
KPZ universality class and the anchored Toom

interface

G.T. Barkema∗ P.L. Ferrari† J.L. Lebowitz‡ H. Spohn§

September 15, 2014

Abstract

We revisit the anchored Toom interface and use KPZ scaling theory to

argue that the interface fluctuations are governed by the Airy1 process with

the role of space and time interchanged. The predictions, which contain no

free parameter, are numerically well confirmed for space-time statistics in the

stationary state. In particular the spatial fluctuations of the interface com-

puted numerically agree well with those given by the GOE edge distribution

of Tracy and Widom.

1 Introduction

Toom [1] studied a family of probabilistic cellular automata on Z
2 which have a

unique stationary state at high noise level and (at least) two stationary states for
low noise. Most remarkably, the low noise states are stable against small changes in
the update rules [2]. This is in stark contrast to models satisfying the condition of
detailed balance. For example the two-dimensional (2D) ferromagnetic Ising model
with Glauber spin flip dynamics at sufficiently low temperatures and zero exter-
nal magnetic field, h = 0, has two equilibrium phases with non-zero spontaneous
magnetization. But by a small change of h uniqueness is regained [3].

We consider the 2D Toom model with NEC (North East Center) majority rule.
The system consists of Ising spins (Si,j = ±1) located on a square lattice which
evolve in discrete time. (We use magnetic language only for convenience. In physical
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realizations Si,j is a two-valued order parameter field). At each time step, all spins
Si,j are updated independently according to the rule

Si,j(t + 1) =











sign
(

Si,j+1(t) + Si+1,j(t) + Si,j(t)
)

with probability 1− p− q ,

+1 with probability p ,

−1 with probability q .

(1)
For p = q = 0 we have a deterministic evolution: each updated spin becomes equal
to the majority of itself and of its northern and eastern neighbors. Non-zero p, q
represents the effect of a noise which favors the + sign with probability p and the
− sign with probability q. It was proved by Toom that for low enough noise (p, q
sufficiently small) the automaton has at least two translation invariant stationary
states, such that the spins are predominantly + or −, respectively. The probability
with which one is obtained depends on the initial conditions.

To investigate the spatial coexistence of the two phases, specific boundary con-
ditions were introduced in [4,5]. More concretely, the Toom model restricted to the
third quadrant was studied with the boundary conditions Si,0 = 1 and S0,j = −1
for all i, j < 0 and all t. Since the information is traveling southwest, in the long
time limit a steady state is reached, for which the upper part is in one phase and
the lower half in the other one. The phases are bordered by an interface which
fluctuates but has a definite slope, depending on p, q, on the macroscopic scale. Of
interest are steady state static and dynamical fluctuations of this non-equilibrium
interface. Since both pure phases have already a nontrivial intrinsic structure, to
analyse properties of the interface seems to be a difficult enterprise. In [4, 5] a low
noise approximation is used for which the interface is governed by an autonomous
stochastic dynamics in continuous time, see Figure 1. The interface can be repre-
sented by a spin configuration on the semi-infinite lattice Z+. Such spin configu-
rations inherit then a dynamics in which spins are randomly exchanged. It is this
Toom spin exchange model described below which is the focus of our contribution.
For more information we refer to [4, 5].

Toom spin exchange model

We consider the 1D lattice Z and spin configurations {σj , j ∈ Z, σj = ±1}. A
+ spin exchanges with the closest − spin to the right at rate λ and, correspond-
ingly, a − spin exchanges with the closest + spin to the right at rate 1. λ ∈ [0, 1]
is an asymmetry parameter. The Bernoulli measures are stationary under this dy-
namics and we label them by their average magnetization, µ = 〈σ0〉µ. On a finite
ring of N sites the dynamics is correspondingly defined, replacing right by clock-
wise. As can be seen from Figure 1, the interface is enforced by a hard wall at 0,
that is, spin configurations are restricted to the half lattice Z+ = {1, 2, . . .}, but
the dynamics remains unaltered. The Toom spin model on the half lattice has an
unusual independence property. If one considers the dynamics of the subsystem
{σ1(t), . . . , σL(t)}, then it evolves as a continuous time Markov chain. However the
magnetization is no longer conserved. If, for some j, the entire block [j, . . . , L] has
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Figure 1: Representation of the Toom interface model. The black/white dots are
the spin values +/− in the Toom spin exchange model.

