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Abstract

In this short paper we derive a formula for the spatial persistence
probability of the Airy1 and the Airy2 processes. We then determine
numerically a persistence coefficient for the Airy1 process and its de-
pendence on the threshold.

1 Introduction

The Airy1 and Airy2 processes are universal processes describing the fluctu-
ation of interfaces for stochastic growth models in the Kardar-Parisi-Zhang
(KPZ) universality class. The persistence probability is the probability that
a process stays positive (resp. negative), or more generally, above (resp. be-
low) a certain threshold during a time interval [0, L]. When the process
is stationary, it might be expected that the persistence probability decays
exponentially in L.

The Airy processes were obtained by studying specific models in the KPZ
universality class [3, 8, 9, 11]. It was only in 2010 that in an amazing experi-
ment with turbulent nematic liquid crystals Takeuchi and Sano [13,15] were
able to verify experimentally the KPZ predictions at the level of distribution
functions and covariances (and not only at the level of the scaling exponents).
The agreement with the theory is very good.

In a recent paper the same authors [14] measured, among others, the spa-
tial persistence coefficients with respect to a threshold given by the average
of the process. In the case of the Airy2 process, the persistence coefficients
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have been also measured in an off-lattice Eden model [12] and verified by a
numerical simulation of GUE Dyson’s Brownian Motion [14].

In this short paper we determine analytic formulas for the persistence
probability to stay below a threshold c, both for the Airy1 and the Airy2
processes. The starting point are the two works on the continuum statis-
tics [4, 10]. Then we focus on the case of the Airy1 process and determine
the associated persistence coefficient and its dependence on the threshold
c. This is made by using the numerical approach for computing Fredholm
determinants developed by Bornemann in [2]. The advantage of looking di-
rectly at the limit process is that we do not have uncontrolled uncertainties
coming from the finite size settings of an experimental setup or of a numeri-
cal simulation. The experimental results of [14] fits fairly well with the exact
numerical results of this paper.
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2 Results

In order to state the results, let us introduce some notations. We denote by
A1 the Airy1 process and by A2 the Airy2 process, see the review [5] for the
definition of these processes. For a threshold c ∈ R and a time interval [0, L]
with L > 0, the persistence probabilities are defined by

P−(A, c, L) = P(A(t) ≤ c, 0 ≤ t ≤ L),

P+(A, c, L) = P(A(t) ≥ c, 0 ≤ t ≤ L),
(2.1)

where A ∈ {A1,A2}.
For large L, the persistence probabilities decay exponentially in L with

persistence coefficients κ± given by

P±(A, c, L) ≃ C±(A, c)e−κ±(A,c)L for large L. (2.2)

As it can be seen from Figure 4.1 and Figure 4.2 below, the exponential decay
of the persistence probabilities for the Airy1 process is already observed at
relatively small values of L, for instance already at L = 1. An analytic proof
of the exponential decay is not yet available, but the log-plot of the figures
clearly indicates that it is the case.
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The analytic result for the persistence probabilities P− of the Airy pro-
cesses are the following.

Proposition 2.1. For the Airy1 process we have

P−(A1, c, L) = det(1−K1,L)L2(R) (2.3)

where the kernel K1,L is given by

K1,L(x, y) = Ai(|x|+y+2c)+1[x≤0](K̃1,L(x, y+2c)−K̃1,L(−x, y+2c)) (2.4)

with

K̃1,L(x, y) =
1√
4πL

∫

R+

dz e−(x−z)2/4Le−2L3/3e−L(y+z)Ai(y + z + L2). (2.5)

Proposition 2.2. For the Airy2 process we have

P−(A2, c, L) = det(1−K2,L)L2(R) (2.6)

where the kernel K2,L is given by

K2,L(x, y) = KAi(x+ c, y + c)

− 1[x≤0]

∫

R−

dz

∫

R

dµ e(µ−c)Lφ(x, µ)φ(z, µ)KAi,L(z + c, y + c)

