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Abstract

Consider a continuous time random walk in Z with independent
and exponentially distributed jumps ±1. The model in this paper
consists in an infinite number of such random walks starting from the
complement of {−m,−m + 1, ...,m − 1,m} at time −t, returning to
the same starting positions at time t, and conditioned not to intersect.
This yields a determinantal process, whose gap probabilities are given
by the Fredholm determinant of a kernel. Thus this model consists
of two groups of random walks, which are contained into two ellipses
which, with the choice m ≃ 2t to leading order, just touch: so we
have a tacnode. We determine the new limit extended kernel under
the scaling m = ⌊2t+σt1/3⌋, where parameter σ controls the strength
of interaction between the two groups of random walkers.
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1 Introduction

In the past decade, systems of vicious random walks and non-intersecting
Brownian motions have been investigated, and quantities such as the cor-
relation functions [38], the one-point distribution functions and limit pro-
cesses under appropriate scaling limits have been studied. Non-intersecting
Brownian motions arise in the study of random matrices [32, 33, 37], and
space (and/or) time discrete versions in random tiling and growth mod-
els [23,24,26–28,39,41,42]. Most of these works use the mathematical frame-
work shared by Brownian motions starting from a point, and either ending
at the same point after a given time or the boundary condition is free (with
possible extra boundary conditions like staying positive [36, 50]).

Consider N non-intersecting Brownian bridges xi(τ) on R, leaving from
0 at time τ = −2N and forced to 0 at time τ = 2N . For large N , the
mean density of Brownian paths has support, for each −2N < τ < 2N , on
the interval (−

√
4N2 − τ 2,

√
4N2 − τ 2). This means that on the macroscopic

scale, where space and time units are set equal to N , one sees a circle. Near
its boundary, the density of Brownian paths is of order N−1/3, thus to see
something non-trivial one needs to look in a space window of size N1/3 and,
by Brownian scalings, a time window of size N2/3. We call this the “Airy
microscope”, since it holds

lim
N→∞

P(all N−1/3
(
xi
(
2sN2/3

)
− 2N

)
∈ Ec − s2

)
= P (A2(s) ∩ E = ∅) ,

(1.1)
where A2 is the so-called Airy2 process. It has a universal character and
was discovered in the context of the so-called multilayer PNG model [41].
The scaling (1.1) is equivalent to the customary N−1/6-GUE-edge rescaling
along the circle for non-intersecting Brownian motions leaving from the origin
at time t = 0 and returning to the origin at time t = 1; this is done by an
appropriate change of the variance of the Brownian motions.

In the context of growth models, generalizations have been introduced
with external sources [11, 25]. Its analogue in terms of Brownian motions is
to require that a finite number of Brownian motions end up at some point
αN . Then under the scaling in (1.1), the limit process is a transition process
from Airy2 to Brownian Motion. For extensions to more general sources,
see [9,18], while for the case that the top r Brownian motion end up at 2N ,
see [3] and [4].

A further known situation occurs when a fraction pN of the N non-
intersecting Brownian motions (leaving from the origin at time t = −2N)
end at time t = 2N at position aN and another fraction (1 − p)N at bN ,
with a < b. When N → ∞, the mean density of Brownian particles has its
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Figure 1: Illustration of the tacnode with N = 50 Brownian Bridges.

support on one interval in the beginning and on two intervals near the end.
Thus a bifurcation appears for some intermediate time τ0, where one interval
splits into two intervals, creating a “heart-like” shape with a cusp at the
origin. Near this cusp appears a new universal process, upon looking through
the “Pearcey microscope”, where the space window is N1/4 and the time
window is N1/2. The new process is called the Pearcey process [47] and is
independent of the values of a, b and p; see [6]. Once the bifurcation has taken
place, the Brownian motions will eventually fluctuate like the Airy2 process
near the edge, with a transition from the Pearcey to the Airy2 process [2].
The Pearcey process has also been obtained as the limit of discrete models,
see [14, 15, 40].

The motivation of our work was to understand what happens when half
of the non-intersecting Brownian motions start and end at a point, while the
second half start and end at another point. When the two starting points
are sufficiently far apart from each other, the mean density of particles will
be confined to two separate circles, with Airy2 processes appearing near the
boundary, as described above. When the two starting points move away from
each other at an appropriate rate proportional to N , the two circles will just
touch, creating a tacnode. A new critical process appears by looking at
the two sets of non-intersecting Brownian motions, which experience a brief
meeting in the neighborhood of the tacnode, but looked at with the Airy
scaling; we call it the tacnode process. Pictorially it can be thought of as
two Airy2 processes touching, see Figure 1.
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In this paper we obtain an explicit formula for the kernel governing this
tacnode process starting for non-intersecting continuous-time random walks,
rather than non-intersecting Brownian motions. The same result is expected
to hold for the Brownian motion case, since under the scaling the discrete
nature of the random walks is lost and the random walks become Brownian
paths. Our main result is the limiting kernel at the tacnode under appropriate
scaling limit, stated in Theorem 2.2. Before taking the limit, the kernel is
given by Theorem 2.1. The model is to let two groups of non-intersecting
random walks with jumps ±1, rate 1 and 2m+1 integers apart evolve during
a total time or orderm, with space-time rescaled à la Airy, namely x ∼ ξm1/3

and τ ∼ sm2/3 as suggested by formula (1.1). The parameterm, defined here,
plays the role of the number of particles N , previously defined.

There is an important difference with respect to the previous two cases:
here we have a one-parameter family of processes, which is obtained by modu-
lating the end points distance between the two sets of Brownian motions over
distance of order N1/3. For the Pearcey processes (and the Airy2 process),
geometric changes of this type only have the effect to modify the position
(and orientation) of the cusp, but the underlying Pearcey process remains
unchanged. In the literature there is another known situation with a process
in a tacnode-like geometry [14], which however differs from the present one.

This problem can be approached using multiple orthogonal polynomi-
als [20] and a Riemann-Hilbert to this problem is analyzed in a paper [21]
(which meanwhile appeared in the arXiv). In a forthcoming paper [30] Jo-
hansson uses a different approach leading to a different kernel for the Brow-
nian motion problem, which is expected to be the same as the kernel in
our paper. Adler, Johansson and van Moerbeke have then considered two
partially overlapping Aztec diamonds and found the same kernel [5].

Outline

In Section 2 we define the model and state the two main results. In Section 3,
Theorem 3.1, we derive the finite time result for τ = 0, which is reshaped
in Section 4 as a preparation to carrying out the large time limit. Before
actually doing this, we indicate in Section 5 how to introduce the time,
leading to the finite multi-time kernel in Theorem 5.4, an extension of the
kernel appearing in Proposition 4.1. In Section 6, we take the limit of the
multi-time kernel, leading to the proof of the first formula of Theorem 2.2.
In Section 7, we sketch the proof of the double integral representation of
the kernel, the second formula of Theorem 2.2, using the steepest descent
analysis.
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2 Model and results

Consider a continuous time random walk in Z with jumps ±1, occuring
independently with rate 1, i.e., the waiting times of the up- and down-jumps
are independent and exponentially distributed with mean 1. The transition
probability pt(x, y) of going from x to y during a time interval of length t is
given by

pt(x, y) = e−2tI|x−y|(2t), (2.1)

where In is the modified Bessel function of degree n (see [1]).
Consider now an infinite number of continuous time random walks start-

ing from {. . . ,−m− 2,−m− 1}∪{m+1, m+2, . . .} at time τ = −t, returning
to the starting positions at time τ = t, and conditioned not to intersect, see
Figure 2. Denote x̃k(τ) the position of the walk that starts and ends at posi-
tion k. Then, the point process η̃ on Z (described by the little white circles
in Figure 2) defined by

η̃(x) =
∑

k∈Z\{−m,...,m}

δx,x̃k(0), (2.2)

with δ the Kronecker-delta, is determinantal, i.e., there exists a kernel K̃m

such that the k-point correlation function ρ(k) is given by ρ(k)(y1, . . . , yk) =

det(K̃m(yi, yj))1≤i,j≤k. One of the interesting quantities is the gap probability
of a set E, which is given by P(η̃(1E) = 0), i.e., the probability that none of
the random walks are in E at time τ = 0. For a determinantal point process
the gap probability is given by the Fredholm determinant of the associated
kernel K̃m projected onto E. For more informations on determinantal point
processes, see [12, 29, 35, 44, 45].

The determinantal structure still holds if we consider the point process
on a set of time-slices instead of a single time τ = 0. This means that
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t−t
Figure 2: The lines are the non-intersecting walks x̃. The white circles are
the support of the point process η̃.

given times τ1 < τ2 < . . . < τp in the interval (−t, t), the point process on
{τ1, . . . , τp} × Z defined by

η̃(τ, x) =

p∑

r=1

∑

k∈Z\{−m,...,m}

δ(τ,x),(τr ,x̃k(τr)), (2.3)

is determinantal. That is, the space-time correlation functions are given by
the determinant of an extended kernel, which we denote by K̃ext

m (t1, x1; t2, x2),
where ti ∈ {τ1, . . . , τp} and xi ∈ Z.

It is more convenient to first study the dual or complementary process
x(τ). The dual proceeds along the gaps of x̃(τ). In this instance, the dual
x(τ) of x̃(τ) is described by n = 2m+1 (m ∈ N) non-intersecting continuous-
time random walks, starting from −m,−m+1, . . . , m−1, m at time τ = −t,
returning to the starting positions at time τ = t; see Figure 3, and Figure 4
for the superposition of the trajectories of x(τ) and x̃(τ).

In particular, the dual process x(τ) at τ = 0 is given by the little black
circles in Figure 3. The probability measure at time τ = 0 is obtained by
the Karlin-McGregor formula [31], and thus it is a determinantal process for
a kernel Km. Finally, the complementation principle by Borodin, Olshanski,
and Okounkov (see Appendix of [17]) tells us that, if the kernel Km governs

the process x(τ), then the kernel K̃m = 1 −Km describes the dual process
x̃(τ).
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Figure 3: The dotted lines are the non-intersecting walks x, the dual process
of x̃ of Figure 2. The black circles are the support of the point process η.