spin +, then σj(t) flips to −σj(t) with rate λ and correspondingly for a block of
− spins touching the right border the flip is done with rate 1. As a consequence, a
unique limiting probability measure is approached as t → ∞. In our approximation,
the height of anchored interface of the Toom automaton is just the magnetization
of the Toom spin model,

Mn(t) =

n
∑

j=1

σj(t) . (2)

The argument t is omitted in case the n-dependence at fixed t is considered. Av-
erages in the steady state are denoted by 〈·〉. Note that by time stationarity
〈Mn(t)〉 = 〈Mn(0)〉 = 〈Mn〉 and time correlations such as 〈Mn(t)Mn′(t′)〉 depend
only on t− t′. At λ = 1 the interface is along the diagonal and fluctuates symmet-
rically, 〈Mn〉 = 0, while for 0 < λ < 1 the interface becomes asymmetric.

Based on theoretical and numerical evidence, in [4] it was concluded that, for
large n,

〈M2
n〉 − 〈Mn〉2 ≃ n1/2 for λ = 1 (3)

with possibly logarithmic corrections, while

〈M2
n〉 − 〈Mn〉2 ≃ n2/3 for 0 < λ < 1 . (4)

Most remarkably, using the then just being developed multi-spin coding techniques,
the full probability density function (pdf) for Mn was recorded, see [5], Fig. 3. For
λ = 1, the pdf is well fitted by a Gaussian, in agreement with the prediction of
the collective variable approximation (CVA) [4]. The variance differed however by
a logarithmic correction from the

√
n prediction, in the scaling limit, given by the

CVA. For λ = 1
4
, the scaling function obtained through the CVA was used as a fit

to the numerical data. This is given by Ai(x)4 with Ai the standard Airy function.
Somewhat ad hoc, the left tail of Ai was cut at its first zero. Looking eighteen years
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later at the same figure, with the hindsight of the much improved understanding
of the KPZ universality class, it is a safe guess that in fact a Tracy-Widom distri-
bution from random matrix theory is displayed. Apparently the fluctuations of the
anchored Toom interface share the same fate as the length of the longest increasing
subsequence of random permutations. Without knowing, Odlyzko [6] observed the
GUE Tracy-Widom distribution. We refer to [7] for a more complete account of the
history. For us Fig. 3 of [5] is a compelling motivation to return to the fluctuations
of the anchored Toom interface and to understand better how they fit into the KPZ
universality class.

In this note, we will provide numerical and theoretical evidence that in fact

Mn ≃ µ0n+ (Γn)1/3 1
2
ξGOE (5)

for large n and 0 < λ < 1. Here the coefficients µ0,Γ depend on λ and are computed
explicitly. The random amplitude ξGOE is GOE Tracy-Widom distributed. The
general form of (5) is familiar from other models in the KPZ universality class. To
have fluctuations governed by the GOE edge distribution came as a complete surprise
and has not been anticipated before. To be on the safe side we also investigate the
covariance 〈Mn(t)Mn(0)〉 − 〈Mn(0)〉2 and compare it with the prediction coming
from the covariance of the Airy1 process. Besides running multi-spin coding on
more modern machines, we present a much improved analysis on interchanging the
role of space and time for the interface dynamics.

2 Mesoscopic description of the Toom interface

To study the fluctuations of the Toom interface, it is convenient to start from a
mesoscopic description of the height

h(x, t) ≃ Mn(t) , (6)

where x stands for the continuum approximation of n. Firstly note that on Z the
Toom spin model conserves the magnetization and thus has a one-parameter family
of stationary states labeled by the average magnetization, µ. In the steady state the
spins are independent and the spin current is given by

J(µ, λ) = 2
(

λ
1 + µ

1− µ
− 1− µ

1 + µ

)

, (7)

see [4]. For the anchored Toom interface we expect (and have checked numerically)
that in small segments very far away from the origin the spins will be independent,
so that, 〈σiσi+j〉 − 〈σi〉〈σi+j〉 → 0 as i → ∞ at fixed j 6= 0. To have a stationary
state for the semi-infinite system thus requires J = 0. Using (7) this has the unique
solution

µ0 =
1−

√
λ

1 +
√
λ
, (8)
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which determines the asymptotic magnetization. If h is slowly varying on the scale
of the lattice, then locally it will maintain a definite slope u = ∂xh. The local slope
is conserved, hence governed by the conservation law

