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Abstract

We consider non-colliding Brownian bridges starting from two points and re-
turning to the same position. These positions are chosen such that, in the limit of
large number of bridges, the two families of bridges just touch each other forming a
tacnode. We obtain the limiting process at the tacnode, the (asymmetric) tacnode
process. It is a determinantal point process with correlation kernel given by two
parameters: (1) the curvature’s ratio λ > 0 of the limit shapes of the two families
of bridges, (2) a parameter σ ∈ R controlling the interaction on the fluctuation
scale. This generalizes the result for the symmetric tacnode process (λ = 1 case).

1 Introduction and results

Systems of non-colliding Brownian motions have been much studied recently. They
arise in random matrix theory (see e.g. [17,18,20]), as limit processes of random walks,
discrete growth models, and random tiling problems, see e.g. [9–13, 16, 21, 23, 24].

Considering non-colliding Brownian bridges (as well as discrete analogues), various
kinds of determinantal processes appear naturally. Assume that the starting and ending
points are chosen such that, in the limit of large number of bridges, the paths occupy a
region bordered by a deterministic limit shape (see Figure 1 for an illustration). Then,
inside the limit shape (in the bulk), one observes the process with the sine kernel, see
e.g. [21]. At the edge of the limit shape, the last bridge is described asymptotically by
the Airy2 process [10, 12, 23]. Whenever there is a cusp in the limit shape, then the
process around the cusp is the Pearcey process [4,7,22,27]. All these processes are quite
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robust in the sense that by moving the initial and/or ending points of the bridges, the
only changes are geometric (e.g., the position and direction of the edge/cusp changes
and numerical coefficients in the scaling) but the processes are the same without free
parameters.

The case of the tacnode is more delicate and the limit process is described by two
parameters. Recently, three different approaches have been used to unravel the tacnode
process. In the first work, Adler, Ferrari and van Moerbeke [1] derived the symmetric
tacnode process from a limit of non-intersecting random walks. Meanwhile two other
groups were after a solution for the Brownian bridge setting. Soon after [1], a solu-
tion appeared in term of a 4 × 4 Riemann-Hilbert problem by Delvaux, Kuijlaars and
Zhang [8]. Their solution is for the generic tacnode process. The third approach, leading
to, in our opinion, the simplest of the three formulations was posted more recently by
Johansson [15]. In the latter, the asymptotic analysis was restricted to the symmetric
tacnode. In the present paper, we analyse the general case starting with the result on
two sets of Brownian bridges of [15].

The equivalence between the last two formulations follows from the fact that the
starting model is the same. However it seems hard to compare the analytic formulas
directly. The equivalence of the results between the random walk and Brownian bridge
case is expected by universality, and it can be indirectly checked by analysing a discrete
model with the two approaches, as it was made very recently for the double Aztec
diamond in [2].

Now we introduce the model and state the result of this paper. We consider (1+λ)n
non-colliding standard Brownian motions with two starting points and two endpoints
where λ > 0 is a fixed parameter. More precisely, n of the Brownian motions start at a1
at time 0 and arrive at a1 at time 1, the remaining1 λn Brownian particles have starting
and ending points at a2 at time 0 and 1 respectively with a1 < a2. For finite times
t1, . . . , tk, the positions of the particles at these times form an extended determinantal
point process (for more informations on determinantal point processes, see [3, 14, 19,
25, 26]). For a fixed integer n and a fixed λ > 0, let us denote by Ln,λn(s, u, t, v) the
kernel of this determinantal point process with s, t ∈ (0, 1) and u, v ∈ R. The kernel
Ln,λn(s, u, t, v) was obtained in [15], see Theorem 2.1 below for the formula.

In this paper, we take the n → ∞ limit in the model described above. The global
picture is that the two systems of non-colliding Brownian motions form two ellipses
touching each other at a tacnode (see Figure 1 for an illustration). Under proper rescal-
ing, we obtain a limiting determinantal point process in the neighborhood of the point
of tangency.

Here we consider the general case when two parameters modulate the limit process.
One of them measures the strength of interaction called σ, the other one is the asym-
metry parameter called λ which we have chosen to be the ratio of curvatures of the two

1We do not write here integer part of λn to keep the notation simple.
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Figure 1: The asymmetric system of non-colliding Brownian motions with 15 respec-
tively 30 paths in the two groups, i.e. n = 15, λ = 2.

ellipses at the point of tangency. For λ = 1, we get back to the symmetric case treated
in [15].

The scaling of the starting and ending points is

a1 = −
(√

n +
σ

2
n−1/6

)
, (1)

a2 =
√
λ
(√

n+
σ

2
n−1/6

)
. (2)

We denote by a the distance of the two endpoints:

a = a2 − a1 =
(
1 +

√
λ
)(√

n +
σ

2
n−1/6

)
. (3)

In this setting, the tacnode is at (1/2, 0), so that the space-time scaling that we need to
consider is

s =
1

2

(
1 + τ1n

−1/3
)
, t =

1

2

(
1 + τ2n

−1/3
)
,

u =
1

2
ξ1n

−1/6, v =
1

2
ξ2n

−1/6.
(4)

The limiting kernel takes the form

Lλ,σ
tac (τ1, ξ1, τ2, ξ2) = −1(τ1 < τ2)p(τ2 − τ1; ξ1, ξ2)
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+ Lλ,σ
tac (τ1, ξ1, τ2, ξ2) + λ1/6Lλ−1,λ2/3σ

tac

(
λ1/3τ1,−λ1/6ξ1, λ

1/3τ2,−λ1/6ξ2
)

(5)

where

p(t; x, y) =
1√
4πt

exp

(
−(y − x)2

4t

)
(6)

is the Gaussian kernel. To describe Ltac, we need to introduce some notations. For a
parameter s, let