Figure 4: Superposition of Figure 2 and Figure 3
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Theorem 2.1. The determinantal point process η̃(τ, x) on {τ1, . . . , τp} ×R,
τi ∈ (−t, t), defined by the two groups of non-intersecting walkers, starting
and ending 2m+1 apart, at times −t and t respectively, has gap probabilities
on any compact set E ⊂ {τ1, . . . , τp} × R given byP(η̃(1E) = 0) = det(1− K̃ext

m )L2(E), (2.4)

where the kernel K̃ext
m is given by

e2t2

e2t1
K̃ext

m (t1, x1; t2, x2) = −1[t2<t1]I|x1−x2|(2(t2 − t1))

− Vm
(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
et(z−z−1)

et(w−w−1)

e−t1(z+z−1)

e−t2(w+w−1)

wx2−m−1

zx1−m

H2m+1(w)H2m+1(z
−1)

z − w

− Vm
(2πi)2

∮

Γ0

dw

∮

Γ0,w

dz
et(w−w−1)

et(z−z−1)

e−t1(z+z−1)

e−t2(w+w−1)

wx2+m

zx1+m+1

H2m+1(z)H2m+1(w
−1)

w − z

− 1[x1 6=x2]
Vm
2πi

∮

Γ0

dz
e(t2−t1)(z+z−1)

zx1−x2+1
H2m+1(z

−1)H2m+1(z),

(2.5)
with Vm := 1/(H2m+1(0)H2m+2(0)). The function Hn is itself the Fredholm
determinant on ℓ2({n, n+ 1, . . .})

Hn(z
−1) := det(1−K(z−1))ℓ2({n,n+1,...}) (2.6)

of the kernel

K(z−1)k,ℓ :=
(−1)k+ℓ

(2πi)2

∮

Γ0

du

∮

Γ0,u

dv
uℓ

vk+1

1

v − u

u− z

v − z

e2t(u−u−1)

e2t(v−v−1)
, (2.7)

where Γ0 is any anticlockwise simple loop enclosing 0 and similarly Γ0,u en-
circles the poles at 0 and u (but not z)1.

The extended kernel, governing the process η̃(τ, x), is given in terms of

the kernel K̃m(x1, x2) = K̃ext
m (0, x1; 0, x2), governing the distribution η̃(0, x),

byK̃ext
m (t1, x1; t2, x2) = −1[t2<t1]

(
e(t2−t1)H

)
(x1, x2) +

(
e−t1HK̃me

t2H
)
(x1, x2),

(2.8)
where H is the discrete Laplacian

(Hf)(x) = f(x+ 1) + f(x− 1)− 2f(x). (2.9)

1For any set of points S, the notation
∮
ΓS

dzf(z) means that the integration path goes
anticlockwise around the points in S but does not include any other poles of f .
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Remark that the transition probability of (2.1), defined for t ≥ 0, can be
written as pt(x, y) = etH1(x, y) =: etH(x, y). Here, 1 denotes the identity
operator on Z, i.e., 1(x, y) = 1 if x = y and 1(x, y) = 0 if x 6= y.

The formula for the kernel K̃m(x1, x2) = K̃ext
m (0, x1; 0, x2) at t1 = t2 = 0

of Theorem 2.1, will be established in Section 3, whereas the one for K̃ext
m will

be shown in Section 5. In Sections 4 and 5, it will be shown that both kernelsK̃m(x, y) and K̃ext
m (t1, x2; t2, x2) have a representation, whose constituents can

be expressed in terms of Bessel functions; see the expression (4.14) and the
time-dependent kernel (5.26), derived from (4.14), via the recipe (2.8). Also,
note that the kernel K(z−1) is a rank-one perturbation of the kernel K(0),
whose Fredholm determinant

Hn(0) = det(1−K(0))ℓ2({n,n+1,...}) (2.10)

is the distribution of the longest increasing subsequence of a random permu-
tation in the Poissonized version, or, equivalently, it is the height function in
the polynuclear growth (PNG) model [10,41]. In the scaling limit, considered
in Section 6, Hn(0) will converge to the Tracy-Widom distribution F2.

To study the limiting behavior, when m, t→ ∞, consider first the system
of non-intersecting random walks starting at time −t and ending at positions
{. . . ,−m− 2,−m− 1} at time t. This is, up to a shift by m+ 1, the multi-
layer PNG model studied by Prähofer and Spohn in [41]. Their work shows
that the top random walk at time τ = 0 has fluctuations around x = −m+2t
of order t1/3. By symmetry, if one considers only the non-intersecting random
walks starting and ending at position {m+1, m+2, . . .}, the bottom random
walk at time τ = 0 fluctuates around x = m − 2t also in the spatial scale
t1/3.

The top and bottom random walks interact if the proportion of deleted
configurations, due to interaction, is non-zero. This happens when m = 2t to
leading order in t. The first scaling where interaction is relevant is given by
m = 2t+σt1/3. The parameter σ modulates the strength of interaction of the
two sets of non-intersecting random walks. In the extreme cases σ → ∞, we
clearly (by a simple probabilistic argument) go back to the situation of two
independents PNG models, thus the top of the lower walks and the bottom
of the upper walks are governed by the Airy2 process [41]. On the other
hand, when σ → −∞, one expects to see a point process governed by the
sine kernel or the Pearcey process. Moreover, locally the paths will looks like
random walks, so the exponents in the scaling for time and space are in a
ratio 2:1. Thus, we set the scaling2

m = 2t+ σt1/3, xi = ξit
1/3, ti = sit

2/3, i = 1, 2. (2.11)

2We do not write explicitly the integer parts, since in the t → ∞ limit it is irrelevant.
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Also note that for each time −t < τ < t, the density of particles has its
support on two semi-infinite intervals, whose boundary, as a function of τ ,
describes two curves, which at τ = 0 form a tacnode. The purpose of The-
orem 2.2 is to describe the fluctuations of the random walks in the t → ∞
limit in the neighborhood of (x, τ) = (0, 0), but in the new space-time scale,
given by (2.11).

In order to state the second main result, define the standard Airy kernel,

KAi(ξ1, ξ2) :=

∫ ∞

0

dλAi(ξ1 + λ)Ai(ξ2 + λ). (2.12)

and the function Q(κ), already appearing in [48],

Q(κ) := [(1− χσ̃KAiχσ̃)
−1χσ̃Ai](κ), with σ̃ := 22/3σ, (2.13)

and where χa(x) = 1[x>a]. We further set

Ai(s)(ξ) := eξs+
2
3
s3Ai(ξ + s2), (2.14)

which equals to the standard Airy function Ai(ξ), when s = 0, and define
the functions

A(s, ξ) :=Ai(s)(σ − ξ) +

∫ ∞

σ̃

dκ

∫ ∞

0

dαQ(κ)Ai(κ + α)Ai(s)(21/3α + σ − ξ),

B(s, ξ) :=
∫ ∞

σ̃

dκQ(κ)Ai(s)(21/3κ− σ + ξ),

(2.15)
and

C(s, ξ) := 2−1/3

∫ ∞

σ̃

dκQ(κ)

[
Ai(2

−2/3s)(κ+ 2−1/3ξ)

+

∫ ∞

σ̃

dλQ(λ)

∫ ∞

0

dαAi(α + λ)Ai(2
−2/3s)(α + κ+ 2−1/3ξ)

]
+ (ξ ↔ −ξ),

(2.16)

where with (ξ ↔ −ξ) we mean the same expression with ξ replaced by −ξ.
Finally, we define two Laplace transforms P̂(u) and Q̂(u):

Q̂(u) :=

∫ ∞

σ̃

dκQ(κ)eκu2
1/3

,

P̂(u) := −
∫ ∞

0

dκ e−κu21/3
∫ ∞

σ̃

dµQ(µ)Ai(µ+ κ).

(2.17)
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Theorem 2.2. Near the tacnode appears a new determinantal process on
{s1, . . . , sp}×R, the tacnode process T , whose gap probabilities on any com-
pact set E ⊂ {s1, . . . , sp} × R are given byP(T (1E) = 0) = det(1−Kext)L2(E). (2.18)

The kernel Kext is the limit of K̃ext
m under the scaling (2.11),

Kext(s1, ξ1; s2, ξ2) := lim
t→∞

(−1)x2e4t2

(−1)x1e4t1
t1/3K̃ext

m (t1, x1; t2, x2), (2.19)

where the convergence is uniform for ξ1, ξ2 and s1, s2 in bounded sets. The
kernel Kext has the following representations:

Kext(s1, ξ1; s2,ξ2) = − 1[s2<s1]√
4π(s1 − s2)

exp

(
− (ξ1 − ξ2)

2

4(s1 − s2)

)
+ C(s1 − s2, ξ1 − ξ2)

+

∫ ∞

0

dγ
(
A(s1, ξ1 − γ)A(−s2, ξ2 − γ) +A(s1,−ξ1 − γ)A(−s2,−ξ2 − γ)

−A(s1, ξ1 − γ)B(−s2, ξ2 − γ)−A(s1,−ξ1 − γ)B(−s2,−ξ2 − γ)

−B(s1, ξ1 − γ)A(−s2, ξ2 − γ)− B(s1,−ξ1 − γ)A(−s2,−ξ2 − γ)
)

−
∫ 0

−∞

dγ
(
B(s1, ξ1 − γ)B(−s2, ξ2 − γ) + B(s1,−ξ1 − γ)B(−s2,−ξ2 − γ)

)
,

(2.20)
as well as (with arbitrary δ > 0)

Kext(s1, ξ1; s2, ξ2) = − 1[s2<s1]√
4π(s1 − s2)

exp

(
− (ξ1 − ξ2)

2

4(s1 − s2)

)
+ C(s1 − s2, ξ1 − ξ2)

+
1

(2πi)2

∫

δ+iR

du

∫

−δ+iR

dv
e

u3

3
−σu

e
v3

3
−σv

es1u
2

es2v2

(
eξ1u

eξ2v
+
e−ξ1u

e−ξ2v

)
(1− P̂(u))(1− P̂(−v))

u− v

− 1

(2πi)2

∫

2δ+iR

du

∫

δ+iR

dv
e

u3

3
−σu

e−
v3

3
−σv

es1u
2

es2v2

(
eξ1u

eξ2v
+
e−ξ1u

e−ξ2v

)
(1− P̂(u))Q̂(−v)

u− v

− 1

(2πi)2

∫

−δ+iR

du

∫

−2δ+iR

dv
e−

u3

3
−σu

e
v3

3
−σv

es1u
2

es2v2

(
eξ1u

eξ2v
+
e−ξ1u

e−ξ2v

)
(1− P̂(−v))Q̂(u)

u− v

+
1

(2πi)2

∫

−δ+iR

du

∫

δ+iR

dv
e−

u3

3
−σu

e−
v3

3
−σv

es1u
2

es2v2

(
eξ1u

eξ2v
+
e−ξ1u

e−ξ2v

) Q̂(u)Q̂(−v)
u− v

.