∂tu+ ∂xJ(u, λ) = 0 , (9)

which should be viewed as the Euler equation for the magnetization of the spin
model. Equivalently, there is a Hamilton-Jacobi type equation for h,

∂th+ J(∂xh, λ) = 0 , (10)

with h(x) = µ0x as stationary solution.
To describe on a mesoscopic scale the statistical properties of the Toom interface,

we follow the common practice to add noise to the deterministic equation (10), see
for example [8]. More concretely to the spin current in (9) we add the dissipative
term −1

2
D∂xu, D the diffusion constant, and, since local exchanges are essentially

uncorrelated, the space-time white noise κW (x, t). W (x, t) is normalized and κ is
the noise strength. Since the deviation from the constant slope profile µ0n will be
studied, in fact it suffices, by power counting, to keep the current J(µ, λ) up to
second order relative to µ0 as

J(µ− µ0, λ) = v(λ)(µ− µ0) +
1
2
G(λ)(µ− µ0)

2 +O((µ− µ0)
3) , (11)

where

v(λ) = 2(1 +
√
λ)2 , G(λ) = (1 +

√
λ)3(1−

√
λ)

1√
λ
. (12)

Thereby one obtains that on a mesoscopic scale the fluctuating height h(x, t) is
governed by

∂th = −v∂xh− 1
2
G(∂xh)

2 + 1
2
D∂2

xh+ κW (x, t) (13)

for t ≥ 0. For the Toom interface the height is pinned at the origin which leads to
the restriction x ≥ 0 and the boundary condition

h(0, t) = 0 . (14)

The coefficients v,G depend on λ. If G = 0, as is the case for λ = 1, the second
order expansion does not suffice. Fourth order is irrelevant, but the third order
term generates logarithmic corrections [9], which are the theoretical reason behind
the already mentioned logarithmic corrections for the interface variance at λ = 1.

Eq. (13) is the much studied one-dimensional KPZ equation [10] with two im-
portant differences. Firstly the height function is over the half-line, being pinned at
the origin, and secondly there is the outward drift v(λ), which cannot be removed
because of this boundary condition. At such brevity our reasoning may look ad

hoc. But the scheme should be viewed as a particular case of the KPZ scaling the-
ory [11, 12], which has been confirmed through extensive Monte Carlo simulations
for related models, for example see [13].
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For magnetization µ the spin susceptibility A equals, for independent spins,
〈σ2

0〉µ − 〈σ0〉2µ = 1− µ2 and at µ0 is given by,

A = 4
√
λ(1 +

√
λ)−2 . (15)

To connect with the parameters of Eq. (13), one checks that on R the steady state
has the slope statistics given by spatial white noise with variance κ2/D. Therefore
we identify as

A = κ2/D . (16)

In the scaling regime only A will appear, which is unambiguously defined by (15) in
terms of the spin model, while D and κ separately are regarded as phenomenological
coefficients. As for Mn(t), our focus is the stationary process determined by (13),
(14).

3 Interchanging the role of space and time

Considering Eq. (13), it would be of advantage to interchange x and t, because
then the boundary value h(0, t) = 0 turns into an initial condition, which is more
accessible. From the perspective of stochastic partial differential equation, such an
interchange looks impossible. But once we write the Cole-Hopf solution of (13), for
example see [14], our scenario becomes fairly plausible.

The Cole-Hopf transformation is defined by

Z(x, t) = e(G/D)h(x,t) , (17)

which satisfies
∂tZ = 1

2
D∂2

xZ − v∂xZ − (Gκ/D)WZ (18)

on R+ with boundary condition Z(0, t) = 1 and some initial condition Z0(x). The
first two terms generate a Brownian motion with constant drift, which is used in
the Feynman-Kac discretization to formally integrate (18). Let b(t) be a Brownian
motion with b(0) = 0 and variance variance E(b(t)2) = Dt, D > 0, E denoting the
expectation for b(t). In the usual parlance b(t) is called a directed polymer, since it
moves forward in the time direction. Furthermore let T be the largest s such that
x + b(t − s) − v(t − s) = 0, i.e. T is the first time of hitting of 0 for a Brownian
motion with drift starting at x. Then Eq. (18) integrates to

Z(x, t) = E

(

e−(Gκ/D)
∫
t

(t−T )∨0 dsW (x+b(t−s)−v(t−s),s)
(

Z0(b(t)−vt)1[t≤T ]+1[t>T ]