Ai(s)(x) = e
2

3
s3+xsAi(s2 + x) (7)

be the extended Airy function where Ai(0) = Ai is the standard Airy function. The
extended Airy kernel is given by

K
(α,β)
Ai (x, y) =

∫ ∞

0

Ai(α)(x+ u) Ai(β)(y + u) du (8)

where K
(0,0)
Ai = KAi is the standard Airy kernel. Let us denote the function

Bλ
τ,ξ(x) =

∫ ∞

0

Ai(τ)
(
ξ +

(
1 +

√
λ−1
)1/3

µ

)
Ai(x+ µ)dµ (9)

which is reminiscent of the definition of the Airy kernel. Let also

bλτ,ξ(x) = λ1/6 Ai(λ
1/3τ)(−λ1/6ξ + (1 +

√
λ)1/3x), (10)

and define

Lλ,σ
tac (τ1, ξ1, τ2, ξ2) = K

(−τ1,τ2)
Ai (σ + ξ1, σ + ξ2)

+ (1 +
√
λ−1)1/3

〈
Bλ

τ2,σ+ξ2 − bλτ2,σ+ξ2 , (1− χσ̃KAiχσ̃)
−1Bλ

−τ1,σ+ξ1

〉
L2((σ̃,∞))

(11)

where χa(x) = 1(x > a) and

σ̃ = λ1/6(1 +
√
λ)2/3σ. (12)

Now we can state our main result.

Theorem 1.1. The (asymmetric) tacnode process T σ,λ obtained by the limit of the two
non-colliding families of n respectively λn Brownian motions under the scaling (1)–(4)
in the neighborhood of the tacnode is given by the following gap probabilities. For any k
and t1, . . . , tk ∈ (0, 1) and for any compact set E ⊂ {t1, . . . , tk} × R,

P(T σ,λ(1E) = ∅) = det(1−Lλ,σ
tac )L2(E) (13)

where Lλ,σ
tac is the extended kernel given by (5).
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Remark 1. The (asymmetric) tacnode process has an intrinsic symmetry under the
reflection on the horizontal axis that is inherited from the finite system of Brownian
motions. This corresponds to the following transformation of the variables:

λ −→ λ−1, (14)

n −→ λn, (15)

τi −→ λ1/3τi, (16)

ξi −→ −λ1/6ξi, (17)

σ −→ λ2/3σ. (18)

The different powers of λ in the change of parameters (16)–(18) is necessary for observing
the process on the same scale. Note that σ̃ given in (12) is left invariant under the above
transformation.

Next we present an alternative formulation of Lλ,σ
tac , inspired by the analogous refor-

mulation of the kernel in [2]. Let us introduce the function

Cλ
τ,ξ(x) = bλτ,ξ(x)−Bλ

τ,ξ(x)

= λ1/6 Ai(λ
1/3τ)(−λ1/6ξ + (1 +

√
λ)1/3x)

−
∫ ∞

0

Ai(τ)(ξ + (1 +
√
λ−1)1/3µ) Ai(x+ µ)dµ.

(19)

Using this definition, we can give another expression for the kernel Lλ,σ
tac which is formally

similar to (5), but the ingredients can be given by a single integral as follows.

Proposition 1.2. With

L̃λ,σ
tac (τ1, ξ1, τ2, ξ2) = (1 +

√
λ−1)1/3

∫ ∞

σ̃

(1− χσ̃KAiχσ̃)
−1Cλ

−τ1,σ+ξ1
(x)bλτ2,σ+ξ2

(x) dx, (20)

we have

Lλ,σ
tac (τ1, ξ1, τ2, ξ2) = −1(τ1 < τ2)p(τ2 − τ1; ξ1, ξ2)

+ L̃λ,σ
tac (τ1, ξ1, τ2, ξ2) + λ1/6L̃λ−1,λ2/3σ

tac

(
λ1/3τ1,−λ1/6ξ1, λ

1/3τ2,−λ1/6ξ2
)
. (21)
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2 Johansson’s formula

In this section, we recall Theorem 1.4 of Johansson in [15], the starting point for our
analysis. He obtains a formula for the correlation kernel of two non-colliding families of
Brownian particles with the following properties. The first family consists of n particles,
and they start at position a1 at time 0 and end at a1 at time 1. The other family has
m Brownian motions which start at position a2 at time 0 and end at position a2 at
time 1 with a2 > a1. This system of Brownian motions conditioned on no intersection
in the time interval (0, 1) forms an extended determinantal point process with kernel
Ln,m(s, u, t, v) given as follows.

Let a = a2 − a1 and d > 0 a parameter which can be chosen freely in Theorem 2.1.
We use the notation

A1
s,u,t,v =

d2

(2πi)2
√

(1− s)(1− t)

∫

iR

dw

∫

Da1

dz

(
1− w/a1
1− z/a1

)n
1

w − z
(22)

× exp

(
− sz2

2(1− s)
− a1z +

uz

1− s
+

tw2

2(1− t)
+ a1w − vw

1− t

)
,

B1
t,v(x) =

d
√
a

(2πi)2
√
1− t

∫

iR

dw

∫

Da1

dz

(
1− w/a1
1− z/a1

)n

(1− z/a2)
m 1

z − w
(23)

× exp

(
tw2

2(1− t)
+ a1w − vw

1− t
+ axz

)
,

β1
t,v(x) =

d
√
a

2πi
√
1− t

∫

iR

dw

(
1− w

a2

)m

exp

(
tw2

2(1− t)
+ a1w − vw

1− t
+ axw

)
, (24)

C1
s,u(y) =

d
√
a

(2πi)2
√
1− s

∫

Da1

dz

∫

Da2

dw

(
1− w/a1
1− z/a1

)n(
1

1− w/a2

)m
1

w − z
(25)

× exp

(
− sz2

2(1− s)
− a1z +

uz

1− s
− ayw

)
,

M1
0 (x, y) =

a

(2πi)2

∫

Da1

dz

∫

Da2

dw

(
1− w/a1
1− z/a1

)n(
1− z/a2
1− w/a2

)m
1

z − w
eaxz−ayw (26)

where Da1 and Da2 are counterclockwise oriented circles around a1 and a2 respectively
with small radii.