(2.21)

The form (2.20) of the limiting extended kernel in Theorem 2.2 will be
shown in Section 6, whereas a sketch of the proof of its double integral
representation (2.21) will be given in Section 7.
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In the preprint [21] the analogue problem for Brownian Motion will be
analyzed with the Riemann-Hilbert approach to multiple orthogonal polyno-
mials. It would be interesting to see how to relate the two formulas (which
we expect to be equivalent).

3 Finite system at τ = 0

In this section we will prove Theorem 2.1, in particular the formula for kernelK̃m(x, y) = K̃ext
m (0, x; 0, y), as in (2.5), for t1 = t2 = 0. Consider a continuous

time random walk in Z with jumps ±1, which occur independently with rate
1, i.e., the waiting times of the up- and down-jumps are independent and
exponentially distributed with mean 1. Thus, the number of up-jumps (and
similarly down-jumps) during the time interval [0, t] is Poisson distributed,P(k up-jumps during [0, t]) = e−t t

k

k!
. (3.1)

As will be shown, the transition probability pt(x, y) of going from x to y
during a time interval of length t is given by

pt(x, y) = e−2tI|x−y|(2t), (3.2)

where In is the modified Bessel function of degree n (see [1]). To prove (3.2),
first notice that by symmetry, it is enough to consider y−x ≥ 0. To go from
x to y, the process must perform k steps down and k+ y−x steps up. Since
the moment, at which the down or up steps occur, is independent of whether
it is a down or an up step, one may assume the process doing first k steps
down and then k + y − x steps up. By the strong Markov property of the
random walk and the independence of the jumps,

pt(x, y) =
∑

k≥0

P({ k + y − x up-steps and
k down-steps

}
during time t

)

= e−2t

∞∑

k≥0

tk

k!

ty−x+k

(y − x+ k)!
= e−2tI|x−y|(2t).

(3.3)

The modified Bessel function has the following expressions (for n ∈ Z)

In(2t) =
1

2πi

∮

S1

dz

z
et(z+z−1)z±n =

∞∑

k=0

tk

k!

tk+|n|

(k + |n|)! , (3.4)

with S1 = {z ∈ C||z| = 1}.
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Consider now n = 2m+1 (m ∈ N) continuous time random walks starting
from −m,−m + 1, . . . , m − 1, m at time τ = −t, returning at the starting
positions at time τ = t, and conditioned not to intersect. Denote by xk(τ)
the position at time τ of the random walk which started from m+1−k (i.e.,
the kth highest one), see Figure 3 for an illustration with m = 2.

The probability at time τ = 0 is easily obtained by the Karlin-McGregor
formula [31], namelyP(2m+1⋂

k=1

{xk(0) = yk}
∣∣∣
2m+1⋂

k=1

{xk(t) = xk(−t) = m+ 1− k}
)

= const× det
[
pt(m+ 1− i, yj)

]
1≤i,j≤2m+1

det
[
pt(yi, m+ 1− j)

]
1≤i,j≤2m+1

= const×
(
det
[
Iyi+j−1−m(2t)

]
1≤i,j≤2m+1

)2
.

(3.5)
It is well known by [13] that the process above

x(τ) := {xk(τ), 1 ≤ k ≤ 2m+ 1}, τ ∈ [−t, t], (3.6)

with a measure of this form gives rise to a determinantal point process (ran-
dom point measure)

η =
2m+1∑

k=1

δxk(0) (3.7)

with a certain kernel Km(x, y), to be computed in Theorem 3.1.
Instead of the process x(τ), we shall analyze its complementary (dual)

process, which we denote by

x̃(τ) = {x̃k(τ), k ∈ Z \ [1, 2m+ 1]}, τ ∈ [−t, t]. (3.8)

If x denotes the trajectories of the 2m + 1 particles, then let x̃ denote the
trajectories of the holes, obtained by the particle-hole transformation, see
Figures 2 and 4.

The reason for starting with the process x is that the Karlin-McGregor
formula applies to a finite number of paths, while x̃ has an infinite number of
paths. By the complementation principle in the Appendix of [17], the dual
point process at τ = 0,

η̃ =
∑

k

δx̃k(0), (3.9)

is also determinantal with correlation kernelK̃m(x, y) = δx,y −Km(x, y). (3.10)

First of all, we compute the kernel Km(x, y) in a form which will be suitable
for asymptotic analysis.
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Theorem 3.1. The point processes η and η̃, defined in (3.7) and (3.9), are

determinantal with correlation kernel Km and K̃m given below. Thus, for
any finite subset E ⊂ Z, the gap probability of E is given byP (η(1E) = 0) = det(1−Km)ℓ2(E), P (η̃(1E) = 0) = det(1− K̃m)ℓ2(E),

(3.11)

with kernels Km(x, y) and K̃m(x, y), invariant3 under the involution
(x, y) ↔ (−y,−x), namelyKm(x, y) =

Vm
(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
et(z−z−1)

et(w−w−1)

wy−m−1

zx−m

H2m+1(w)H2m+1(z
−1)

z − w

+
Vm

(2πi)2

∮

Γ0

dw

∮

Γ0,w

dz
et(w−w−1)

et(z−z−1)

wy+m

zx+m+1

H2m+1(z)H2m+1(w
−1)

w − z

+
Vm
2πi

∮

Γ0

dz
1

zx−y+1
H2m+1(z

−1)H2m+1(z),

(3.12)
andK̃m(x, y) =− Vm

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
et(z−z−1)

et(w−w−1)

wy−m−1

zx−m

H2m+1(w)H2m+1(z
−1)

z − w

− Vm
(2πi)2

∮

Γ0

dw

∮

Γ0,w

dz
et(w−w−1)

et(z−z−1)

wy+m

zx+m+1

H2m+1(z)H2m+1(w
−1)

w − z

− 1[x 6=y]
Vm
2πi

∮

Γ0

dz
1

zx−y+1
H2m+1(z

−1)H2m+1(z),

(3.13)
where Vm = 1/(H2m+1(0)H2m+2(0)). The function Hn itself is a Fredholm
determinant on ℓ2({n, n+ 1, . . .})

Hn(z
−1) := det(1−K(z−1))ℓ2({n,n+1,...}) (3.14)

of the kernel

K(z−1)k,ℓ :=
(−1)k+ℓ

(2πi)2

∮

Γ0

du

∮

Γ0,u

dv
uℓ

vk+1

1

v − u

u− z

v − z

e2t(u−u−1)

e2t(v−v−1)
, (3.15)

where Γ0 is any anticlockwise simple loop enclosing 0 and similarly Γ0,u en-
circles 0 and u only (hence not z).

3As it should from the geometry of the problem! The involution interchanges the two
double integrals in (3.12), as is seen from renaming w ↔ z in the second double integral;
also the third term, the single integral, only depends on |x− y|, as is seen from z → z−1.
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Proof of Theorem 3.1.

Step 1: Computing the kernel Km(x, y) for the inliers x(τ) at τ = 0, from
the Karlin-McGregor formula (3.5): It is well known by [13] that a measure
of the form (3.5) implies that the point process (random point measure) η,
as in (3.7), is determinantal with correlation kernelKm(x, y) =

2m+1∑

k,ℓ=1

ϕk(y)[A
−1]k,ℓ ϕℓ(x), x, y ∈ Z, (3.16)

where
ϕk(x) = Ix+k−1−m(2t) (3.17)

and A is the (2m+ 1)× (2m+ 1) matrix with entries

[A]k,ℓ ≡ 〈ϕk, ϕℓ〉 =
∑

x∈Z

ϕk(x)ϕℓ(x). (3.18)

Using (3.4) and (3.17), the entries of the (2m+ 1)× (2m+ 1) matrix A, as
in (3.18), are given by

Ak,ℓ =
∑

x∈Z

ϕk(x)ϕℓ(x) =
∑

x≥0

ϕk(x)ϕℓ(x) +
∑

x<0

ϕk(x)ϕℓ(x)

=
∑

x≥0

1

(2πi)2

∮

Γ0

dz

∮

Γ0

dw
et(z+z−1)et(w+w−1)

zkwℓ

1

(zw)x−m

+
∑

x<0

1

(2πi)2

∮

Γ0

dz

∮

Γ0

dw
et(z+z−1)et(w+w−1)

zkwℓ

1

(zw)x−m
.

(3.19)

In the first integrals, we deform the paths to |z| = 1 and |w| = R > 1. Then
we take the sum inside the integrals and use

∑
x≥0(zw)

−x = wz/(wz − 1).
Similarly, in the second integrals, we deform the paths as |z| = 1 and
|w| = 1/R < 1 and use

∑
x<0(zw)

−x = −wz/(wz − 1). This leads to

Ak,ℓ =
1

(2πi)2

∮

|z|=1

dz

∮

|w|=R

dw
et(z+z−1)et(w+w−1)

zk−mwℓ−m

wz

wz − 1

− 1

(2πi)2

∮

|z|=1

dz

∮

|w|=1/R

dw
et(z+z−1)et(w+w−1)

zk−mwℓ−m

wz

wz − 1

=
1

2πi

∮

|z|=1

dz
e2t(z+z−1)

zk−ℓ+1
= Ik−ℓ(4t),

(3.20)
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since for any value of z, the two integrals differ only by the residue4 at
w = 1/z. However, doing the asymptotics of the kernel Km(x, y) with this
choice of basis and thus with this A−1 seems to be hopeless.