(2.7)
with

KAi,L(x, y) = (eLHAiKAi)(x, y) =

∫

R+

dλ e−LλAi(λ+ x)Ai(λ+ y) (2.8)

and

φ(x, µ) =
Ai(µ)Bi(x+ µ)− Ai(x+ µ)Bi(µ)√

Ai(µ)2 + Bi(µ)2
. (2.9)

Before stating the results of the numerical evaluation of (2.3), let us
resume the results cited above in the following table1:

A, c κ−(A, c) κ+(A, c)
Experimental [14] A1,−0.6033 3.2(5) 3.0(5)
Experimental [14] A2,−1.7711 0.87(6) 1.07(8)
Off-lattice Eden [12] A2,−1.7711 0.89(4) 0.90(2)
GUE Dyson’s Brownian Motion [14] A2,−1.7711 0.90(6) 0.90(8)

1The values for the Airy1 process have to be multiplied by 22/3 because the scaling
in [14] is such that the limit process is u 7→ 22/3A1(2

−2/3
u) instead of u 7→ A1(u).
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Figure 2.1: Dependence of the κ−(A1, c) as a function of c. The straight
line is the linear approximation around the average of the Airy1 process
(c = −0.6033). The slope is −4.07.

While the different experiments and numerical simulations for the Airy2
process provide results that are quite close to each other, no further results
were available for the Airy1 process. We first evaluated numerically the
Fredholm determinant for the two natural thresholds, namely the average of
the process2, c = −0.6033, and for c = 0, with the results

A, c κ−(A, c) C−(A, c)
A1,−0.6033 2.91 0.370
A1, 0 1.10 0.733

Comparing our result to the experimental one, we see that the agreement is
fairly good. Indeed, the relative error for the Airy1 process is 10%.

We also determined the exact values of κ−(A1, c) as a function of c for
c ∈ [−1, 0], see Figure 2.1. We observe that this coefficient is quite sensitive to
the threshold c (see Table 1 for the values). For instance, in the region around
the average of the process the tangent line has a slope of −4.07, i.e., a small
error in the centering on the threshold leads to an error in the persistence

2The Airy1 process is a stationary process with one-point distribution given by
P(A1(0) ≤ s) = F1(2s) where F1 is the GOE Tracy-Widom distribution function [7],
and F1 has an average −1.20653 [16].
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coefficient 4 times larger. According to the experimental results [13] and the
analysis of specific models [6], the approach to large time limit is at first order
a constant times t−1/3. Therefore, one has to take this finite size correction
in account when setting the threshold (as it was made in [14]).

3 Proofs of the analytic results

The starting point of our analysis are two formulas on the continuum statis-
tics for the Airy1 process [10] and for the Airy2 process [4]. Let us start with
the Airy1 process.

Theorem 3.1 (Theorem 4 of [10]). It holds

P(A1(t) ≤ g(t), 0 ≤ t ≤ L) = det(1− B0 + ΛL,ge
−L∆B0)L2(R) (3.1)

where g is a function in H1([0, L]), ∆ is the Laplacian, B0(x, y) = Ai(x+y),
and

ΛL,g(x, y) =
e−(x−y)2/(4L)

√
4πL

Pb(0)=x,b(L)=y(b(s) ≤ g(s), 0 ≤ s ≤ L) (3.2)

with b a Brownian Bridge from x at time 0 to y at time L and with diffusion

coefficient 2.

To get the persistence probabilities, we have to determine the explicit
kernel for the function g(s) = c.

Proof of Proposition 2.1. We have to determine a formula for the Fredholm
determinant of 1−B0 +ΛL,ce

−L∆B0. Since the Fredholm determinant is on
all R, we can shift the variables by c and obtain the kernel

B0(x+ c, y + c)−
∫

R

dz ΛL,c(x+ c, z + c)(e−L∆B0)(z + c, y + c). (3.3)

Clearly, ΛL,c(x, y) = ΛL,0(x− c, y − c), therefore

(3.3) = Ai(x+ y + 2c)−
∫

R

ΛL,0(x, z)(e
−L∆B0)(z + c, y + c). (3.4)

By the reflection principle we have

ΛL,0(x, z) =
e−(x−z)2/(4L)

√
4πL

Pb(0)=x,b(L)=z(b(s) ≤ 0, 0 ≤ s ≤ L)

=
1√
4πL

(
e−(x−z)2/(4L) − e−(x+z)2/(4L)

)
1[x,z<0].