Very similarly, let

A2
s,u,t,v =

d2

(2πi)2
√

(1− s)(1− t)

∫

iR

dw

∫

Da2

dz

(
1− w/a2
1− z/a2

)m
1

w − z
(27)

× exp

(
− sz2

2(1− s)
− a2z +

uz

1− s
+

tw2

2(1− t)
+ a2w − vw

1− t

)
,

B2
t,v(x) =

d
√
a

(2πi)2
√
1− t

∫

iR

dw

∫

Da2

dz (1− z/a1)
n

(
1− w/a2
1− z/a2

)m
1

z − w
(28)
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× exp

(
tw2

2(1− t)
+ a2w − vw

1− t
− axz

)
,

β2
t,v(x) =

d
√
a

2πi
√
1− t

∫

iR

dw

(
1− w

a1

)n

exp

(
tw2

2(1− t)
+ a2w − vw

1− t
− axw

)
, (29)

C2
s,u(y) =

d
√
a

(2πi)2
√
1− s

∫

Da2

dz

∫

Da1

dw

(
1

1− w/a1

)n(
1− w/a2
1− z/a2

)m
1

z − w
(30)

× exp

(
− sz2

2(1− s)
− a2z +

uz

1− s
+ ayw

)
,

M2
0 (x, y) =

a

(2πi)2

∫

Da2

dz

∫

Da1

dw

(
1− z/a1
1− w/a1

)n(
1− w/a2
1− z/a2

)m
1

w − z
e−axz+ayw. (31)

Furthermore, let

q(s, u, t, v) =
1√

2π(t− s)
exp

(
−(u− v)2

2(t− s)
+

u2

2(1− s)
− v2

2(1− t)

)
1(s < t) (32)

denote the conjugated Brownian kernel.
The theorem below is a consequence of Theorem 1.4 in [15].

Theorem 2.1 (Johansson 2011). The extended determinantal kernel for n + m non-
colliding Brownian motions with two starting points and two endpoints described above
can be written as

Ln,m(s, u, t, v) =− q(s, u, t, v)

+ d−2A1
s,u,t,v + d−2〈(B1

t,v + β1
t,v), (1−M1

0 )
−1C1

s,u〉L2((1,∞))

+ d−2A2
s,u,t,v + d−2〈(B2

t,v + β2
t,v), (1−M2

0 )
−1C2

s,u〉L2((1,∞)).

(33)

Remark 2. It is proved in Lemma 1.2 of [15] that det(1 − M1
0 )L2((1,∞)) > 0 and

det(1−M2
0 )L2((1,∞)) > 0 so that (33) makes sense.

Remark 3. This configuration has a natural symmetry. By reflecting the vertical
direction, one observes the same process with parameters modified as follows:

n ↔ m, a1 → −a2, a2 → −a1, u → −u, v → −v, (34)

s and t are unchanged. It is easy to check that the ingredients A1
s,u,t,v,B1

t,v, β
1
t,v, C1

s,u

and M1
0 of the kernel of the finite system in (22)–(26) transform to their counterparts

with upper index 2 after taking the change of parameters (34) and that q(s, u, t, v) is
invariant under this action.

The symmetry of the limiting tacnode process established in Remark 1 is a conse-
quence of the discrete symmetry.

7



3 Proof of the main results

First, we give the proof of Theorem 1.1 using two lemmas which are proved in Section 4.
We start with formula (33), and we apply it to our present setting. Then, we perform
asymptotic analysis for the functions obtained in this way.

The appropriate order of the parameter d is

d =
n−1/12

√
2

, (35)

since we want d2Ln,λn to converge, so d2 is the scaling of the space variables, see (4).
The strategy of the proof is that first, we establish pointwise convergence of the

elements of the kernel to the appropriate functions in Lemma 3.1. Then, we give uniform
bounds on the functions in Lemma 3.2. This gives, using dominated convergence, that
the kernel Ln,λn under the scaling (1)–(4) converges pointwise to Lσ,λ

tac . It turns out that
this convergence is uniform on compact sets. Dominated convergence ensures that also
the gap probabilities expressed by Fredholm determinants converge.

Lemma 3.1. Under the scaling given by (1)–(4), the following pointwise limits hold as
n → ∞.

A1
s,u,t,v → K

(−τ1,τ2)
Ai (σ + ξ1, σ + ξ2), (36)

n−1/3B1
t,v(1 + xn−2/3) → −(1 +

√
λ)1/2Bλ

τ2,σ+ξ2(σ̃ + x̃), (37)

n−1/3β1
t,v(1 + xn−2/3) → (1 +

√
λ)1/2bλτ2,σ+ξ2

(σ̃ + x̃), (38)

n−1/3C1
s,u(1 + yn−2/3) → −(1 +

√
λ)1/2Bλ

−τ1,σ+ξ1(σ̃ + ỹ), (39)

n−2/3M1
0 (1 + xn−2/3, 1 + yn−2/3) → λ1/6(1 +

√
λ)2/3KAi(σ̃ + x̃, σ̃ + ỹ) (40)

where x̃ = λ1/6(1 +
√
λ)2/3x and ỹ = λ1/6(1 +

√
λ)2/3y and see (12).