)

)

. (19)

For large t, the path {x+ b(t−s)−v(t−s), 0 ≤ s ≤ t} will hit 0 before s = 0 with a
probability close to one. Hence the contribution from the term with Z0 will vanish,
the particular initial conditions are forgotten, and

lim
t→∞

Z(x, t) = Z∞(x) = E

(

e−(Gκ/D)
∫ 0
−T

dsW (x+b(−s)+vs,s)
)

. (20)
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Going back to (17), (D/G) logZ∞(x) defines the stationary measure for Eqs. (13),
(14). The stationary process for all t ∈ R is obtained by shifting W in t as

Zst(x, t) = E

(

e−(Gκ/D)
∫ 0
−T

dsW (x+b(−s)+vs,s+t)
)

. (21)

To understand the interchange between x and t, at least in principle, we discretize
(21) by replacing R+×R by Z+×Z. Then the continuum directed polymer b(t)−vt
is replaced by its discrete cousin, namely a random walk ω with down-left paths
only. The walk starts at ~j0, ~j = (j1, j2). The transitions are ωn to ωn − (1, 0) with
probability p and ωn to ωn − (0, 1) with probability q, p + q = 1. T is the time of
first hitting the line {j2 = 1}. W (x, t) is replaced by a collection of independent
standard Gaussian random variables {W (j1, j2), j1 ∈ Z, j2 ∈ Z+}. The integral
in the exponent of (21) now turns into the sum over W (j1, j2) along ω until the
boundary is reached. Since the path ω is decreasing, it can be viewed with either j1
or j2 as time axis. In the first version, the continuum limit equals −(q/p)t+

√
q b(t)

and in the second version −(p/q)t +
√
p b(t).

Eq. (21) corresponds to the first version. Instead we now take j2 as time axis
and consider the continuum version of the partition function as in Eq. (21). Then
the directed polymer is parametrized as u 7→ t + b̃(x − u) − ṽ(x − u). b̃(u) is a
Brownian motion with b̃(0) = 0 and variance Ẽ(b̃(u)2) = D̃u and the transformed
drift is ṽ = v−1. With these conventions the partition function reads

Z̃st(x, t) = Ẽ

(

e(G̃κ̃/D̃)
∫
x

0
duW (u,t+b̃(x−u)−ṽ(x−u))

)

, (22)

where x > 0 and t ∈ R. By defining h̃ = (D̃/G̃) log Z̃st, one arrives at

∂xh̃ = −ṽ∂th̃− 1
2
G̃(∂th̃)

2 + 1
2
D̃∂2

t h̃+ κ̃W (23)

with initial condition
h̃(0, t) = 0 . (24)

There is no good reason for having a strict identity between h and h̃. But one
would expect both to have the same asymptotic behavior, provided one appropriately
adjusts G̃ and Ã = κ̃2/D̃. The argument given is not specific enough for finding out
the correctly transformed coefficients. For this purpose we return to the Toom spin
model on Z and first consider the macroscopic height evolution. Then, as in (9),

∂th+ J(∂xh) = 0 , (25)

where J(∂xh) = J(∂xh, λ). Since J is monotone, it is invertible and

∂xh+ J̃(∂th) = 0 , J(J̃(u)) = u , (26)

and, expanding in ∂th,

∂xh = −v−1∂th+ 1
2
Gv−3(∂th)

2 +O((∂th)
3) . (27)
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We conclude that
vṽ = 1 , G = −G̃v3 . (28)

As a second task we have to find out the transformed susceptibility Ã. For this
purpose we consider the stationary Toom spin model, σj(t), on Z× R with average
magnetization µ. Since the steady state is Bernoulli, one already knows that

∑

j∈Z

(

〈σj(0)σ0(0)〉µ − µ2
)

= 1− µ2 = A . (29)

Ã is the corresponding susceptibility in the t-direction, which is defined by
∫ ∞

−∞
dt
(

〈σ0(t)σ0(0)〉µ − µ2
)

= Ã . (30)

The computation of Ã requires dynamical correlations, which looks like a difficult
task. Help comes from the very special correlation structure which holds for a
large class of 1D spin models with exchange dynamics. While for some models such
structure can be checked from the exact solution [15, 16], for the Toom spin model
it is an assumption. But there is no good reason why the Toom spin model should
behave exceptionally. We consider correlations between (0, 0) and (j, t). There
then is a special direction, determined through the speed of propagation of small
disturbances, v(λ). Along (v(λ)s, s) the line integral as in (30) vanishes, while in all
other directions it converges to a strictly positive value.

