ. Its exchange rates are given by

cRj,j+1(η) =
µρ(η

j,j+1)

µρ(η)
cj,j+1(η

j,j+1). (3.7)

Hence the current function across the bond (j, j + 1) equals

rj,j+1(η) = cj,j+1(η)(ηj − ηj+1) (3.8)

and the time-reversed current function equals

rRj,j+1(η) = cRj,j+1(η
j,j+1)(ηj − ηj+1). (3.9)

They satisfy 〈rj,j+1〉ρ = −〈rRj,j+1〉ρ. Then

h(t) = −〈(rR0,1 − j(ρ))eL|t|(r0,1 − j(ρ))〉ρ. (3.10)

3.1 Reversible models

While our focus is on non-reversible models, it is still instructive to first ex-
plain how fractional Brownian motion appears for reversible lattice gases. Then
rRj,j+1 = rj,j+1(η) and the smooth part h(t) simplifies to

h(t) = −〈c0,1(η)(η0 − η1)e
L|t|c0,1(η)(η0 − η1)〉ρ, (3.11)

see Appendix B. Since L is a symmetric operator in the Hilbert space
L2({0, 1}Z, µρ), there exists a spectral measure ν of finite mass such that

h(t) = −
∫ ∞

0

ν(dλ)e−λ|t|. (3.12)

In particular, h is monotonically increasing with h(0) = −〈c0,1(η)2(η0− η1)
2〉ρ and

h(∞) = 0.
From hydrodynamic fluctuation theory [13,14], one knows that S(j, t) broadens

diffusively as
S(j, t) ≃ χ(Dt)−1/2fG((Dt)−1/2j) (3.13)
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with fG the standard Gaussian, D a diffusion constant depending on ρ, and the
susceptibility

χ =
∑

j∈Z

S(j, 0). (3.14)

Hence, using (3.13) for large t,

∑

j∈Z

|j|S(j, t) ≃ χ(Dt)1/2
∫

R

dx|x|fG(x). (3.15)

Now,

Var(J(t)) = 〈c0,1〉ρt+
∫ t

0

ds

∫ t

0

ds′h(s− s′). (3.16)

The sum rule (3.5) implies a variance of order
√
t. Thus to cancel the leading

behavior proportional to t, one must have

∫

R

dth(t) = −〈c0,1〉ρ. (3.17)

Substituting in (3.5), one arrives at

χ

∫

R

dx|x|fG(x)(Dt)1/2 ≃ −2

∫ t

0

ds

∫ ∞

s

duh(u), (3.18)

which implies

h(t) ≃ −c0t
−3/2 , c0 =

1
8
D1/2χ

∫

R

dx|x|fG(x). (3.19)

The current correlation is negative and decays as −|t|−3/2.
With this information, one can now determine the covariance of J(t),

Cov
(

J(t)J(τt)
)

= −
∫ t

0

∫ τt

0

dsds′
(

∫

R

du h(u)δ(s− s′)− h(s− s′)
)

= −
∫ τt

0

ds
(

2

∫ ∞

s

ds′h(s′)−
∫ t−s

τt−s

ds′h(s′)
)

(3.20)

with 0 ≤ τ ≤ 1. We insert the asymptotics from (3.19) in the form−c0(c1+Dt)−3/2.
Then

Cov
(

J(t)J(τt)
)

≃
(

1 + τ 1/2 − (1− τ)1/2
)

(Dt)1/2χ

∫ ∞

0

dxxfG(x) (3.21)

for large t, which one recognizes as the covariance of fractional Brownian motion
with Hurst parameter H = 1

4
.
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3.2 Non-reversible models, zero propagation speed

For reversible lattice gases the average current j(ρ) vanishes and a localized per-
turbation stays centered, compare with (3.13). For non-reversible models the av-
erage current does not vanish, in general. A small perturbation of the steady
state will propagate with velocity v(ρ) = j′(ρ), which generically will be non-zero.
The correlator is centered at v(ρ)t. If v(ρ) 6= 0, then the sum rule implies that
Var(J(t)) ∼

√
t, indicating that J(t) will be close to a Brownian motion. Frac-

tional Brownian motion can be seen only when the current is integrated along the
ray {x = v(ρ)t}. To properly implement such a notion requires extra consider-
ations, which will be explained in the next subsection. For this part we assume
v(ρ) = 0. For the ASEP j(ρ) = (p − q)ρ(1 − ρ) and our condition holds only at
ρ = 1

2
.