The analogue for the second set of terms is

A2
s,u,t,v → λ1/6K

(−λ1/3τ1,λ1/3τ2)
Ai (λ2/3σ − λ1/6ξ1, λ

2/3σ − λ1/6ξ2),

(41)

n−1/3B2
t,v(1 + xn−2/3) → −λ1/6(1 +

√
λ)1/2Bλ−1

λ1/3τ2,λ2/3σ−λ1/6ξ2
(σ̃ + x̃), (42)

n−1/3β2
t,v(1 + xn−2/3) → λ1/6(1 +

√
λ)1/2bλ

−1

λ1/3τ2,λ2/3σ−λ1/6ξ2
(σ̃ + x̃), (43)

n−1/3C2
s,u(1 + yn−2/3) → −λ1/6(1 +

√
λ)1/2Bλ−1

−λ1/3τ1,λ2/3σ−λ1/6ξ1
(σ̃ + ỹ), (44)

n−2/3M1
0 (1 + xn−2/3, 1 + yn−2/3) → λ1/6(1 +

√
λ)2/3KAi(σ̃ + x̃, σ̃ + ỹ). (45)

The convergence is uniform for ξ1 and ξ2 in a compact subset of R.
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Lemma 3.2. There are constants c, C > 0 such that for all x, y ≥ 0, we have the
following bounds

∣∣Ai
s,u,t,v

∣∣ ≤ C, (46)
∣∣n−1/3Bi

t,v(1 + xn−2/3)
∣∣ ≤ Ce−cx, (47)

∣∣n−1/3βi
t,v(1 + xn−2/3)

∣∣ ≤ Ce−cx, (48)
∣∣n−1/3Ci

s,u(1 + yn−2/3)
∣∣ ≤ Ce−cy, (49)

∣∣n−2/3M i
0(1 + xn−2/3, 1 + yn−2/3)

∣∣ ≤ Ce−c(x+y) (50)

for i = 1, 2. These bounds are uniform for ξ1 and ξ2 in a compact subset of R.

Proof of Theorem 1.1. First, we show that, with the scaling (1)–(4) and (35), we have

d2Ln,λn(s, u, t, v) −→ Lλ,σ
tac (τ1, ξ1, τ2, ξ2). (51)

The convergence of d2q(s, t, u, v) to the first term on the right-hand side of (5) is obvious.
By (36) and (41), it is enough to work with the scalar products in (33).

As in the original formulation in [15], we write

〈(B1
t,v+β1

t,v), (1−M1
0 )

−1C1
s,u〉L2((1,∞)) =

det(1−M1
0 + (B1

t,v + β1
t,v)⊗ C1

s,u)L2((1,∞))

det(1−M1
0 )L2((1,∞))

. (52)

For this proof, let

D(x, y) = M1
0 (x, y)− (B1

t,v(x) + β1
t,v(x))C

1
s,u(y). (53)

Then the Fredholm determinant in the numerator of (52) can be expressed as

∞∑

m=0

(−1)m

m!

∫

[1,∞)m
det(D(ρi, ρj))1≤i,j≤m dmρ. (54)

This is equal to

∞∑

m=0

(−1)m

m!

∫

[0,∞)m
det

(
n−2/3

λ
1

6 (1 +
√
λ)

2

3

D
(
1 +

xin
−2/3

λ
1

6 (1 +
√
λ)

2

3

, 1 +
xjn

−2/3

λ
1

6 (1 +
√
λ)

2

3

))
dmx

(55)
after the change of variables ρi = 1 + xin

−2/3λ−1/6(1 +
√
λ)−2/3.

Using the pointwise convergence in (37)–(40) along with the bounds (47)–(50) and
Hadamard bound on the determinant2, the dominated convergence theorem implies that
the numerator of (52) converges to

∞∑

m=0

(−1)m

m!

∫

[0,∞)m
det(D(xi, xj))1≤i,j≤m dmx (56)

2Hadamard bound: the absolute value of a determinant of an n× n matrix with entries of absolute
value not exceeding 1 is bounded by nn/2.
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with

D(x, y) = KAi(σ̃ + x, σ̃ + y)

− (1 +
√
λ−1)−1/3

(
Bλ

τ2,σ+ξ2
(σ̃ + x)− bλτ2,σ+ξ2

(σ̃ + x)
)
Bλ

−τ1,σ+ξ1
(σ̃ + y). (57)

A similar argument can be used for the denominator of (52), which gives that the
expression in (52) converges to the second term on the right-hand side of (11).

In the same way, one shows that

〈(B2
t,v + β2

t,v), (1−M2
0 )

−1C2
s,u〉L2((1,∞)) (58)

converges to the scalar product appearing in the last term of (5) using the remaining
set of assertions in Lemma 3.1 and also Lemma 3.2. Alternatively, one can refer to the
symmetry established in Remark 3 to get the limit of (58). This verifies (51).

It remains to argue that the process T σ,λ exists as a determinantal point process.
For this, we give a uniform bound on d2Ln,λn(s, u, t, v) as ξ1 and ξ2 are from a compact
subset of R.

For d2q(s, u, t, v), the assertion is clear, for Ai
s,u,t,v, it follows from (46). The two

scalar products in (33) are bounded as follows. We again consider the right-hand side
of (52). In the Fredholm expansion of the numerator (55), we get the bound

∣∣∣∣∣
n−2/3

λ
1

6 (1 +
√
λ)

2

3

D
(
1 +

xin
−2/3

λ
1

6 (1 +
√
λ)

2

3

, 1 +
xjn

−2/3

λ
1

6 (1 +
√
λ)

2

3

)∣∣∣∣∣ ≤ Ce−c(xi+xj) (59)

with uniform C, c > 0 on the compact subsets based on (47)–(50). Hence the convergence
of (55) to (56) is uniform as ξ1 and ξ2 are in a compact set. The denominator of (52) is
strictly positive by Lemma 1.2 of [15] and it converges to

det(1−M1
0 )L2((1,∞)) −→ det(1− χσ̃KAiχσ̃)L2((σ̃,∞)) = F2(σ̃) > 0 (60)

where F2 is the Tracy-Widom distribution function [28]. This shows that the first scalar
product in (33) remains uniformly bounded on compact sets. One can proceed similarly
with the second one. Therefore, the existence of the gap probabilities of the process T σ,λ

follows by expanding the Fredholm determinant of the finite size kernel and from the
Hadamard bound on the determinant. This completes the proof of Theorem 1.1.