Step 2: Changing the basis ϕk 7→ ψk, such that A 7→ 1 in the kernelKm(x, y), i.e., so that Km(x, y) =
∑2m+1

k=1 ψk(x)ψk(y). Replace the basis
(ϕk(x))k=1,...,2m+1 with an orthonormal basis (ψk(x))k=1,...,2m+1 with respect
to the ℓ2(Z) scalar product 〈, 〉 used in (3.18) (generating the same vector
space, i.e., det(ϕk(xj))1≤k,j≤n = const× det(ψk(xj))1≤k,j≤n so that the mea-
sure (3.5) has the same form but with A = 1). More precisely, we shall search
for polynomials Pk of degree k such that, upon defining dρt(z) :=

dz
2πiz

et(z+z−1),

ψk(x) =

∮

S1

dρt(z)

zx−m
Pk−1(z

−1) =

∮

S1

dρt(w)w
x−mPk−1(w), 1 ≤ k ≤ 2m+ 1,

(3.21)
satisfies, using the same argument as in (3.20),

δk,l = 〈ψk, ψℓ〉 =
∑

x∈Z

∮

Γ0

dρt(z)

∮

Γ0

dρt(w)(zw)
x−mPk−1(z)Pℓ−1(w)

=

∮

S1

dρ2t(z)Pk−1(z)Pℓ−1(z
−1) =: 〈〈Pk−1, Pℓ−1〉〉,

(3.22)

thus defining a new inner-product 〈〈 , 〉〉 on the circle S1 = {z ∈ C | |z| = 1}.
So it suffices to find an orthonormal basis of polynomials on the circle for
the weight dρ2t(z). A classical expression for the polynomial Pk(z) is (see
e.g. [46]):

Pk(z) =
1√

detmk · detmk+1

det




1
[µi,j] 0≤i≤k

0≤j≤k−1
z

...
zk


 , (3.23)

where mk = [µi,j]0≤i,j≤k−1 and

µi,j := 〈〈zi, zj〉〉 =
∮

S1

dρ2t(z)z
i−j = Ii−j(4t). (3.24)

Hence the Pk(z) are polynomials of z with real coefficients. Orthonormal
polynomials on the circle satisfy a Christoffel-Darboux-type formula, due to

4This residue argument will reappear later in (3.40).
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Szegő; see [43]. Namely, with the notation P ∗
n(z) = znP (z̄−1) and further

using the reality of the coefficients, one obtains for z, w ∈ S1,

n−1∑

ℓ=0

Pℓ(z
−1)Pℓ(w) =

n−1∑

ℓ=0

Pℓ(z)Pℓ(w) =
P ∗
n(z)P

∗
n(w)− Pn(z)Pn(w)

1− z̄w
,

=
znPn(z̄−1)wnPn(w̄−1)− Pn(z)Pn(w)

1− w/z

=
z−nPn(z)w

nPn(w
−1)− Pn(z

−1)Pn(w)

1− w/z
.

(3.25)

Step 3: Expressing the polynomials Pn(z) in terms of the Fredholm deter-
minant Hn(z

−1), as in (3.14). In order to do this, one first introduces the
bilinear form

〈f, g〉t,s :=
1

2πi

∮

S1

du

u
f(u)g(u−1)e

∑
∞

j=1(tju
j−sju−j), (3.26)

upon setting t := (t1, t2, . . .) ∈ C∞ and s := (s1, s2, . . .) ∈ C∞. It was shown
in [7, 8] (see also the lecture notes [51]) that the functions5

p(1)n (t, s; z) := zn
τn(t− [z−1], s)√
τn(t, s)τn+1(t, s)

p(2)n (t, s; z) := zn
τn(t, s+ [z−1])√
τn(t, s)τn+1(t, s)

(3.27)

are bi-orthonormal polynomials with regard to the bilinear form (3.26). In
the formulae above, the τn(t, s) are 2-Toda τ -functions and are defined as a
Toeplitz determinant, which is also expressible as a Fredholm determinant
of the kernel (3.29) below, using the Borodin-Okounkov identity [16]. We
obtain

τn(t, s) := det

[
1

2πi

∮

S1

du

u
uk−ℓe

∑
∞

j=1(tju
j−sju

−j)

]

1≤k,ℓ≤n

= Z(t, s) det (1−K(t, s))ℓ2({n,n+1,...}) , Z(t, s) := e−
∑

∞

j=1 j tjsj ,

(3.28)
where the kernel K(t, s) is given by

K(t, s)k,ℓ :=
1

(2πi)2

∮

Γ0

du

∮

Γ0,u

dv
uℓ

vk+1

1

v − u

e
∑

∞

j=1(tjv
−j+sjvj)

e
∑

∞

j=1(tju
−j+sjuj)

. (3.29)

5For α ∈ C, one defines [α] =
(
α, α2

2
, α3

3
, . . .

)
∈ C∞.
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The coefficients tj, sj have to be such that the expression
∑∞

j=1(tju
j −sju−j)

appearing in the exponent of (3.28) is analytic in the annulus ρ < |z| < ρ−1

for 0 < ρ < 1. Then, the Borodin-Okounkov identity (3.28) gives a kernel
K(t, s), with contours given by |u| = |v|−1 = ρ′, with 0 < ρ < ρ′ < 1.
Assume, using Cauchy’s Theorem, that the contours may be deformed to
any circle of radius 0 < ρ < 1. Then, using

∑∞
j=1(v/z)

j/j = − ln(1 − v/z)
(for |v/z| < 1) we obtain

K(t, s+ [z−1])k,ℓ =
1

(2πi)2

∮

Γ0

du

∮

Γ0,u

dv
uℓ

vk+1

1

v − u

1− u
z

1− v
z

e
∑

∞

j=1(tjv
−j+sjvj)

e
∑

∞

j=1(tju
−j+sjuj)

(3.30)
and

Z(t, s+ [z−1]) = e−
∑

∞

j=1 j tj(sj+z−j/j) = Z(t, s)e−
∑

∞

j=1 tjz
−j

. (3.31)

We now specialize all this to the locus

L =

{
t = (2t, 0, 0, ...)
s = (−2t, 0, 0, ...)

}
. (3.32)

On this locus, one checks that Z(t, s)
∣∣
L
= e4t

2
, that K(t, s) and its translate,

restricted to the locus L, are closely related to the kernel K(z−1) defined
in (3.15)6

K(t, s)
∣∣
L

conj
= K(0),

K(t, s+ [z−1])
∣∣
L

conj
= K(z−1),

(3.33)

and that the restriction of τn(t, s) to L leads to the Fredholm determinant
Hn(z

−1) as defined in (3.14):

τn(t, s)
∣∣
L
= Hn(0)Z(t, s)

∣∣
L
= e4t

2

Hn(0),

τn(t, s+ [z−1])
∣∣
L
= Hn(z

−1)e−2t/zZ(t, s)
∣∣
L
= Hn(z

−1)e4t
2−2t/z .

(3.34)

Moreover, the bilinear form 〈f, g〉t,s defined in (3.26) reduces to the inner-
product 〈〈f, g〉〉 defined in (3.22),

〈f, g〉t,s
∣∣
L
=

1

2πi

∮

S1

du

u
e2t(u+u−1)f(u)g(u−1) = 〈〈f, g〉〉. (3.35)

6With A
conj
= B we mean that the two kernels A and B are conjugate kernels. In the

present case, the conjugation factor is (−1)k−ℓ. We remind that two conjugate kernels
define the same determinantal point process.
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It follows that the bi-orthogonal functions for 〈f(z), g(z)〉t,s restricted to the
locus L coincide with the orthonormal polynomials defined by (3.22), which
by (3.27), (3.34) and (3.33) yields:

Pn(z) = p(1)n (t, s; z)
∣∣
L
= p(2)n (t, s; z)

∣∣
L
=
zne−2t/zHn(z

−1)√
Hn(0)Hn+1(0)

, (3.36)

where
Hn(z

−1) = det(1−K(z−1))ℓ2({n,n+1,...}), (3.37)

with the kernel K(z−1) as in (3.15); this follows from (3.33). The fact that

the p
(1)
n and p

(2)
n are equal on the locus L is a consequence of the symmetry

of the inner-product 〈〈 , 〉〉, as in (3.22). However, one easily verifies it with
the above formulae. The equivalence of the Fredholm determinant parts is
evident only after the change of variable v → 1/ũ and u → 1/ṽ. Then, the

kernel obtained for p
(1)
n is the transpose of the one for p

(2)
n .

Step 4: Expressing the kernel Km(x, y) as (3.12). Using this new basis ψk,
as in (3.21), and using the Christoffel-Darboux formula (3.25), the kernelKm(x, y) becomes by Step 2 (recall that n = 2m+ 1):Km(x, y) =

n∑

k=1

ψk(x)ψk(y)
∗
=

∮

S1

dρt(z)

∮

S1

dρt(w)
wy−m

zx−m

n−1∑

k=0

Pk(z
−1)Pk(w)

=

∮

Γ0

dρt(z)

∮

Γ0,z

dρt(w)
wy−m

zx−m−1

1

z − w

((w
z

)n
Pn(z)Pn(w

−1)− Pn(z
−1)Pn(w)

)
,

(3.38)

Note that the w-integrand in the double integral
∗
= has no pole at w = z,

enabling one to deform the w-contour so as to include z ∈ S1; this has the
advantage that the double integral of the difference can be written as the
difference of two double integrals, each of them being finite.

Inserting (3.36) into (3.38) and setting Vm = 1/(H2m+1(0)H2m+2(0)) we
getKm(x, y) =

Vm
(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
et(z−z−1)

et(w−w−1)

wy−m−1

zx−m

H2m+1(w)H2m+1(z
−1)

z − w

− Vm
(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
et(w−w−1)

et(z−z−1)

wy+m

zx+m+1

H2m+1(z)H2m+1(w
−1)

z − w
.

(3.39)
The expression in (3.12) is finally obtained by noticing that

1

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
F (z, w)

w − z
=

1

(2πi)2

∮

Γ0

dw

∮

Γ0,w

dz
F (z, w)

w − z
+

∮

Γ0

dz

2πi
F (z, z),

(3.40)

19



proving formula (3.12).

Step 5: Expressing the dual kernel K̃m(x, y) as (3.13). First of all, by (3.36),
we have

Hn(z
−1) = Pn(z)e

2t/zz−n
√
Hn(0)Hn+1(0). (3.41)

Thus (with n = 2m+ 1), the last term of (3.12) is given by

Vm
2πi

∮

Γ0

dz

zx−y+1
H2m+1(z

−1)H2m+1(z) =
1

2πi

∮

S1

dz

zx−y+1
e2t(z+z−1)Pn(z)Pn(z

−1).

(3.42)
In particular, at x = y we have

(3.42)
∣∣
x=y

= 〈〈Pn, Pn〉〉 = 1, (3.43)

and thus

Vm
2πi

∮

Γ0

dz

zx−y+1
H2m+1(z

−1)H2m+1(z)

= δx,y + (1− δx,y)
Vm
2πi

∮

Γ0

dz
1

zx−y+1
H2m+1(z

−1)H2m+1(z).

(3.44)

So, K̃m(x, y) = δx,y −Km(x, y) = K̃ext
m (0, x1; 0, x2) of (2.5), thus establishing

Theorem 3.1. This also ends the proof of Theorem 2.1 for t1 = t2 = 0.

4 Reshaping, motivation and Bessel repre-

sentation

In this section we first reshape the kernel (2.5) of Theorem 2.1 for t1 = t2 = 0,
to make it adequate for asymptotic analysis. Secondly, we rewrite all the
terms using Bessel functions and the Bessel kernel. This will allow us to use
known asymptotics for Bessel functions and kernel, without the need for new
asymptotic analysis.