Secondly non-reversible models are in the KPZ universality class and the co-
variance is expected to scale as

S(j, t) ≃ χ(Γt)−2/3fKPZ((Γt)
−2/3j) (3.22)

with Γ = 1
2
χ2|j′′(ρ)| according to KPZ scaling theory [36]. From the sum rule

(3.5), again we infer that
∫

R

dth(t) = −〈c0,1〉ρ. (3.23)

with h(t) given by Eq. (3.10). Thus, substituting (3.22), one arrives at

χ

∫

R

dx|x|fKPZ(x)(Γt)
2/3 ≃ −2

∫ t

0

ds

∫ ∞

s

duh(u), (3.24)

which implies

h(t) ≃ −c0t
−4/3 , c0 =

1
9
Γ2/3χ

∫

R

dx|x|fKPZ(x). (3.25)

The current correlation is negative and decays as −|t|−4/3. The full covariance is
obtained by the same scheme as above, see (3.20), with the result

Cov
(

J(t), J(τt)
)

≃ 1
2

(

1 + τ 2/3 − (1− τ)2/3
)

(Γt)2/3χ

∫

R

dx|x|fKPZ(x) (3.26)

valid for large t. We recognize the covariance of fractional Brownian motion with
Hurst parameter H = 1

3
. Note that the Hurst exponent for the driven lattice gas

is larger than the reversible value 1
4
. Nevertheless, the process X stat(τ) is not a

fractional Brownian motion, since its one-point distribution is known to be non-
Gaussian. The non-universal prefactors in (2.10) and (3.26) look different. But
they have to agree because of the sum rule (3.5). As explained in Corollary A.6,
their equivalence can also be verified directly from the definition.

Our argument is on less secure grounds than in the reversible case. Firstly,
the scaling (3.22) of the correlator is proved only for the TASEP. Even then, no
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spectral theorem in the form (3.12) is available. But if for TASEP at density 1
2
the

current correlator h(t) is assumed to be increasing, then (3.26) holds in the limit
t → ∞. In Section 4 we display the results of Monte Carlo simulations for the
TASEP at density 1

2
. They very convincingly confirm h(t) < 0, strict increase, and

−t−4/3 asymptotics, see Figures 7 and 8. For density 1
2
the theoretically predicted

parameters are Γ =
√
2 and c0 = 0.02013 . . ..

3.3 Non-reversible models, non-zero propagation speed

We first have to generalize the sum rule to a current integrated along the ray
{x = vt}, where for notational simplicity we assume v > 0. As a start-up this
will be done for the more transparent case of a continuum stochastic field u(x, t),
which is stationary in time and, for each realization, satisfies the conservation law

∂tu(x, t) + ∂xJ (x, t) = 0. (3.27)

The random current field J (x, t) is also space-time stationary. Without loss of
generality we assume E

(

u(x, t)
)

= 0, E
(

J (x, t)
)

= 0. (3.27) implies that (−u,J )
is a curl-free vector field on R

2. Thus there is a potential, resp. height function,
defined by

h(y, t) =

∫ t

0

dsJ (0, s)−
∫ y

0

dxu(x, t), (3.28)

where y ≥ 0 in accordance with v > 0. h(y, t) does not depend on the choice of the
integration path. In particular, one can integrate along the ray {x = vt}. Then

h(vt, t) =

∫ t

0

ds
(

J (vs, s)− vu(vs, s)
)

. (3.29)

Along the ray {x = vt} the current is given by s 7→ J (vs, s)− vu(vs, s), which is
a stationary process in s and integrates to h(vt, t).

As before, we define S(x, t) = Cov(u(x, t), u(0, 0)). Then the sum rule (3.5)
generalises to

Var(h(y, t)) =

∫

dx|y − x|S(x, t)−
∫

dx|x|S(x, 0), (3.30)

see Appendix B. If S(x, t) is peaked at vt, then the variance of the time-integrated
current with end-point (vt, t) reflects the anomalous peak broadening.

For lattice gases the position space is discrete and one has to adjust the scheme.
We denote by Jj,j+1([t

′, t]) the current across the bond j, j + 1 integrated over the
time-interval [t′, t]. The height h(y, t), y ∈ Z+, is defined in analogy to (3.28) as

h(y, t) = J0,1([0, t])−
y
∑

j=1

ηj(t). (3.31)
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The path from (0, 0) to (0, t) to (y, t) is deformed into a staircase with step width
1. Then

h(y, 1
v
y) =

y
∑

j=1

Xj, Xj = Jj−1,j([
1
v
(j − 1), 1

v
j])− ηj(

1
v
j). (3.32)

{Xj , j ∈ Z} is a stationary process and sums up to h(y, 1
v
y).