The following proof is similar to that of Theorem 1.3 in [2], but the idea is adapted
to the asymmetric case, so we give it completely.

Proof of Proposition 1.2. In order to rewrite the kernel in (5), we define the function

Sλ,σ
τ,ξ (x) = Ai(τ)

(
λ−1/6(λ1/6ξ − λ2/3σ) + (1 +

√
λ−1)1/3x

)
= λ1/6bλ

−1

λ1/3τ,λ2/3σ−λ1/6ξ(x)

(61)
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and the operator T on L2((σ̃,∞)) with kernel function

T (x, y) = Ai(x+ y − σ̃). (62)

One observes that, since we have

KAi(x, y) =

∫ ∞

σ̃

Ai(x+ u− σ̃) Ai(y + u− σ̃) du (63)

on L2((σ̃,∞)), one can write
χσ̃KAiχσ̃ = T 2 (64)

and also

(1− χσ̃KAiχσ̃)
−1 =

∞∑

r=0

T 2r. (65)

Note that, using the notations (61) and (62), we have

Cλ
τ,σ+ξ(x) = λ1/6Sλ−1,λ2/3σ

λ1/3τ,−λ1/6ξ
(x)− TSλ,σ

τ,ξ (x). (66)

Similarly,

Cλ−1

λ1/3τ,λ2/3σ−λ1/6ξ(x) = λ−1/6Sλ,σ
τ,ξ (x)− TSλ−1,λ2/3σ

λ1/3τ,−λ1/6ξ
(x). (67)

One can also see easily that

K
(−τ1,τ2)
Ai (σ + ξ1, σ + ξ2) = (1 +

√
λ−1)1/3

〈
Sλ,σ
−τ1,ξ1

, Sλ,σ
τ2,ξ2

〉

L2((σ̃,∞))
, (68)

and

K
(−λ1/3τ1,λ1/3τ2)
Ai

(
λ2/3σ − λ1/6ξ1, λ

2/3σ − λ1/6ξ2
)

= (1 +
√
λ)1/3

〈
Sλ−1,λ2/3σ

−λ1/3τ1,−λ1/6ξ1
, Sλ−1,λ2/3σ

λ1/3τ2,−λ1/6ξ2

〉
L2((σ̃,∞))

. (69)

Starting from (5) and (11), we can rewrite the kernel Lλ,σ
tac using (19) as follows.

Lλ,σ
tac (τ1, ξ1, τ2, ξ2)

=− 1(τ1 < τ2)p(τ2 − τ1; ξ1, ξ2)

+K
(−τ1,τ2)
Ai (σ + ξ1, σ + ξ2) + λ1/6K

(−λ1/3τ1,λ1/3τ2)
Ai (λ2/3σ − λ1/6ξ1, λ

2/3σ − λ1/6ξ2)

+ (1 +
√
λ−1)1/3

∫ ∞

σ̃

(1− χσ̃KAiχσ̃)
−1Cλ

τ2,σ+ξ2(x)(C
λ
−τ1,σ+ξ1(x)− bλ−τ1,σ+ξ1(x)) dx

+ λ1/6(1 +
√
λ)1/3

∫ ∞

σ̃

(1− χσ̃KAiχσ̃)
−1Cλ−1

λ1/3τ2,λ2/3σ−λ1/6ξ2
(x)

× (Cλ−1

−λ1/3τ1,λ2/3σ−λ1/6ξ1
(x)− bλ

−1

−λ1/3τ1,λ2/3σ−λ1/6ξ1
(x)) dx.

(70)
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If we use (68) and (69) for the first two Airy kernels, (66), (67) and (61) for the two
integrals and (65), then we get

Lλ,σ
tac (τ1, ξ1, τ2, ξ2) =− 1(τ1 < τ2)p(τ2 − τ1; ξ1, ξ2)

+ (1 +
√
λ−1)1/3

〈 ∞∑

r=0

T 2rSλ,σ
−τ1,ξ1

, Sλ,σ
τ2,ξ2

〉

L2((σ̃,∞))

+ λ1/6(1 +
√
λ)1/3

〈 ∞∑

r=0

T 2rSλ−1,λ2/3σ

−λ1/3τ1,−λ1/6ξ1
, Sλ−1,λ2/3σ

λ1/3τ2,−λ1/6ξ2

〉

L2((σ̃,∞))

− (1 +
√
λ)1/3

〈 ∞∑

r=0

T 2r+1Sλ,σ
−τ1,ξ1

, Sλ−1,λ2/3σ

λ1/3τ2,−λ1/6ξ2

〉

L2((σ̃,∞))

− (1 +
√
λ)1/3

〈 ∞∑

r=0

T 2r+1Sλ−1,λ2/3σ

−λ1/3τ1,−λ1/6ξ1
, Sλ,σ

τ2,ξ2

〉

L2((σ̃,∞))

.

(71)
Note that the scalar products in the third and the fourth terms on the right-hand side
of (71) can be combined using (66), respectively, the second and the fifth terms can be
joined by (67) yielding

Lλ,σ
tac (τ1, ξ1, τ2, ξ2) =− 1(τ1 < τ2)p(τ2 − τ1; ξ1, ξ2)

+ (1 +
√
λ)1/3

〈
(1− χσ̃KAiχσ̃)

−1Cλ
−τ1,σ+ξ1

, Sλ−1,λ2/3σ

λ1/3τ2,−λ1/6ξ2

〉
L2((σ̃,∞))

+ (1 +
√
λ)1/3

〈
(1− χσ̃KAiχσ̃)

−1Cλ−1

−λ1/3τ1,λ2/3σ−λ1/6ξ1
, Sλ,σ

τ2,ξ2

〉
L2((σ̃,∞))

(72)
which proves the proposition by (61).