4.1 Reshaping

Note that the kernel K(z−1), defined in (3.15), with |u| < |v| < |z|, namely

K(z−1)k,ℓ :=
(−1)k+ℓ

(2πi)2

∮

Γ0

du

∮

Γ0,u

dv
uℓ

vk+1

1

v − u

u− z

v − z

e2t(u−u−1)

e2t(v−v−1)
, (4.1)

is a rank-one perturbation

K(z−1)k,ℓ = K(0)k,ℓ + hk(z
−1) gℓ, (4.2)
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of the symmetric7 kernel

K(0)k,ℓ =
(−1)k+ℓ

(2πi)2

∮

Γ0

du

∮

Γ0,u

dv
uℓ

vk+1

1

v − u

e2t(u−u−1)

e2t(v−v−1)
, (4.3)

upon using the identity

1

v − u

u− z

v − z
=

1

v − u
− 1

v − z
, (4.4)

where (remember |v| < |z| in the first integration below)

hk(z
−1) =

−1

2πi

∮

Γ0

dv

(−v)k+1

e−2t(v−v−1)

v − z

=
−1

2πi

∮

Γ0,z

dv

(−v)k+1

e−2t(v−v−1)

v − z
+
e−2t(z−z−1)

(−z)k+1

=: h̄k(z
−1) +

e−2t(z−z−1)

(−z)k+1
,

(4.5)

and

gℓ =
−1

2πi

∮

Γ0

du (−u)ℓe2t(u−u−1). (4.6)

In (4.5), one has replaced the integration about a small circle around 0 by
an integration about a contour containing z as well; this is done in order to
be able to expand, later on, 1/(v− z) in a power series in z/v. Therefore we
can rewrite the Fredholm determinant Hn(z

−1) of K(z−1) as

Hn(z
−1) = Hn(0)(1−Rn(z

−1)), (4.7)

where8

Rn(z
−1) := 〈Q, χnh(z

−1)〉, Qk := ((1− χnK(0)χn)
−1χng)k (4.8)

and χn(k) = 1[k≥n]; here the symmetry of K(0) is being used. Accordingly
Rn(z

−1) = 〈Q, χnh(z
−1)〉, as in (4.8), decomposes as (recall that n = 2m+1)

Rn(z
−1) = Sn(z

−1) +
e−2t(z−z−1)

(−z)n Tn(z
−1), (4.9)

with

Sn(z
−1) = 〈Q, χnh̄(z

−1)〉, Tn(z
−1) =

∑

k≥1

Qn+k−1

(−z)k . (4.10)

7as is seen by replacing u 7→ 1/u, v 7→ 1/v.
8For a = (ak)k∈Z and b = (bk)k∈Z, the inner-product 〈a, b〉 :=∑k∈Z

akbk.
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We set for x ∈ Z,

A(x) :=
−1

2πi

∮

Γ0

dz
et(z−z−1)

(−z)x−m
(1− Sn(z

−1)),

B(x) :=
−1

2πi

∮

Γ0

dz
e−t(z−z−1)

(−z)x+m+1
Tn(z

−1),

C1(x) :=
−1

2πi

∮

Γ0

dz
Tn(z

−1)Tn(z)

(−z)x+1
,

C2(x) := 1[x 6=0]
−1

2πi

∮

Γ0

dz
Rn(z

−1) +Rn(z)−Rn(z
−1)Rn(z)

(−z)x+1

C(x) := 2C1(x) + C2(x).

(4.11)

Remark that C1(x) = C1(−x) and C2(x) = C2(−x). Also introduce functions
Ei(z, w), which also depend on n = 2m+ 1,

E1(z, w) :=
et(z−z−1)

et(w−w−1)

( z
w

)m
(1− Sn(z

−1))(1− Sn(w))

E2(z, w) := − et(z−z−1)

e−t(w−w−1)
(−z)m(−w)m+1(1− Sn(z

−1))Tn(w)

E3(z, w) := −e
−t(z−z−1)

et(w−w−1)
(−z)−m−1(−w)−mTn(z

−1)(1− Sn(w))

E4(z, w) := − et(z−z−1)

et(w−w−1)

( z
w

)m
Tn(z)Tn(w

−1).

(4.12)

With these notations, the following statement holds.

Proposition 4.1. The kernel K̃m(x, y) in (3.13) has the following expression

(−1)x−yHn+1(0)

Hn(0)
K̃m(x, y) = C(x− y)

+
1

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw

∑4
i=1Ei(z, w)

z − w

(
(−w)y−1

(−z)x +
(−z)y

(−w)x+1

)
, (4.13)

as well as the Airy kernel-like expression

(−1)x−yHn+1(0)

Hn(0)
K̃m(x, y) = C(x− y)

+
∑

c≥0




A(x− c)A(y − c) + A(−x − c)A(−y − c)

−A(x− c)B(y − c)− A(−x− c)B(−y − c)

−B(x− c)A(y − c)− B(−x− c)A(−y − c)




−
∑

c<0

(
B(x− c)B(y − c) +B(−x− c)B(−y − c)

)
.

(4.14)
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Proof. Let us first prove (4.13). Consider the kernel K̃m(x, y) as in (3.13);
one uses Hn(z

−1) = Hn(0)(1−Rn(z
−1)), as in (4.7), and one renames the in-

tegration variables (w, z) → (z, w) in the second double integral, enabling us
to combine the two double integrals. Then, taking into account the prefactor,

(−1)x−yHn+1(0)

Hn(0)
K̃m(x, y) =

1[x 6=y]

2πi

∮

Γ0

dz

(−z)x−y+1
(1−Rn(z

−1))(1−Rn(z))

+
1

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
et(z−z−1)

et(w−w−1)

( z
w

)m((−w)y−1

(−z)x +
(−z)y

(−w)x+1

)

× (1− Rn(z
−1))(1−Rn(w))

z − w
. (4.15)

That the single integral above equals C2, defined in (4.11), follows from
the fact that the −1 term can be deleted, since 1

2πi

∮
Γ0
dz zy−x−1 = δx,y and

δx,y1x 6=y = 0. Multiply out (1−Rn(z
−1))(1−Rn(w)), use the expression (4.10)

of Rn and the functions Ei’s defined in (4.12) with the result

(4.15) =
1

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
1

z − w

(
(−w)y−1

(−z)x +
(−z)y

(−w)x+1

)

×
(
E1(z, w) + E2(z, w) + E3(z, w)−

w

z
E4(w, z)

)
+ C2(x− y).

(4.16)
The double integral, involving the last expression in brackets, is not in a
usable form, in view of the saddle point method and the topology of the
contours (see the discussion after the proof). Namely, the integrations have
to be interchanged, at the expense of a residue term, as is given by the
general formula (3.40). So, using this formula, and further renaming z ↔ w,
the double integral with E4 becomes

1

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
1

z − w

(
(−w)y−1

(−z)x +
(−z)y

(−w)x+1

)
E4(z, w) + 2C1(x− y),

(4.17)
where C1(x) is defined in (4.11). So, taking equation (4.16) and (4.17) into

account, we find that formula (4.13) for the kernel K̃m(x, y) holds.
Next we prove (4.14). The first observation is that the kernel (4.13)

depends on x and y through the expression in brackets only; the latter itself
is invariant for the interchange (x, y) 7→ (−y,−x). So it suffices to consider
the double integral associated with the first term (−w)y−1(−z)−x only; the
other one is automatic. Since the integration paths can be taken to satisfy
|z| < |w|, in the double integral of (4.13), one may use the series

1

z − w
=

1

(−w)
∑

c≥0

(−z
−w

)c

, valid for |w| > |z|, (4.18)
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and one notices that for each of the Ei, the double integral decouples into
the product of two integrals over Γ0:

1

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
E1(z, w)

z − w

(−w)y−1

(−z)x

=
∑

c≥0

∮

Γ0

−dz
2πi

et(z−z−1)

(−z)x−m−c
(1− Sn(z

−1))

∮

Γ0

−dw
2πi

(−w)y−m−c−2

et(w−w−1)
(1− Sn(w))

=
∑

c≥0

A(x− c)A(y − c).

(4.19)
To see that the second integral equals A(y − c), one performs the change of
variable w 7→ 1/w. Since the only poles are at w = 0 and w−1 = 0, this is
allowed; so, we do not pick up further poles. The same decoupling occurs for
the other Ei’s, which yields:

1

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
E2(z, w)

z − w

(−w)y−1

(−z)x = −
∑

c≥0

A(x− c)B(y − c)

1

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
E3(z, w)

z − w

(−w)y−1

(−z)x = −
∑

c≥0

B(x− c)A(y − c)

(4.20)

and

1

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
E4(z, w)

z − w

(−w)y−1

(−z)x

= −
∑

c≥0

B(−x + c+ 1)B(−y + c+ 1) = −
∑

c<0

B(−x− c)B(−y−c). (4.21)

Then adding the same expressions with the interchange (x, y) 7→ (−y,−x)
yields formula (4.14), completing the proof of Proposition 4.1.

In anticipation of Section 7 on the integral representation of the limiting
kernel, which will be obtained by saddle point analysis, some comments must
be made here; they will also explain the interchange of integrals, which oc-
curred in (4.17). Given the future rescalingm ≃ 2t with x = ξ1t

1/3, y = ξ2t
1/3

for t→ ∞, the steepest descent method applied to A(x) and B(x) at z = −1,
in particular to the part of the integrand e±t(z−z−1)(−z)±m = e±tF (z) respec-
tively, uses the Taylor expansions

F (z) := z − z−1 + 2 log(−z) = 1

3
(z + 1)3 +O(z + 1)4,

log(−z) = −(z + 1)− 1

2
(z + 1)2 +O(z + 1)3.

(4.22)
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The steepest descent path for A(x) will therefore look like ւ
ց with an angle

of approximately ±π/3, whereas for B(x) it will look like տ
ր with an angle

of approximately9 ±2π/3 with the positive real axis. The contours of the
four double integrals of equation (4.13), associated with each one of the Ei’s,
from the point of view of steepest descent analysis about z, w = −1, are
topologically two circles, a z-circle inside a w-circle, which are deformed so
that locally near z = w = −1 they look like the set of pictures in Figure 5
(see Section 7), with the two circles intersecting the real axis at the common
point z, w = −1 and to the right of −1.

4.2 Bessel reformulation

The purpose of this section is to express the functions A(x), B(x), C1(x)
and C2(x), as in (4.11) in terms of Bessel functions, the expressions Qk and
the Bessel kernel K(0), as in (4.8) and (4.3). Throughout we will be using
the integral representation of the Bessel function of order n ∈ Z, together
with its symmetries,

Jn(2t) =
1

2πi

∮

Γ0

dz
et(z−z−1)

zn+1
= (−1)nJ−n(2t) = (−1)nJn(−2t). (4.23)

Jn(2t) is different from the modified Bessel function In(2t), defined in (3.4).
To do so, we shall need the following Bessel function expressions for the basic
building blocks.