For the complete argument it is convenient to first define the height function for
the Toom spin model by

h(j, t) =











∑j
i=1(σi(t)− µ) for j > 0 ,

J(0,1)([0, t])− Jt for j = 0 ,
∑−1

i=j(σi(t)− µ) for j < 0 .

(31)

Here J(0,1)([0, t]) is the actual time-integrated spin current across the bond (0, 1) up
to time t implying the convention h(0, 0) = 0. By definition the spin susceptibility
along the j-axis is given by

〈(h(j, 0)− h(0, 0))2〉 = Aj (32)

for large j, j > 0. Correspondingly in the t-direction

〈(h(0, t)− h(0, 0))2〉 = Ãt (33)

for large t, t > 0. In the direction of the propagation speed, the height fluctuations
of are suppressed,

〈(h(vt, t)− h(0, 0))2〉 = O(t2/3) . (34)

We set X = h(vt, t) − h(0, t) and Y = h(0, t) − h(0, 0). Using the general bound
|〈X2〉 − 〈Y 2〉| ≤ 〈(X + Y )2〉1/2(2〈X2〉+ 2〈Y 2〉)1/2 and stationarity,

h(vt, t)− h(0, t) = h(vt, 0)− h(0, 0) (35)
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in distribution, one concludes that

lim
t→∞

t−1〈(h(vt, 0)− h(0, 0))2〉 = Av = Ã = lim
t→∞

t−1〈(h(0, t)− h(0, 0))2〉 . (36)

Our argument only used that along a particular direction the height fluctuations
are subdiffusive. While such a property is expected to hold for a large class of spin
exchange dynamics, it has been proved only for a few models, in particular for the
asymmetric simple exclusion process (ASEP) [17, 18]. Here particles hop to the
right with rate p and to the left with rate q, p + q = 1, provided the target site is
empty. As for the Toom spin model the invariant measures are Bernoulli, say with
density ρ. Then A = ρ(1− ρ) and v = (p− q)(1− 2ρ). The identity (36) states that

〈
(

J(0,1)([0, t])−ρ(1−ρ)t
)2〉 = Ãt for large t with Ã = |(p−q)(1−2ρ)|ρ(1−ρ). In fact,

this identity is proved in [19], including the corresponding central limit theorem.

4 Asymptotic properties

As argued in the previous section, on a large space time scale the stationary process
Mn(t)−µ0n is approximated by h̃(x, t) governed by Eq. (23) with initial conditions
h̃(0, t) = 0, which is known as KPZ equation with flat initial conditions. Available
are a replica solution [20] and proofs for a few discrete models in the KPZ uni-
versality class [21–26]. We summarize the findings, which then immediately yields
the predictions for the anchored Toom interface. The non-universal parameters are
ṽ = 2−1(1 +

√
λ)−2, Ã = 8

√
λ, and G̃ = −2−3(1+

√
λ)−3(1−

√
λ) 1√

λ
. Following [27]

we introduce
Γ̃ = |G̃|Ã2 = 8

√
λ(1−

√
λ)(1 +

√
λ)−3 . (37)

Then, for large x,
h̃(x, 0) ≃ ṽx+ (Γ̃x)1/3 1

2
ξGOE , (38)

where the random amplitude ξGOE is GOE Tracy-Widom distributed. More precisely
ξGOE has the distribution function

P(ξGOE ≤ s) = F1(s) , F1(2s) = det(1−K)L2((s,∞)) . (39)

The integral kernel of K reads K(u, u′) = Ai(u + u′), see [28] for this particular
representation of F1. As a consequence, for large n, Mn − µ0n is predicted to have
the distribution function

P(Mn − µ0n ≤ s) ≃ F1(2(Γ̃n)
−1/3s) . (40)

1
2
ξGOE has mean −0.6033, variance 0.408, and decays rapidly at infinity as

exp[−2(2s)3/2/3] for the right tail and exp[−|s|3/6] for the left tail. The GOE
Tracy-Widom distribution was originally derived in the context of random matri-
ces [29]. One considers the Gaussian orthogonal ensemble of real symmetric N ×N
matrices, H , with probability density