(3.5)
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Moreover, it is known (see e.g. the review [5]) that

e−L∆B0(z + c, y + c) = e−2L3/3−(z+y+2c)LAi(z + y + 2c+ L2). (3.6)

Putting all together we have

(3.4) = Ai(x+ y + 2c)− 1[x<0]

(
K̂1,L(x, y + 2c)− K̂1,L(−x, y + 2c)

)
(3.7)

where

K̂1,L(x, y) =
1√
4πL

∫

R−

dz e−(x−z)2/4Le−2L3/3e−L(y+z)Ai(y + z + L2). (3.8)

Finally, using the identity (see below)

1√
4πL

∫

R

e−(x−z)2/4Le−2L3/3e−L(y+z)Ai(y + z + L2)dz = Ai(x+ y) (3.9)

we get
K̂1,L(x, y) = Ai(x+ y)− K̃1,L(x, y). (3.10)

Replacing this into (3.7) gives the desired result (2.4).
Finally, let us verify (3.9). By the integral representation of the Airy

function,

Ai(b2 + c)e2b
3/3+bc =

1

2πi

∫ eiπ/3∞

e−iπ/3∞

dw ew
3/3+bw2−cw, (3.11)

and a Gaussian integration we get

1√
4πL

∫

R

dz e−(x−z)2/4Le−2L3/3e−L(y+z)Ai(y + z + L2)

= e−L(x+y)eL
3/3 1

2πi

∫ eiπ/3∞

e−iπ/3∞

dw ew
3/3+Lw2−w(x+y−L2) = Ai(x+ y), (3.12)

where we used again (3.11).

Now we consider the Airy2 process. The analogue of Theorem 3.1 for the
Airy1 process is given by
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Theorem 3.2 (Theorem 2 of [4]). It holds

P(A2(t) ≤ g(t), 0 ≤ t ≤ L) = det(1−KAi + ΛL,ge
LHAiKAi)L2(R) (3.13)

where g is a function in H1([0, L]), HAi = −∆ + x is the Airy operator,

KAi(x, y) =
∫
R+

dλAi(x+ λ)Ai(y + λ) is the Airy kernel, and

ΛL,g(x, y)

= e−Ly−L3/3 e
−(x−y)2/(4L)

√
4πL

Pb(0)=x,b(L)=y−L2(b(s) ≤ g(s)− s2, 0 ≤ s ≤ L)

(3.14)

with b a Brownian Bridge from x at time 0 to y − L2 at time L and with

diffusion coefficient 2.

We have to determine the kernel for the special function g(s) = c.

Proof of Proposition 2.2. We have to compute the Fredholm determinant of
1−KAi + ΛL,ce

−LHAiKAi over L
2(R). As in the proof of Proposition 2.1, we

first do a shift in the variables by c and obtain the kernel

KAi(x+ c, y + c)−
∫

R

dz ΛL,c(x+ c, z + c)(eLHAiKAi)(z + c, y + c) (3.15)

It is easy to verify that

ΛL,c(x, y) = ΛL,0(x− c, y − c)e−Lc. (3.16)

Therefore, the kernel becomes

(3.15) = KAi(x+c, y+c)−e−Lc

∫

R

dz ΛL,0(x, z)(e
LHAiKAi)(z+c, y+c). (3.17)

Thus, the desired formula follows if we can show that

ΛL,0(x, z) = e−Lz−L3/3 e
−(x−z)2/(4L)

√
4πL

Pb(0)=x,b(L)=z−L2(b(s) ≤ −s2, 0 ≤ s ≤ L)

= 1[x,z≤0]

∫

R

dµ eµLφ(x, µ)φ(z, µ).