Lemma 4.2. The kernel K(0) defined in (4.3), the expressions hk and
gℓ given in (4.5) and (4.6) and the functions Tn(z

−1) and Sn(z
−1), given

in (4.10), can be expressed in terms of Bessel functions as follows:

K(0)k,ℓ =
∑

a≥0

Jk+a+1(4t)Jℓ+a+1(4t) =: B2t(k + 1, ℓ+ 1), gℓ = Jℓ+1(4t)

hk(z
−1) = −

∑

a≥0

(−z)aJk+a+1(4t) +
e−2t(z−z−1)

(−z)k+1
= h̄k(z

−1) +
e−2t(z−z−1)

(−z)k+1
,

Tn(z
−1) =

∑

k≥n

Qk

(−z)k−n+1
, Sn(z

−1) = −
∑

a≥0
k≥n

(−z)aQkJk+a+1(4t),

(4.24)
where Bt(i, j) is the Bessel kernel in [41]. Also,

Qk =
∑

ℓ≥n

Pk,ℓJℓ+1(4t), with Pk,ℓ = ((1− χnK(0)χn)
−1)k,ℓ. (4.25)

9The angles can be within the range π/3± π/6 and 2π/3± π/6.
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Proof. For K(0)k,ℓ one uses in (4.3) the series 1/(v − u) = v−1
∑

a≥0(u/v)
a

for |u| < |v| and then (4.23). The same geometric series is used for
hk(z

−1) in (4.5) but with u replaced by z, from which the formula (4.24)
for hk(z

−1) and the formula for Sn by (4.10) follow. Finally, one has
gℓ = (−1)ℓ−1J−1−ℓ(2t) = Jℓ+1(2t).

The more intricate term is C2 from (4.11).

Lemma 4.3. The expression C2(x), as in (4.11), equals

C2(x) = 1[x 6=0]C
∗
2(x), (4.26)

where

C∗
2 (x) = (−1)x

1

2πi

∮

Γ0

dz
1

zx+1

(
Rn(z

−1) +Rn(z)− Rn(z
−1)Rn(z)

)

=
∑

k≥n

Qk

(1[x 6=0]Jk−|x|+1(4t)−Qk+|x| +
∑

ℓ≥n

QℓK(0)k,ℓ−|x|

)
.

(4.27)

Proof. One first notices that the integrand in (4.27) is invariant un-
der the mapping z 7→ z−1. Then, using the formula (4.24) for
Rn(z

−1) =
∑

k≥nQkhk(z
−1), one breaks up the calculation as follows.

(a) Terms from Rn(z
−1) +Rn(z). We have

Rn(z
−1) +Rn(z) =

∑

k≥n

Qk(hk(z
−1) + hk(z)), (4.28)

and thus, by integration, one checks first for x > 0, then for x < 0
and for x = 0, that, using the symmetry properties of the Bessel functions
(see (4.23)),

1

2πi

∮

Γ0

dz
hk(z

−1) + hk(z)

zx+1
= (−1)x(1x>0Jk+1−x(4t) + 1x<0Jk+1+x(4t))

= (−1)x1[x 6=0]Jk+1−|x|(4t).
(4.29)

Substituting into the left hand side of (4.27) gives the first term on the right
hand side of (4.27).

(b) Terms from Rn(z
−1)Rn(z). We have

Rn(z
−1)Rn(z) =

∑

k,ℓ≥n

QkQℓhk(z
−1)hℓ(z). (4.30)
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From (4.23) and (4.24) we get

1

2πi

∮

Γ0

dz
hk(z

−1)hℓ(z)

zx+1
=
∑

a,b≥0

(−1)a−bδa−b,xJk+a+1(4t)Jb+ℓ+1(4t)

−
∑

b≥0

(−1)b+k+1Jℓ+b+1(4t)Jk+b+1+x(−4t)

−
∑

a≥0

(−1)a+ℓ+1Jk+a+1(4t)Jx−ℓ−a−1(4t) + (−1)xδℓ−k,x

= (−1)x
(
δℓ−k,x −

∑

a≥0

Jk+a+1(4t)Jℓ+a+1−|x|(4t)

)

= (−1)x(δℓ−k,x −K(0)k,ℓ−|x|),
(4.31)

using in the last equality the expression (4.24) for the kernel K(0). In the
second equality we used the symmetries (4.23) of the Bessel functions. Sub-
stituted into (4.30), this gives the last two terms in (4.27).

Proposition 4.4. The expressions A(x), B(x), C(x), defined in (4.11) for
x ∈ Z, can be expressed in terms of Bessel functions Jk, Qk and the kernel
K(0), as follows:

A(x) = Jm+1−x(2t) +
∑

k≥n

∑

a≥0

QkJk+1+a(4t)Jm+1+a−x(2t),

B(x) =
∑

k≥n

QkJk−m+x(2t),
(4.32)

and

C(x) =
∑

k≥n

Qk (Jk−x+1(4t) + Jk+x+1(4t))+
∑

k,ℓ≥n

QkQℓ (K(0)k+x,ℓ +K(0)k−x,ℓ) .

(4.33)

Proof. The formulas for A and B follow directly from (4.11) and the expres-
sions for Tn and Sn in (4.24), together with the symmetries (4.23) of the
Bessel functions. Then

C1(x) =
−1

2πi

∮

Γ0

dz
Tn(z

−1)Tn(z)

(−z)x+1

=
∑

k,ℓ≥n

QkQℓ
(−1)x

2πi

∮

Γ0

dz
(−z)k−ℓ

zx+1
=
∑

k,ℓ≥n

QkQℓδk−ℓ,x =
∑

k≥n

QkQk+|x|.

(4.34)
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From Lemma 4.3, it follows that

C2(x) = 1[x 6=0]

∑

k≥n

Qk

(
Jk−|x|+1(4t)−Qk+|x| +

∑

ℓ≥n

QℓK(0)k,ℓ−|x|

)
. (4.35)

Next we show that 1[x 6=0] can actually be omitted. To do so, it suffices to
show that the sum on the right hand side of (4.35) vanishes when x = 0.

Indeed, setting P = (1 − χnK(0)χn)
−1, as in (4.25), remember that

gℓ = Jℓ+1(4t) and that Qk = (Pχng)k. Then, denoting 〈·, ·〉 the canonical
scalar product on ℓ2(Z) we get, for x = 0, that the r.h.s. of (4.35) equals

〈Pχng, χng〉 − 〈Pχng, χnPχng〉+ 〈Pχng, χnK(0)χnPχng〉
= 〈Pχng, χng〉 − 〈Pχng, χn(1− χnK(0)χn)Pχng〉
= 〈Pχng, χng〉 − 〈Pχng, χng〉 = 0.

(4.36)

Plugging there results into C(x) = 2C1(x) + C2(x) we obtain

C(x) =
∑

k≥n

Qk

(
Jk−|x|+1(4t) +Qk+|x| +

∑

ℓ≥n

QℓK(0)k,ℓ−|x|

)
. (4.37)

It follows from the relation P = 1+χnK(0)χnP (see the definition of Q and
P in (4.25)) that acting on χng and taking the kth entry,

Qk = 1[k≥n]

(
Jk+1(4t) +

∑

ℓ≥n

K(0)k,ℓQℓ

)
. (4.38)

Using this relation for Qk+|x| in (4.37) we obtain

C(x) =
∑

k≥n

Qk

(
Jk−|x|+1(4t) + Jk+|x|+1(4t)

)

+
∑

k,ℓ≥n

QkQℓ

(
K(0)k,ℓ−|x| +K(0)k+|x|,ℓ

)
.

(4.39)

Finally, since K(0) is symmetric, we replace K(0)k,ℓ−|x| = K(0)ℓ−|x|,k and
change the labeling k ↔ ℓ. This yields (4.33), except for replacing |x| by x,
which can then be done.

5 Extended kernel for finite time

Formula (4.14) (in Proposition 4.1) with A(x), B(x), C(x) given by Proposi-

tion 4.4 gives the kernel K̃m governing the fluctuations of the walkers near
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the point of meeting of the two groups of non-intersecting random walkers
at time τ = 0. In this section we prove Theorem 2.1 and we extend Propo-
sition 4.1 to the multitime setting (Theorem 5.4).

Consider the n = 2m+1 walks whose positions were denoted by xk(τ) in
Section 3. Consider p different time slices τ1 < τ2 < . . . < τp in the interval
(−t, t). Then, the probability measure at these times of the positions of the
random walks is given byP( p⋂

j=1

n⋂

k=1

{xk(τj) = yjk}
∣∣∣

n⋂

k=1

{xk(t) = xk(−t) = m+ 1− k}
)

= const× det
[
pt+τ1(m+ 1− i, y1j )

]
1≤i,j≤n

×
( p−1∏

ℓ=1

det
[
pτℓ+1−τℓ(y

ℓ
i , y

ℓ+1
j )

]
1≤i,j≤n

)
det
[
pt−τp(y

p
i , m+ 1− j)

]
1≤i,j≤n

.

(5.1)
It is well known that a measure of this form has determinantal correlations
in space-time [19, 22, 27, 37, 49], as stated in the following proposition.

Theorem 5.1. Any probability measure on {x(ℓ)i , 1 ≤ i ≤ n, 1 ≤ ℓ ≤ p} of
the form10

1

Z
det
(
φ(τ0, ai; τ1, x

(1)
j )
)
1≤i,j≤n

p−1∏

ℓ=1

det
(
φ(τℓ, x

(ℓ)
i ; τℓ+1, x

(ℓ+1)
j )

)
1≤i,j≤n

× det
(
φ(τp, x

(p)
i ; τp+1, bj)

)

1≤i,j≤n
, (5.2)

has, assuming Z 6= 0, the following determinantal k-point correlation func-
tions for t1, . . . , tk ∈ {τ1, . . . , τp}:

ρ(k)(t1, x1, . . . , tk, xk) = det (K(ti, xi; tj, xj))1≤i,j≤k . (5.3)

The space-time kernel K (often called extended kernel) is given by

K(t1, x1; t2, x2) = −φ(t1, x1; t2, x2)1(t2 > t1)

+
n∑

i,j=1

φ(t1, x1; τp+1, bi)[B
−1]i,jφ(τ0, aj ; t2, x2)

(5.4)

with (∗ means integration with regard to the consecutive dots)

φ(τr, x; τs, y) =

{
φ(τr, x; τr+1, ·) ∗ · · · ∗ φ(τs−1, ·; τs, y), if τr < τs,
0, if τr ≥ τs,

(5.5)

and with the n× n matrix B having entries Bi,j = φ(τ0, ai; τp+1, bj).