4 Asymptotic analysis

Proof of Lemma 3.1. By Remark 3, it is enough to prove the first set of statements
(36)–(40). We write down the ingredients of the kernel in Theorem 2.1 with the values
given by (1)–(2). Then, we use the method of saddle point analysis to get the limits in
Lemma 3.1. For the asymptotic analysis, we use a standard pattern explained e.g. in
Section 6 of [5].
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For (22), after change of variables w → aw/(1+
√
λ) and z → −az/(1+

√
λ), we get

A1
s,u,t,v =

d2a

(1 +
√
λ)
√
(1− s)(1− t)

1

(2πi)2

∫

iR

dw

∫

D1

dz

(
1 + w

1− z

)n
1

w + z

× exp

(
− a2sz2

(1 +
√
λ)22(1− s)

− a2z

(1 +
√
λ)2

− auz

(1 +
√
λ)(1− s)

)

× exp

(
a2tw2

(1 +
√
λ)22(1− t)

− a2w

(1 +
√
λ)2

− avw

(1 +
√
λ)(1− t)

)
.

(73)

First we observe that Re(z + w) > 0, hence we can write

1

z + w
= n1/3

∫ ∞

0

e−n1/3µ(z+w) dµ. (74)

By substituting this and (3)–(4) and by Taylor expansion, we obtain

A1
s,u,t,v =(n2/3 + o(1))

∫ ∞

0

dµ

× 1

2πi

∫

iR

dw exp

(
n

[
log(1 + w) +

w2

2
− w

]
+ n2/3τ2w

2 − n1/3[σ + ξ2 + µ]w

)

× 1

2πi

∫

D1

dz exp

(
n

[
− log(1− z)− z2

2
− z

]
− n2/3τ1z

2 − n1/3[σ + ξ1 + µ]z

)

× exp
(
O
(
n1/3w2 + w + n1/3z2 + z

))
.

(75)
A change of variables w → aw/(1 +

√
λ) and z → −az/(1 +

√
λ) in (23) gives

B1
t,v(x) =

da3/2

(1 +
√
λ)
√
1− t

1

(2πi)2

∫

iR

dw

∫

D1

dz

(
1 + w

1− z

)n(
1 +

z√
λ

)λn
1

z + w

× exp

(
a2tw2

(1 +
√
λ)22(1− t)

− a2w

(1 +
√
λ)2

− avw

(1 +
√
λ)(1− t)

− a2xz

1 +
√
λ

) (76)

which yields

n−1/3B1
t,v(1 + xn−2/3) = (n2/3 + o(1))(1 +

√
λ)1/2

∫ ∞

0

dµ

× 1

2πi

∫

iR

dw exp

(
n

[
log(1 + w) +

w2

2
− w

]
− n2/3τ2w

2 − n1/3[σ + ξ2 + µ]w

)

× 1

2πi

∫

D1

dz exp

(
n

[
λ log

(
1 +

z√
λ

)
− log(1− z)− (1 +

√
λ)z

])

× exp
(
−n1/3[(1 +

√
λ)(x+ σ) + µ]z +O

(
n1/3w2 + w + n1/3z2 + z

))
.

(77)
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In the definition of β1
t,v, after w → −aw/(1 +

√
λ), one obtains

β1
t,v(x) =

da3/2

(1 +
√
λ)
√
1− t

1

2πi

∫

iR

dw

(
1 +

w√
λ

)λn

× exp

(
a2tw2

(1 +
√
λ)22(1− t)

+
a2w

(1 +
√
λ)2

+
avw

(1 +
√
λ)(1− t)

− a2xw

1 +
√
λ

)
.

(78)
Hence,

n−1/3β1
t,v(1 + xn−2/3) = (n2/3 + o(1))(1 +

√
λ)1/2

× 1

2πi

∫

iR

dw exp

(
n

[
λ log

(
1 +

w√
λ

)
+

w2

2
− w

])

× exp
(
n2/3τ2w

2 − n1/3[
√
λσ − ξ2 + (1 +

√
λ)x]w +O

(
n1/3w2 + w

))
.

(79)

Similarly in (25) with w → aw/(1 +
√
λ) and z → −az/(1 +

√
λ), we get

C1
s,u(y) =− da3/2

(1 +
√
λ)
√
1− s

1

(2πi)2

∫

D1

dz

∫

D√

λ

dw

(
1 + w

1− z

)n
(

1

1− w√
λ

)λn
1

w + z

× exp

(
− a2sz2

(1 +
√
λ)22(1− s)

− a2z

(1 +
√
λ)2

− auz

(1 +
√
λ)(1− s)

− a2yw

1 +
√
λ

)
.

(80)
After substituting (3)–(4), it becomes

n−1/3C1
s,u(1 + yn−2/3) = −(n2/3 + o(1))(1 +

√
λ)1/2

∫ ∞

0

dµ

× 1

2πi

∫

D1

dz exp

(
n

[
− log(1− z)− z2

2
− z

]
− n2/3τ1z

2 − n1/3[σ + ξ1 + µ]z

)

× 1

2πi

∫

D√

λ

dw exp

(
n

[
log(1 + w)− λ log

(
1− w√

λ

)
− (1 +

√
λ)w

])

× exp
(
−n1/3[(1 +

√
λ)(σ + y) + µ]w +O

(
n1/3w2 + w + n1/3z2 + z

))
.