Z−1 exp
(

− 1
4N

trH2
)

dH, (41)
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where dH =
∏

1≤i≤j≤N dHi,j. Let λN be the largest eigenvalue of H . Then, for large
N ,

λN ≃ 2N +N1/3ξGOE . (42)

Next we consider t 7→ h̃(x, t) as a stationary stochastic process in t. It is cor-
related over times of order (Γ̃x)2/3. In fact after an appropriate scaling h̃(x, t)
converges to a stochastic process known as Airy1. In formulas

lim
x→∞

(Γ̃x)−1/3
(

h̃(x, 2Ã−1(Γ̃x)2/3t)− ṽx
)

= A1(t) . (43)

For the joint distribution of A1(t1), . . . ,A1(tn), t1 < . . . < tn, one has a determinan-
tal formula. In particular for two times t1, t2

P(A1(t1) ≤ s1,A1(t2) ≤ s2) = det(1− K)L2(R×{1,2}). (44)

K is a operator with kernel given by

K(x, i; x′, j) = 1(x > si)K1(ti, x; tj , x
′)1(x′ > sj), (45)

with

K1(t, x; t
′, x′) =Ai(x′ + x+ (t′ − t)2) exp

(

(t′ − t)(s′ + s) + 2
3
(t′ − t)3

)

− 1
√

4π(t′ − t)
exp

(

−(x′ − x)2

4(t′ − t)

)

1(t′ > t) .
(46)

From the expression (44) one obtains the covariance

g1(t) = 〈A1(0)A1(t)〉 − 〈A1(0)〉2 . (47)

To actually compute g1, one uses a matrix approximation of the operators in (44)
by evaluating the kernels at judiciously chosen base points [30], for which the de-
terminants are then readily obtained by a standard numerical routine. The limit in
(43) implies that, for large x,

〈h̃(x, 0)h̃(x, t)〉 − 〈h̃(x, 0)〉2 ≃ (Γx)2/3g1(Ãt/2(Γ̃x)
2/3) . (48)

Returning to the Toom interface one arrives at the result that, for large n,

〈(Mn(t)−µ0n)(Mn(0)−µ0n)〉− 〈(Mn(0)−µ0n)〉2 ≃ (Γ̃n)2/3g1(Ãt/2(Γ̃n)
2/3) . (49)

Based on KPZ scaling theory, (40) and (49) are our predictions for the fluctuations
of the Toom interface. They will be tested numerically in the following section.
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5 Numerical studies

The Toom spin model lends itself well for an efficient simulation technique, often
referred to as multispin coding [31], which was used already in [5] and is used also
in this study. The basic idea is that the time-consuming part of the algorithm is
written down as a sequence of single-bit operations, but the computer then acts
on 64-bit words, thereby performing 64 simulations simultaneously. Most of the
computational effort is invested into selecting a random site, flipping the spin value
at that site, and then walking along the array of spins until an opposite spin is
encountered, which is then also flipped. A piece of code in the programming language
C which achieves this is:

i=random()*n;

first=spin[i];

todo=randword()|first;

spin[i]^=todo;

for (j=i+1;(j<n)&&(todo!=0);j++)

{

flip=todo&(first^spin[j]);

spin[j]^=flip;

todo&= (~flip);

}

In this example code, the introduction of a random pattern randword() in the
third line introduces a bias; the density of 1s in this random pattern should equal λ.

For the actual simulations, we start from a random spin distribution, that is, the
initial spins are independent Bernoulli random variables with parameter 1/2, and
then evolve the system over n2/2 units of time to achieve the steady state. Next, in
one set of simulations, we keep evolving the system, and make a histogram of Mn(k)
for k = 0, n, . . . , 107n, where Mn(k) is the magnetization after k units of time. This
data are used to determine the distribution function of Mn − µ0n.

In another set of simulations we obtain an estimate of 〈(Mn(0)−Mn(t))
2〉 by

averaging (Mn(i)−Mn(i+ j))2 for i = 0, n+T, . . . , 103(n+T ) and j = 0, 1, . . . , T in
which T = 2n2/3 is the longest time difference over which we measure the correlation.