10The functions φ(τℓ, x; τℓ+1, y) themselves may in fact vary with ℓ above.
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Our measure (5.1) has the form required by Theorem 5.1. The normaliza-
tion constant Z is nothing else but the partition function and it is non-zero
since the set of n paths satisfying the non-intersection constraint is non-
empty. We already determined the one-time kernel for τ = 0. To get the
extended kernel one has to let the one-time kernel“evolve” by means of the
operator of the random walk. This formulation was already present in the
work of Prähofer and Spohn on the Airy2 process [41].

Lemma 5.2. The extended kernel K̃ext
m (t1, x1; t2, x2) of the time-dependent

point process η̃(τ, x) is given in terms of the kernel K̃m(x1, x2) =K̃ext
m (0, x1; 0, x2) of the same point process η̃(x) at τ = 0 by the formula:K̃ext
m (t1, x1; t2, x2) = −1[t2<t1]

(
e(t2−t1)H

)
(x1, x2) +

(
e−t1HK̃me

t2H
)
(x1, x2),

(5.6)
where the infinitesimal generator H of the single random walk, the discrete
Laplacian, acts on functions f as

Hf(x) = f(x+ 1) + f(x− 1)− 2f(x), x ∈ Z. (5.7)

Comparing the first term of (5.4) and (5.6), one sees a different ordering
in the times. This is consequence of the dual transformation.

Proof of Lemma 5.2. The operator H in (5.7) is the generator of the con-
tinuous time process defined by the transition probability pt(x, y), in (2.1).
Indeed, one checks that this transition probability is given by (the reader is
reminded of the notation following formula (2.9))

pt(x, y) = e−2tI|x−y|(2t) =
1

2πi

∮

Γ0

dz
et(z+z−1−2)

zx−y+1
= etH1(x, y) = (etH)(x, y),

(5.8)
because

∂

∂t
pt(x, y) =

1

2πi

∮

Γ0

dz

zx−y+1
(z + z−1 − 2)et(z+z−1−2)

= pt(x− 1, y) + pt(x+ 1, y)− 2pt(x, y) = (Hpt)(x, y)
(5.9)

with initial conditions p0(x, y) = 1(x, y). Here, 1 denotes the identity oper-
ator on Z, i.e., 1(x, y) = 1 if x = y and 1(x, y) = 0 if x 6= y. The one-point
kernel in Section 3, formula (3.38), was written as a sum involving ψk(x) and
ψk(y). Under the time flow, they will become different functions; therefore,
we set Ψk(0, x) = Φk(0, x) = ψk(x), and thus, with this new notation, the
kernel readsKm(x1, x2) =

n∑

k=1

ψk(x1)ψk(x2) =

n∑

k=1

Ψk(0, x1)Φk(0, x2). (5.10)
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The two set of functions {Φk(0, x), k = 1, . . . , n} and {Ψk(0, x), k = 1, . . . , n}
satisfy

span{Φk(0, x), k = 1, . . . , n} = span{pt(m+ 1− k, x), k = 1, . . . , n},
span{Ψk(0, x), k = 1, . . . , n} = span{pt(x,m+ 1− k), k = 1, . . . , n},

with 〈Φk(0, x),Ψp(0, x)〉 = δk,p,
(5.11)

so that the matrix B defined in (5.4) becomes the identity matrix.
Let us consider the functions of Theorem 5.1. First of all, the function

φ(t1, x1; t2, x2) appearing in (5.4) becomes

φ(t1, x1; t2, x2)1[t2>t1] = 1[t2>t1]pt2−t1(x1, x2) = 1[t2>t1](e
(t2−t1)H)(x1, x2),

(5.12)
where t1, t2 ∈ {τ1, . . . , τp}. Next, with τ0 = −t, τp+1 = t we have

φ(t1, x; t, bk) = pt−t1(x, bk) = (e−t1H)(x, ·) ∗ φ(0, · ; t, bk) (5.13)

and

φ(−t, ak; t2, x) = pt2+t(ak, x) = φ(−t, ak; 0, ·) ∗ (et2H)(·, x). (5.14)

With the choice of basis used for the kernel at τ = 0, we have that φ(0, · ; t, bk)
is replaced by Ψk(0, ·) and φ(−t, ak; 0, ·) by Φk(0, ·) (so that B = 1). Thus
in Theorem 5.1 we have replaced

φ(t1, x; t, bk) → (e−t1H)(x, ·) ∗Ψk(0, ·) = (e−t1HΨk(0, ·))(x) =: Ψk(t1, x)
(5.15)

and

φ(−t, ak; t2, x) → Φk(0, ·) ∗ (et2H)(·, x) = (Φk(0, ·)et2H)(x)
= (et2H

⊤

Φk(0, ·))(x) =: Φk(t2, x).
(5.16)

Therefore the extended kernel has the following expression in terms of the
kernel Km in (3.38)Kext

m (t1, x1; t2, x2) = −1[t1<t2]pt2−t1(x1, x2) +
n∑

k=1

Ψk(t1, x1)Φk(t2, x2)

= −1[t1<t2](e
(t2−t1)H)(x1, x2) +

(
e−t1HKme

t2H
)
(x1, x2).

(5.17)
Notice that, using the semi-group property of etH, we have the consistency

relations (for i = 1, . . . , p)

Ψk(τi, x) =
(
e(τp−τi)HΨk(τp, ·)

)
(x),

Φk(τi, x) =
(
Φk(τ1, ·)e(τi−τ1)H

)
(x).

(5.18)
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The kernel K̃ext
m for the dual random walk is then given by taking the

complement. Using (5.17) and remembering that K̃m = 1 − Km from for-
mula (3.10) we getK̃ext

m (t1, x1; t2, x2) = 1[t1=t2]1(x1, x2)−Kext
m (t1, x1; t2, x2)

=1[t1=t2]1(x1, x2) + 1[t1<t2](e
(t2−t1)H)(x1, x2)−

(
e−t1HKme

t2H
)
(x1, x2)

=1[t1=t2](e
(t2−t1)H)(x1, x2) + 1[t1<t2](e

(t2−t1)H)(x1, x2)

− (e(t2−t1)H)(x1, x2) +
(
e−t1H(1−Km)e

t2H
)
(x1, x2)

=− 1[t2<t1](e
(t2−t1)H)(x1, x2) + (e−t1HK̃me

t2H)(x1, x2),
(5.19)

yielding (5.6), ending the proof of Lemma 5.2.

With the help of Lemma 5.2 we can easily prove Theorem 2.1 starting
from Theorem 3.1.

Proof of Theorem 2.1. One of the key ingredients is that f(x) := ux is an
eigenfunction of H with eigenvalue u+ u−1 − 2. Indeed,

(Hf)(x) = ux+1+ux−1−2ux = (u+u−1−2)ux = (u+u−1−2)f(x). (5.20)

Moreover, H is symmetric. Therefore,

(etHf)(x) = et(u+u−1−2)f(x), (fetH)(x) = (etH
⊤

f)(x) = et(u+u−1−2)f(x).
(5.21)

Then, (2.5) follows straightforwardly from (3.13) by applying e−t1H to the

left, et2H to the right of K̃m (together with (5.8) for the first term of (5.6)).

For the further analysis, we extend the reformulation of the kernel for
τ = 0, as in Proposition 4.1, to the extended case. For that purpose, we first
define the basic functions replacing A, B, and C of the one-time case (see

Proposition 4.4). To do so, define a new function J
(τ)
x (2t) dependent on a

parameter τ

J
(τ)

x (2t) :=

∮

Γ0

dz

2πiz

et(z−z−1)

zx
eτ(z+z−1−2) = e−2τ

(
t+ τ

t− τ

)x/2

Jx(2
√
t2 − τ 2).

(5.22)
Also define a τ -dependent extension of the kernelK(0)k,ℓ, as in (4.24), namely

K(τ)(0)k,ℓ :=
∑

a≥0

J
(τ)
a+k+1(4t)Ja+ℓ+1(4t). (5.23)
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Then define new functions A(τ, x), B(τ, x), C(τ, x) with τ ∈ R and x ∈ Z,
which extend the functions A(x), B(x), C(x), first defined in (4.11) and re-
expressed in (4.32), by

A(τ, x) := J
(τ)
m+1−x(2t) +

∑

k≥n

∑

a≥0

QkJk+1+a(4t)J
(τ)
m+1+a−x(2t),

B(τ, x) :=
∑

k≥n

QkJ
(τ)
k−m+x(2t),

C(τ, x) :=
∑

k≥n

Qk

(
J
(τ)
k+1+x(4t) + J

(τ)
k+1−x(4t)

)

+
∑

k,ℓ≥n

QkQℓ

(
K(τ)(0)k+x,ℓ +K(τ)(0)k−x,ℓ

)
.

(5.24)

Remember Hn(0) = det(1−K(0))ℓ2(n,n+1,...).

Lemma 5.3. Given the notation (4.12) for the Ei’s, the extended kernel K̃ext
m

is given by

(−1)x2e4t2

(−1)x1e4t1
Hn+1(0)

Hn(0)
K̃ext

m (t1, x1; t2, x2)

=− 1[t2<t1]pt1−t2(x1, x2)
Hn+1(0)

Hn(0)
+ C(t1 − t2, x1 − x2)

+
1

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw
1

z − w

4∑

i=1

Ei(z, w)

×
(
(−w)x2−1

(−z)x1

e−t1(z+z−1+2)

e−t2(w+w−1+2)
+

(−z)x2

(−w)x1+1

e−t1(w+w−1+2)

e−t2(z+z−1+2)

)
.

(5.25)

Theorem 5.4. The extended kernel K̃ext
m is also expressed as

(−1)x2e4t2

(−1)x1e4t1
Hn+1(0)

Hn(0)
K̃ext

m (t1, x1; t2, x2)

= −1[t2<t1]pt1−t2(x1, x2)
Hn+1(0)

Hn(0)
+ C(t1 − t2, x1 − x2)

+
∑

c≥0

(
A(t1, x1 − c)A(−t2, x2 − c) + A(t1,−x1 − c)A(−t2,−x2 − c)

−A(t1, x1 − c)B(−t2, x2 − c)−A(t1,−x1 − c)B(−t2,−x2 − c)

−B(t1, x1 − c)A(−t2, x2 − c)−B(t1,−x1 − c)A(−t2,−x2 − c)
)

−
∑

c<0

(
B(t1, x1 − c)B(−t2, x2 − c) +B(t1,−x1 − c)B(−t2,−x2 − c)

)
.