(3.18)
To this end we use another representation of the kernel ΛL,0, that can also
be found in [4] and that follows from (3.18) by applying the Girsanov the-
orem and the Feynman-Kac formula. According to this characterization,
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ΛL,0(x, z) = u(L; x, z)1[z<0] is the solution at time t = L of the boundary
value problem

∂tu+HAiu = 0 for x < 0 and t ∈ (0, L),

u(0; x, z) = δx−z,

u(t; x, z) = 0 for x ≥ 0.

(3.19)

The solution of this problem can be found in [1, eq. (40)],

u(t; x, z) = 1[x<0]

∫

R

dµ eµtφ(x, µ)φ(z, µ). (3.20)

Note that in [4] the boundary value problem describes the action of the
operator ΛL,0 while our formulation considers the kernel of this operator.

4 Numerical approach and results

To apply the numerical procedure of [2] we need to have an analytic kernel,
but the kernel in Proposition 2.1 is not analytic at x = 0. This issue can
be fixed by rewriting the Fredholm determinant as acting on L2(R) into a
Fredholm determinant acting on L2(R−)⊕L2(R+). In this way, instead of a
scalar non-analytic kernel we get an analytic 2× 2 matrix kernel.

There are few other issues that we had to deal with by trying to compute
numerically the Fredholm determinant with kernel (2.4):

• We need to introduce a cut-off T and compute the Fredholm determi-
nant on L2([−T, T ]). We controlled the value of T so that by varying
it, the results were not changing.

• One can see that the kernel (2.4) is not bounded, but this is not a rel-
evant problem because the conjugated kernel obtained by multiplying
(2.4) with eL(y−x) is bounded.

• The main problem is that, even after conjugation, there are regions
where the magnitude of the kernel grows like eaL

3

for a of order 1, while
the kernel for positive x has oscillations of order 1. Consequently, the
numerical approach works only for L relatively small because of the
limitation due to machine precision. For the range of c ∈ [−1, 0], it
works well at least until L = 2.5 (for c = 0 also L = 3.5 is still fine).

Fortunately, for the Airy1 process, the logarithm of the persistence probabil-
ity becomes rapidly a straight line as can be seen in Figure 4.1 and Figure 4.2
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Figure 4.1: Persistence probability for the Airy1 process and exponential
interpolation (2.2) with κ−(−0.6033) = 2.91 and C−(−0.6033) = 0.370,
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Figure 4.2: Persistence probability for the Airy1 and exponential interpola-
tion (2.2) with κ−(0) = 1.10 and C−(0) = 0.733.
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below. This allowed us to determine the persistence coefficient κ− for the
Airy1 process reliably.

Finally, let us resume in a table the values of κ−(A1, c) for c ∈ [−1, 0].

c -1.00 -0.98 -0.96 -0.94 -0.92 -0.90 -0.88 -0.86 -0.84 -0.82
κ− 4.858 4.739 4.626 4.513 4.402 4.293 4.187 4.082 3.978 3.877
c -0.80 -0.78 -0.76 -0.74 -0.72 -0.70 -0.68 -0.66 -0.64 -0.62
κ− 3.778 3.680 3.584 3.490 3.398 3.307 3.218 3.131 3.045 2.961
c -0.60 -0.58 -0.56 -0.54 -0.52 -0.50 -0.48 -0.46 -0.44 -0.42
κ− 2.879 2.799 2.720 2.642 2.567 2.493 2.420 2.349 2.279 2.211
c -0.40 -0.38 -0.36 -0.34 -0.32 -0.30 -0.28 -0.26 -0.24 -0.22
κ− 2.145 2.080 2.016 1.954 1.893 1.834 1.776 1.719 1.664 1.610
c -0.20 -0.18 -0.16 -0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02
κ− 1.558 1.506 1.456 1.407 1.360 1.314 1.268 1.224 1.181 1.140

Table 1: Values of κ−(A1, c) for a set of values of c ∈ [−1, 0]. The value of
κ−(A1, 0) = 1.099.
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