The sum rule (3.30) remains valid in the form

Var(h(y, t)) =
∑

j∈Z

|j − y|S(j, t)−
∑

j∈Z

|j|S(j, 0). (3.33)

The covariance has the scaling form

S(j, t) ≃ χ(Γt)−2/3fKPZ

(

(Γt)−2/3(j − v(ρ)t)
)

. (3.34)

Now all pieces are assembled. In the definition of Xj we set v = v(ρ). Then the
sum rule yields

∑

j∈Z

Cov(X0, Xj) = 0, (3.35)

and using the scaling form (3.34) of S(j, t) one arrives at

Cov(X0, Xj) ∼ −|j|−4/3 (3.36)

for large |j|. Then as before one concludes that

Cov
(

h(v(ρ)t, t), h(v(ρ)τt, τt)
)

≃ 1
2

(

1 + τ 2/3 − (1− τ)2/3
)

(Γt)2/3χ

∫

R

dx|x|fKPZ(x)

(3.37)
in the scaling regime.

Considering arbitrary space-time rays provides a more complete picture of the
current fluctuations than merely considering the current across the origin. There
is a special direction of slope v(ρ)−1, along which the covariance is the same as that
of fractional Brownian motion with Hurst parameter H = 1

3
. For any v 6= v(ρ),

the time-integrated current behaves like a Brownian motion.

4 Numerical simulations

To have numerical support of our results we rely on Monte Carlo simulations. As
for most of the theory part, we consider the TASEP at density 1

2
. From previous

works [24] it is known already that the one-point distribution of the rescaled time-
integrated current converges quite fast to the asymptotically proven GUE/GOE
Tracy-Widom distributions. Thus similar good convergence is expected for the
covariance and the current-current correlation.
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In the first set of simulations, we consider the three initial conditions discussed
in Section 3 and run the process until time tmax = 104. We measure the vector of
the integrated current at the origin J(τtmax) for τ ∈ {1/100, 2/100, . . . , 99/100, 1}.
We then rescale the current process as (2.2) and compute numerically the covari-
ance. To facilitate the comparison of the different initial conditions, we divide by
the value at τ = 1. Therefore in the figures below we plot

τ 7→ Cov(X ⋄(τ),X ⋄(1))/Var(X ⋄(1)). (4.1)

Since tmax = 104 is large but not equal to infinity, we computed for comparison
the same quantities for tmax = 103 and plotted the numbers with a red dot. For
the step and periodic initial conditions we compute the numerical fit in the first
and the last 10 of data according to the scaling exponent derived heuristically in
Section 3.

Step initial conditions

For step initial conditions, the number of Monte Carlo trials is 2×106 for tmax = 103

and 6 × 105 for tmax = 104. The fit functions in Figure 4 are τ 7→ 0.65τ 2/3 and
τ 7→ 1− cstep(1− τ)2/3 − 0.21(1− τ).

Figure 4: Plot of τ 7→ Cov(X step(τ),X step(1))/Var(X step(1)). The top-left (resp.
right-bottom) inset is the log-log plot around τ = 0 (resp. τ = 1).
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Periodic initial conditions

For periodic initial conditions, the number of Monte Carlo trials is 106 for
tmax = 103 and 4×105 for tmax = 104. The fit functions in Figure 5 are τ 7→ 0.97τ 4/3

and τ 7→ 1− cflat(1− τ)2/3 − 0.23(1− τ).

Figure 5: Plot of τ 7→ Cov(X flat(τ),X flat(1))/Var(X flat(1)). The top-left (resp.
right-bottom) inset is the log-log plot around τ = 0 (resp. τ = 1).

Stationary initial conditions

For periodic initial conditions, the number of Monte Carlo trials is 3 × 105 for
tmax = 103 and 105 for tmax = 104. The fit functions in Figure 6 is obtained from
(3.26) by normalization, namely τ 7→ 1

2
(1 + τ 2/3 − (1− τ)2/3).

Figure 6: Plot of τ 7→ Cov(X stat(τ),X stat(1))/Var(X stat(1)). The top-left inset is
the log-log plot around τ = 0 and the right-bottom inset is the log-log plot around
τ = 1. The fit is made with the function τ 7→ 1

2
(1 + τ 2/3 − (1− τ)2/3).
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Figure 7: The smooth part of the current-current correlations for TASEP. We plot
−h(t) and the theoretical large time behavior (3.25), namely 0.02013 · t−4/3.