(81)
Using the same change of variables w → aw/(1 +

√
λ) and z → −az/(1 +

√
λ) in

M1
0 , we have

M1
0 (x, y) =

a2

(1 +
√
λ)

1

(2πi)2

∫

D1

dz

∫

D√

λ

dw

(
1 + w

1− z

)n
(
1 + z√

λ

1− w√
λ

)λn
1

z + w

× exp

(
− a2xz

1 +
√
λ
− a2yw

1 +
√
λ

)
.

(82)
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That is,

n−2/3M1
0 (1 + xn−2/3, 1 + yn−2/3) = (n2/3 + o(1))(1 +

√
λ)

∫ ∞

0

dµ

× 1

2πi

∫

D√

λ

dw exp

(
n

[
log(1 + w)− λ log

(
1− w√

λ

)
− (1 +

√
λ)w

])

× exp
(
−n1/3[(1 +

√
λ)(σ + y) + µ]w

)

× 1

2πi

∫

D1

dz exp

(
n

[
λ log

(
1 +

z√
λ

)
− log(1− z)− (1 +

√
λ)z

])

× exp
(
−n1/3[(1 +

√
λ)(σ + x) + µ]z +O

(
n1/3w2 + w + n1/3z2 + z

))
.

(83)

We can take the integration paths D1 and D√
λ to denote here circles around 1 and

√
λ

with radii 1 and
√
λ, in this way, passing through 0.

In the above formulae, integrals of form

1

2πi

∫

γ

dzenf0(z)+n2/3f1(z)+n1/3f2(z) (84)

appear. Hence, we can follow the steps of the proof of Lemma 6.1 in [5]. It can be checked
that in all the cases in (75), (77), (79), (81) and (83), wc = zc = 0 is a double critical
point for the functions below that appear as f0. We also give the Taylor expansion for
later use

log(1 + w) +
w2

2
− w =

w3

3
+O

(
w4
)
,

λ log

(
1 +

w√
λ

)
+

w2

2
− w =

1√
λ

w3

3
+O

(
w4
)
,

log(1 + w)− λ log

(
1− w√

λ

)
− (1 +

√
λ)w =

1 +
√
λ√

λ

w3

3
+O

(
w4
)
,

(85)

and their versions after taking the transformation −f0(−w) which preserves the leading
terms on the right-hand side of (85).

The issue of finding steep descent paths is treated in a more general setting in the
proofs of Lemma 3.2 and 4.1 below. Thus the details are omitted here. As it turns out,
the integration paths in (75), (77), (79), (81) and (83) are steep descent for f0 in the
following sense (γ means the generic integration path):

• Re(f0(z)) on γ reaches its maximum at 0,

• Re(f0(z)) is monotone along γ except at its maximum point 0 and, if γ = D1 or
D√

λ, then except also at the antipodal points 2 or 2
√
λ respectively (where the

real part reaches its minimum).
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In the neighborhood of 0, we can slightly modify the paths iR, D1 and D√
λ in such

a way that they are still steep descent and that, close to 0, the descent is the steepest.
The modification is as follows. For a small δ > 0 that is given precisely later, we choose
the path {e−iπ/3t, 0 ≤ t ≤ δ} ∪ {eiπ/3t, 0 ≤ t ≤ δ} close to 0. This is clearly locally
steepest descent for all functions in (85). In the case of iR, we continue with δ/2 + iR
to infinity. If we had a circle, we decrease the radius slightly, and we cut off a piece of it
close to 0 in such a way that it matches the steepest descent path. Computations which
are done in the proofs of Lemma 3.2 and 4.1 show that these modified paths are still
steep descent for f0 in all the cases in (75), (77), (79), (81) and (83).

Along the integration paths, only the contribution on γ ∩ {|w| ≤ δ} is considered,
since, by the steep descent property of the paths, the error that is made by neglecting
the rest of the path is O(exp(−cδ3n)) as n → ∞ uniformly as ξ1 and ξ2 are in bounded
intervals.

We choose now δ such that the error terms in (75), (77), (79), (81) and (83) are
small enough in the δ neighborhood of 0. That is, for the difference of the integrals
with and without the error in the exponent, we apply |ex − 1| ≤ |x|e|x|. We do a change
of variables n1/3w → w, and, by taking δ small enough, we see that the difference is
O(n−1/3) uniformly.

Finally, we can extend the steepest descent path to e−iπ/3∞ and eiπ/3∞ on the price
of a uniformly O(exp(−cδ3n)) error again. Then, we apply the formula

1

2πi

∫ eiπ/3∞

e−iπ/3∞
exp

(
a
z3

3
+ bz2 + cz

)
dz = a−1/3 exp

(
2b3

3a2
− bc

a

)
Ai

(
b2

a4/3
− c

a1/3

)

= a−1/3 Ai(a
−2/3b)

(
− c

a1/3

)
,

(86)

and we exactly get the limits (36)–(40). From this, along with the use of symmetry
given in Remark 3, (41)–(45) follow immediately. All the error terms can be bounded
uniformly in ξ1 and ξ2 if they are in a compact interval, hence Lemma 3.1 is proved.

First, we give the following lemma with its full proof. In the proof of Lemma 3.2, we
will use the assertion and some similar statements which will not be spelled out later,
because they can be shown as Lemma 4.1.

Lemma 4.1. There are constants C, c > 0 such that
∣∣∣∣
n1/3

2πi

∫

iR

dw exp

(
n

[
log(1 + w) +

w2

2
− w

]
+ κ1n

2/3w2 − sn1/3w

)∣∣∣∣ ≤ Ce−cs (87)

for s > 0 large enough.

Proof of Lemma 4.1. We follow the lines of the proof of Proposition 5.3 in [6]. Since we
are interested in large values of s, we take

s̃ = n−2/3s, (88)
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and we define

f̃0(w) = log(1 + w) +
w2

2
− w − s̃w. (89)

For small values of s̃, this function has two critical points at ±s̃1/2 at first order, and
we will pass through the positive one. Hence define

α =

{
s̃1/2 if s̃ ≤ ε,
ε1/2 if s̃ > ε,

(90)

for some small ε > 0 to be chosen later and consider the path Γ = α + iR. By the
Cauchy theorem, the integral in (87) does not change if we modify the integration path
to Γ.