We have made simulations for λ = 1/8, a value at which the convergence with
increasing system size is relatively fast, for n = 104, 2 × 104, 5 × 104, and 105. We
import the data sets in Mathematica and rescale them according to the theoretical
predictions of (40) and (49). First we consider the scaling of the magnetization as

M resc
n =

Mn − µ0n

(Γ̃n)1/3
(50)

and compare its density with the one of 1
2
ξGOE (the data for ξGOE are taken from [32]),

see Figures 2 and 3. The agreement is remarkable and at first approximation one only
sees a (non-random) shift of the distributions to the right, which goes to zero as n−1/3

as observed previously in other models in the KPZ universality class, see [27,33–35].
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Figure 2: Densities of M resc
n for n = 104, 2 × 104, 5 × 104, and 105 compared with

the theoretical prediction, that is, the density of 1
2
ξGOE. The insert at the top figure

is the log-log plot of the function n 7→ 〈M resc
n 〉 − 1

2
〈ξGOE〉. The line has slope −1/3.

The arrow indicates the shift of the curves as n increases.

Secondly, we focus at the covariance. Since our simulation is in steady state, we
can derive the covariance from 〈(Mn(0)−Mn(t))

2〉 simply by the relation

Cov(Mn(0),Mn(t)) = Var(Mn(0))− 1
2

〈

(Mn(0)−Mn(t))
2
〉

. (51)

The value of Var(Mn(0)) can be be obtained using the first set of data or by mak-
ing an average over the region of times t where 〈(Mn(0)−Mn(t))

2〉 is constant.
We used the latter approach, since it turns out to be less sensitive to long-lived
correlations in the total magnetization, associated with the system’s state close to
the origin. The estimate of the variance has been made by averaging the values
of 1

2
〈(Mn(0)−Mn(t))

2〉 for times t ∈ [n2/3, 2n2/3]. In that region the theoretical
prediction gives that the covariance (of the rescaled process) is about 10−6, which
is much below the statistical noise that is about 10−3.

We considered the scaled process according to (49), namely

M resc
n (t) =

Mn(2t(Γ̃n)
2/3/Ã)− µ0n

(Γ̃n)1/3
. (52)
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Figure 3: Difference of the densities of M resc
n for n = 104, 2 × 104, 5 × 104, and 105

and the theoretical prediction.

Mean Variance Skewness Kurtosis
n = 10 000 −0.5198;−14% 0.4335; 6.3% 0.2657;−9.4% 3.154;−0.33%
n = 20 000 −0.5344;−11% 0.4239; 3.9% 0.2757;−5.9% 3.159;−0.18%
n = 50 000 −0.5496;−9.0% 0.4162; 2.0% 0.2820;−3.8% 3.152;−0.40%
n = 100 000 −0.5612;−7.0% 0.4116; 0.9% 0.2897;−1.2% 3.168; 0.09%
n = ∞ −0.6033 0.4080 0.2931 3.165

Table 1: Mean, Variance, Skewness, and Kurtosis of M resc
n and their relative differ-

ence with the asymptotic values.

Using the approach described above, we determine the covariance of M resc
n and plot

it against the covariance g1(t) of the Airy1 process, see Figure 4.
The precision in the agreement between theory and Monte Carlo data can be

tested also through recording the higher order statistics, see Table 1. One expects
that generically the ℓ-th cumulant approaches its asymptotic value as n−ℓ/3. In
particular the mean should have the slowest decay, consistent with our data.

6 Conclusions

Using improved computer resources we have identified the distribution sampled
in [5], Fig. 3, as the GOE Tracy-Widom edge distribution. In our figures there
is no free scaling parameter. All model-dependent parameters are computed from a
sophisticated version of the KPZ scaling theory. One might wonder whether similar
properties hold for other 1D spin models with short range spin exchange dynamics.
Such a model would have a spin current J(µ) depending on the average magnetiza-
tion µ. We crucially used that J(µ) = 0 has a unique solution, µ0, with |µ0| < 1.
The case of multiple solutions has not been considered yet. Furthermore we needed
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Figure 4: Densities of Cov(M resc
n (0),M resc

n (t)), t ∈ [0, 1.5], for n = 104, 2 × 104,
5× 104, and 105 compared with the theoretical prediction g1(t).

14



J ′(µ0) > 0 corresponding to the right half lattice. If in addition J ′′(µ0) 6= 0, the same
properties as discussed in our note are predicted. If J ′′(µ0) = 0 but J ′′′(µ0) 6= 0, the
variance grows as

√
n with logarithmic corrections. In principle also J ′′′(µ0) could

vanish. Then the asymptotics should behave exactly as
√
n. The Toom spin model

is singled out because it appears naturally from an underlying cellular automaton.
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