Figure 8: Log-log plot of the smooth part of the current-current correlation for
TASEP.

For the stationary initial conditions, we also simulated the current-current cor-
relations. To measure its smooth part h(t), defined in (3.10), the TASEP is run
up to time t = 50 with 50 × 106 Monte Carlo trials. The results are displayed
in Figures 7 and 8. The predicted power law of t−4/3, including its prefactor, is
convincingly confirmed.

A Scaling functions and limiting distributions

We recall the definitions of the GUE/GOE Tracy-Widom and the Baik-Rains dis-
tribution functions as well as the scaling function fKPZ used for the two-point
function.
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Definition A.1. The GUE Tracy-Widom distribution function is defined by

FGUE(s) = det(1−K2,s)L2(R+)

=
∑

n≥0

(−1)n

n!

∫

R+

dx1 · · ·
∫

R+

dxn det [K2,s(xi, xj)]1≤i,j≤n

(A.1)

with the kernel K2,s(x, y) =
∫

R+
dλAi(x+ s+ λ)Ai(y + s+ λ).

Definition A.2. The GOE Tracy-Widom distribution function is defined by

FGOE(s) = det(1−K1)L2(R+)

=
∑

n≥0

(−1)n

n!

∫

R+

dx1 · · ·
∫

R+

dxn det [K1,s(xi, xj)]1≤i,j≤n

(A.2)

with the kernel K1,s(x, y) = Ai(x+ y + s).

Definition A.3. The Baik-Rains distribution function is defined by

FBR(s) =
∂

∂s
(FGUE(s)g(s)) (A.3)

where g(s) is given as follows.

g(s) = s+

∫

R
2
+

dxdyAi(x+ y + s)−
∫

R
2
+

dxdyΦs(x)(1− P0K2,sP0)
−1(x, y)Ψs(y),

(A.4)
where Ps is the projection onto (s,∞) and

Φs(x) =

∫

R+

dyK2,s(x, y), Ψs(y) = 1−
∫

R+

dxAi(x+ y + s). (A.5)

Definition A.4. The KPZ scaling function fKPZ is defined by

fKPZ(w) =
1

4

∂2

∂w2

∫

R

s2dFw(s), (A.6)

where

Fw(s) =
∂

∂s
(FGUE(s+ w2)g(s+ w2, w)), (A.7)

where g(s, w) is given by

g(s, w) = e−w3/3

(

∫

R
−

dxdyew(x+y)Ai(x+ y + s) +

∫

R
2
+

dxdyΦw,s(x)ρs(x, y)Ψw,s(y)

)

.

(A.8)
Here, ρs(x, y) = (1− P0K2,sP0)

−1(x, y), and

Φw,s(x) =

∫

R
−

dzew(z+s)K2,s(z, x), Ψw,s(y) =

∫

R
−

dzewzAi(y + z + s). (A.9)
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The scaling function fKPZ(w) is even with
∫

R
dwfKPZ(w)|w| = 0.287599 . . ..

Remark that g(s, 0) = g(s).
Here is another identity that allows us to compare the two formulas obtained

for the stationary case.

Lemma A.5. It holds
∫

R

dx|x|fKPZ(x) =
1

2
Var(ξBR). (A.10)

Proof. Using the above definitions and the fact that fKPZ is an even function, we
have
∫

R

dx|x|fKPZ(x) =
1

2

∫ ∞

0

dxx
∂2

∂x2

∫

R

dss2
∂2

∂s2
(FGUE(s+ x2)g(s+ x2, x))

=
1

2

∫

R

dss2
∂2

∂s2

∫ ∞

0

dxx
∂2

∂x2
(FGUE(s+ x2)g(s+ x2, x))

=
1

2

∫

R

dss2
∂2

∂s2
FGUE(s)g(s, 0) =

1

2
Var(ξBR)

(A.11)

where in the third step we use integration by parts twice and in the last step the
fact that E(ξBR) = 0.

Corollary A.6. For the stationary TASEP, the prefactors in (2.10) and (3.26)
are identical.