The path Γ is steep descent for the function Re(f̃0(w)), since

d

dt
Re(f̃0(α + it)) = −t

(
1− 1

(1 + α)2 + t2

)

︸ ︷︷ ︸
≥0 for α,t>0.

. (91)

Define
Q(α) = exp

(
Re
(
nf̃0(α) + n2/3κ1α

2
))

. (92)

Let Γδ = {α + it, |t| ≤ δ}. By the steep descent property of Γ, the contribution of the
integral over Γ \Γδ in (87) is bounded by Q(α)O(e−cn) where c > 0 does not depend on
n. The integral on Γδ can be bounded by

Q(α)

∣∣∣∣
n1/3

2πi

∫

Γδ

dw exp
(
n(f̃0(w)− f̃0(α)) + n2/3κ1(w

2 − α2)
)∣∣∣∣ . (93)

By series expansion,

Re(f̃0(α+ it)− f̃0(α)) = −γt2(1 +O(t)) (94)

with

γ =
1

2

(
1− 1

(1 + α)2

)
. (95)

After a change of variable w = α + it, (93) is written as

Q(α)
n1/3

2π

∫ δ

−δ

dt exp
(
−γt2n(1 +O(t))

(
1 +O

(
n−1/3

)))

≤ Q(α)
n1/3

2π

∫ δ

−δ

dt exp

(
−γt2n

2

)
≤ Q(α)

1√
2πγn1/3

(96)
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for δ small enough and n large enough. The estimate above is the largest if γ is small.
Note that, by (95), (90) and (88),

γn1/3 ∼ αn1/3 ∼ s̃1/2n1/3 ∼ s1/2 (97)

which is large if s is large enough, so the integral in (93) is at most constant times Q(α).
Hence, it remains to bound Q(α) exponentially in s. For this end, we use the Taylor

expansion

f̃0(w) =

(
w3

3
− s̃w

)
(1 +O(w)). (98)

If s̃ ≤ ε, then

Q(α) = exp

((
−2

3
ns̃3/2 + κ1n

2/3s̃

)(
1 +O

(√
ε
)))

= exp

((
−2

3
s3/2 + κ1s

)(
1 +O

(√
ε
))) (99)

where the first term in the exponent dominates as s is large, so this is even stronger
than what we had to prove.

If s̃ > ε, then

Q(α) = exp
((

n
√
ε
(ε
3
− s̃
)
+ κ1n

2/3ε
) (

1 +O
(√

ε
)))

(100)

where ε/3− s̃ ≤ −2
3
s̃. Hence, the first term in the exponent is about −2

3

√
εn1/3s which

dominates the second term that is of order εn2/3 ∼ s. Therefore, for a given ε > 0, n
can be chosen so large that

Q(α) ≤ exp

(
−1

3

√
εn1/3s

)
. (101)

This finishes the proof.

Proof of Lemma 3.2. By Remark 3, it is enough to prove all the bounds for i = 1. The
assertion (46) can be shown as follows. Lemma 4.1 with s = σ + ξ2 + µ applies for the
integral with respect to w in (75) and provides an exponentially decaying bound in µ.
If we prove a similar statement for the integral with respect to z, then (46) follows for
i = 1 along with the uniformity assertion for ξ1 and ξ2. We omit the details of the proof
of the bound on the z-integral here, because they are very similar to that of Lemma 4.1,
but we give that for the second integral in (75). We consider the function

gA0 (z) = − log(1− z)− z2

2
− z − s̃z (102)
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and the path {1− ρeiφ} with 0 < ρ ≤ 1. It is steep descent, because

d

dφ
Re(gA0 (1− ρeiφ)) = −ρ sin φ (2(1− ρ cos φ) + s̃)︸ ︷︷ ︸

≥0

. (103)

For (47), we use Lemma 4.1 and the fact that, for the function

gB0 (z) = λ log

(
1 +

z√
λ

)
− log(1− z)− (1 +

√
λ)z − s̃z, (104)

the path {1− ρeiφ} with 0 < ρ ≤ 1 is steep descent. Indeed

d

dφ
Re(gB0 (1− ρeiφ)) = −ρ sin φ

(
(1 +

√
λ)

(
1− λ

|
√
λ+ 1− ρeiφ|2

)
+ s̃

)
(105)

where the last factor between the outhermost parenthesis is certainly positive.
For proving (48), we take the function

fβ
0 (w) = λ log

(
1 +

w√
λ

)
+

w2

2
− w − s̃w. (106)

The steep descent path is α + iR for α ≥ 0 by

d

dt
Re(fβ

0 (α + it)) = −t

(
1− λ

(
√
λ+ α)2 + t2

)

︸ ︷︷ ︸
≥0

. (107)

Finally, for the function

fC
0 (w) = log(1 + w)− λ log

(
1− w√

λ

)
− (1 +

√
λ)w − s̃w, (108)

we choose the steep descent path {
√
λ − ρeiφ} with 0 < ρ ≤

√
λ. The steep descent

property is shown by

d

dφ
Re(fC

0 (
√
λ− ρeiφ)) = −ρ sin φ

(
(1 +

√
λ)

(
1− 1

|
√
λ+ 1− ρeiφ|2

)
+ s̃

)
(109)

where the factor between the outhermost parenthesis is positive. This fact, together
with the steep descent property of gA0 (z) in (102), yields (49).

Using the steep descent paths for fC
0 (w) in (108) and for gB0 (z) in (104), we can mimic

the proof of Lemma 4.1 to get exponential bounds on the integrals in (83). It completes
the proof of Lemma 3.2.
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