Proof. For TASEP with stationary initial conditions and density 1/2, the param-
eters in (3.26) are χ = 1/4 and Γ =

√
2. Rescaling h(0, t) = J(t) as in (2.2) we

get from (3.26)

Cov(X stat(τ),X stat(1)) =
1

2
(1 + τ 2/3 − (1− τ)2/3)28/3Γ2/3χ

∫

R

dx|x|fKPZ(x)

=
1

2
(1 + τ 2/3 − (1− τ)2/3) Var(ξBR) = (2.10),

(A.12)
where we used Lemma A.5 in the second equality.

B Sum rule and current-current correlations

B.1 The sum rule

We prove that

Var(h(y, t)) =
∑

j∈Z

|j − y|S(j, t)−
∑

j∈Z

|j|S(j, 0). (B.1)
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We use the definition (3.28). Expanding out the square yields the terms (I), (II),
and (III). Let us introduce the short hand

∑

j∈Z gjηj(t) = η(g, t) and correspond-
ingly

∑

j∈Z fjJj,j+1(t) = J(f, t). By the conservation law,

Cov(η(f, t), η(g, t)) = Cov(J(∂T∂f, t), J(g, t)) (B.2)

with (∂f)j = fj+1 − fj .
Choosing gj = δ0j and fj = |j|, hence (∂T∂f)j = −2δ0j , one arrives at

(I) = Var(J0,1(t)) =
1
2

∑

j∈Z

|j|
(

S(j, t) + S(−j, t)− 2S(j, 0)
)

, (B.3)

where we used stationarity in j. Next we consider the cross term starting from

Cov(η(f, t), η(g, 0)) = −Cov(J(f, t), η(∂Tg, 0)). (B.4)

Choosing fj = δjy and −∂Tg as the indicator function of [1, ..., y] yields

(II) = −2Cov(Jy,y+1(t), η(∂
Tg, 0)) = 2

∑

j∈Z

gj
(

S(y − j, t)− S(y − j, 0)
)

. (B.5)

Finally

(III) =

y
∑

j=1

y
∑

i=1

S(j − i, 0). (B.6)

Summing all three terms establishes the claim.

B.2 Current-current correlation

One can think of jj,j+1(t) as a point process with weights ±1. Then the covariance
has a self-part, proportional to δ(t − t′), and a continuous part. Such a decom-
position holds also for current correlations. We first consider the self-part and
introduce the short hands qj = ηj(1 − ηj+1), q̄j = (1 − ηj)ηj+1, qj(η(t)) = qj(t),
Jj,j+1([s, t]) = Jj,j+1(t) − Jj,j+1(s) for 0 ≤ s < t. Note that qj − q̄j = ηj − ηj+1.
Then

lim
δ→0

δ−1
E

(

Ji,i+1([t, t+ δ])Jj,j+1([t, t+ δ])
)

= lim
δ→0

δ−1
E

(

(qi(t)q̄i(t + δ)− q̄i(t)qi(t+ δ))(qj(t)q̄j(t+ δ)− q̄j(t)qj(t + δ))
)

= 〈qiqjLq̄iq̄j + q̄iq̄jLqiqj − qiq̄jLq̄iqj − q̄iqjLqiq̄j〉ρ = δi,j〈cj,j+1〉ρ.
(B.7)

By the same method the continuous part is obtained as

lim
δ→0

δ−2
E

(

Ji,i+1([s, s+ δ]Jj,j+1([t, t + δ])
)

= lim
δ→0

δ−1
E

(

(qi(s)q̄i(s+ δ)− q̄i(s)qi(s + δ))eL(t−s−δ)rj,j+1(η(s+ δ))
)

= 〈(ηi − ηi+1)ci,i+1(e
L(t−s)rj,j+1)(η

j,j+1)〉ρ = −〈rRi,i+1e
L(t−s)rj,j+1〉ρ.

(B.8)
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Here rRi,i+1 is the reverse current defined by

rRj,j+1(η) =
µs(η

j,j+1)

µs(η)
cj,j+1(η

j,j+1)(ηj − ηj+1). (B.9)

Hence

E

(

ji,i+1(s)jj,j+1(t)
)

= 〈cj,j+1〉ρδi,jδ(s− t)− 〈rRi,i+1e
L(t−s)rj,j+1〉ρ. (B.10)

In particular,

Cov
(

j(s), j(t)
)

= E

(

j(s) j(t)
)

− j(ρ)2 = 〈c0,1〉ρδ(s− t) + h(s− t), (B.11)

where
h(t) = −〈(rR0,1 − j(ρ))eL|t|(r0,1 − j(ρ))〉ρ. (B.12)
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