(5.26)
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Proof of Lemma 5.3 and Theorem 5.4. First of all, let us focus on the term(
e(t2−t1)H

)
(x1, x2) in (5.6). Remember that t2 − t1 < 0, so we can rewrite

(−1)x2e4t2

(−1)x1e4t1

(
e(t2−t1)H

)
(x1, x2) =

(−1)x2e2t2

(−1)x1e2t1
I|x1−x2|(2(t2 − t1))

=
e2t2

e2t1
I|x1−x2|(2(t1 − t2)) = pt1−t2(x1, x2),

(5.27)
where we used the property In(−2t) = (−1)nIn(2t) of the modified Bessel
function; see (3.4).

Next we derive the double integrals in (5.25). The corresponding expres-

sion of the kernel K̃m in (4.13) is a linear combination (not forgetting the
conjugation factor of the l.h.s. of (4.13)) of

− wx2−1

zx1
− zx2

wx1+1
. (5.28)

Applying e−t1H to the left and et2H to the right, (5.28) transforms into

− wx2−1

zx1

e−t1(z+z−1−2)

e−t2(w+w−1−2)
− zx2

wx1+1

e−t1(w+w−1−2)

e−t2(z+z−1−2)
. (5.29)

The multiplication by the prefactor (−1)x2e4t2

(−1)x1e4t1
leads then to the expression in

(5.25).
Next derive the terms with the sums in (5.26) and the expression for C.

We act with the semigroup on the summation part of the kernel (4.14), which
is expressed in terms of A(x), B(x), C(x), namely

Hn+1(0)

Hn(0)
K̃m(x1, x2) =

∑

c≥0

[(−1)x1A(x1 − c)][(−1)x2A(x2 − c)] + . . .

+ (−1)x1−x2C(x1 − x2),

(5.30)

with A(x), B(x), C(x) given in Proposition 4.4. So, except for the term
C(x1 − x2), the expression above is a sum of decoupled terms. Therefore
acting on the (−1)xA(±x− c)’s and (−1)xB(±x− c)’s with e−t1H to the left
amounts (by linearity) to acting on the (−1)xJN±x(2t) (for some N depending
on the terms) and finally to acting on 1/(−z)±x inside the integration. More
precisely, by (5.21) with f(x) := 1/(−z)±x, we have

(e−t1Hf)(x) = et1(z+z−1+2)f(x), and (fet2H)(x) = e−t2(z+z−1+2)f(x),
(5.31)
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from which, by linearity,

∑

y∈Z

(e−t1H)(x, y)(−1)yJN±y(2t) =

∮

Γ0

dz

2πiz

et(z−z−1)

zN
(e−t1Hf)(x)

=

∮

Γ0

dz

2πiz

et(z−z−1)

zN (−z)±x
et1(z+z−1+2) = (−1)xe4t1J

(t1)
N±x(2t), (5.32)

and ∑

y∈Z

(−1)yJN±y(2t)(e
t2H)(y, x) = (−1)xe−4t2J

(−t2)
N±x (2t). (5.33)

This extends to the functions (−1)xA(±x−c), (−1)xB(±x−c) because they
are linear in the (−1)xJN±x(2t) (see (4.32)). Explicitly, applying e

−t1H (to the
left) to (−1)xA(±x−c) amounts to replacing A(±x−c) with e4t1A(t1,±x−c).
Similarly, applying et2H (to the right) to (−1)xA(±x−c) amounts to replacing
A(±x − c) with e−4t2A(−t2,±x − c). The same holds for B instead of A.
Thus we have obtained the terms in kernel (5.26) including A’s and B’s.

Exactly the same procedure applies for the term (−1)x1−x2C(x1 − x2),
because it is again a linear combination of (−1)x1−x2JN±x1∓x2(4t). Therefore
acting with e−t1H and et2H as before on (−1)x1−x2C(x1 − x2) leads to the
replacement of C(x1 −x2) by e

4(t1−t2)C(t1 − t2, x1− x2). This ends the proof
of the formulas (5.25) and (5.26) for the extended kernel, thus establishing
Lemma 5.3 and Theorem 5.4.

6 Asymptotics

In this section we prove the first half of Theorem 2.2, namely formula (2.20).
From the discussion in Section 2 after Theorem 2.1, concerning the inter-
action between the top and bottom sets of random walks, we rescale space,
time and the gap n = 2m+ 1 between the two groups of walkers, as follows:

m = 2t+ σt1/3, xi = ξit
1/3, ti = sit

2/3, i = 1, 2, (6.1)

where σ ∈ R is a fixed parameter modulating the “strength of interaction”
between the upper and lower sets of walks. To prove formula (2.20) of The-
orem 2.2, we first analyze the asymptotics of the building blocks and deter-
mine some bounds which will be used later to show that we can exchange
(by dominated convergence) the large time limit with the integrals (sums).

Recall from (5.22), (2.13) and (5.23) the functions J
(τ)
x (2t) and Q, and
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the kernel K(τ)(0)k,ℓ:

J (τ)
x (2t) = e−2τ

(
t+ τ

t− τ

)x/2

Jx(2
√
t2 − τ 2).

K(τ)(0)k,ℓ =
∑

a≥0

J
(τ)
a+k+1(4t)Ja+ℓ+1(4t).

Q(κ) = [(1− χσ̃KAiχσ̃)
−1χσ̃Ai](κ), with σ̃ := 22/3σ,

(6.2)

and where χa(x) = 1[x>a]. Remember from (2.14) the definition of

Ai(s)(ξ) := eξs+
2
3
s3Ai(ξ + s2), (6.3)

and define the Airy-like kernel

K
(s)
Ai (κ, λ) :=

∫ ∞

0

dγ Ai(s2
−2/3)(κ+ γ)Ai(λ+ γ). (6.4)

Also define the following step functions of κ, λ ∈ R, for which -by
anticipation- we indicate the limits for t→ ∞:

J (s)
t (κ) := t1/3J

(st2/3)

[2t+κt1/3+1]
(2t) −→ Ai(s)(κ)

K(s)
t (κ, λ) := (2t)1/3K(st2/3)(0)[4t+κ(2t)1/3],[4t+λ(2t)1/3] −→ K

(s)
Ai (κ, λ)

Qt(κ) := (2t)1/3Q[4t+κ(2t)1/3 ]

=
[(1− χ n−4t

(2t)1/3
K(0)

t χ n−4t

(2t)1/3

)−1

χ n−4t

(2t)1/3
J (0)

2t

]
(κ) −→ Q(κ).

(6.5)

Lemma 6.1. We have the following bounds and limits for J (s)
t and K(s)

t

defined in (6.5). There exists a t0 > 0 such that uniformly for t ≥ t0 it holds
that

|J (s)
t (κ)| ≤ c1min{1, e−θκ}, |K(s)

t (κ, λ)| ≤ c2e
−θ(κ+λ) (6.6)

for any fixed θ > 0 and some constants c1, c2 > 0 (independent of t). More-
over

lim
t→∞

J (s)
t (κ) = Ai(s)(κ), lim

t→∞
K(s)

t (κ, λ) = K
(s)
Ai (κ, λ) (6.7)

uniformly for κ, λ and s in a bounded set.

Proof. We have

J (s)
t (ξ) = t1/3J

(st2/3)

[2t+ξt1/3]
(2t)

= e−2st2/3
(
1 + st−1/3

1− st−1/3

)1
2
[2t+ξt1/3]

t1/3J[2t+ξt1/3]

(
2t
√

1− s2t−2/3
)
.

(6.8)
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The prefactor can be estimated for t→ ∞, as follows

e−2st2/3
(
1 + st−1/3

1− st−1/3

)t+
1
2
ξt1/3

= eξs+
2
3
s3
(
1 +O(t−1/3)

)
, (6.9)

where the O(t−1/3) is uniform for s in a bounded set and independent of
ξ. Therefore, for t large enough, |(6.9)| ≤ exp(2|ξs|+ |s3|). Concerning the
remaining part of (6.8), using (A.4) one readily obtains

lim
t→∞

t1/3J[2t+ξt1/3]

(
2t
√

1− s2t−2/3
)
= Ai(ξ + s2). (6.10)

Regarding the bound, for s in a bounded set, if t is large enough it follows
from the bound (A.6) that

∣∣∣t1/3J[2t+ξt1/3]

(
2t
√

1− s2t−2/3
)∣∣∣ (6.11)

is first of all uniformly bounded and for large ξ it decays as e−β ξ for any
choice of β > 0. The statements in the first parts of (6.6) and (6.7) then
follow if we choose β satisfying β ≥ θ + 2|s| for any s in the given bounded
set.

To compute the limit of K(s)
t , one uses definition (6.5) and formula (6.2)

for K(st2/3)(0), but with J replaced by J in the last equality below,

K(s)
t (κ, λ) = (2t)1/3K(st2/3)(0)[4t+κ(2t)1/3],[4t+λ(2t)1/3]

= (2t)1/3
∑

γ∈(2t)−1/3N

J
(s2−2/3(2t)2/3)

[4t+(γ+κ)(2t)1/3 ]
(4t)J[4t+(γ+λ)(2t)1/3 ](4t)

=
1

(2t)1/3

∑

γ∈(2t)−1/3N

J (s2−2/3)
2t (κ+ γ)J (0)

2t (λ+ γ).

(6.12)

From this, using the bound (6.6) on J , we obtain

|K(s)
t (κ, λ)| ≤ c21e

−θ(κ+λ) 1

(2t)1/3

∑

γ∈(2t)−1/3N

e−2θγ ≤ c2e
−θ(κ+λ) (6.13)

for t ≥ t0 = 1 and some c2 > 0, uniformly for s in a bounded set.
We can think of the sum in (6.12) as an integral of piece-wise constant

functions. The first bound in (6.6) allows us to use dominated convergence to

exchange the limit and the integral. Then, limt→∞ J (s)
t (κ) = Ai(s)(κ) yields

lim
t→∞

K(s)
t (κ, λ) =

∫ ∞

0

dγAi(2
−2/3s)(κ+ γ)Ai(λ+ γ) = K

(s)
Ai (κ, λ). (6.14)
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Lemma 6.2. Set σ̃t := n−4t
(2t)1/3

and define the operator Mt = χσ̃tK(0)
t χσ̃t,

appearing in the definition (6.5) of Qt. Then, uniformly for t ≥ t0, we have
for the operator-norm11 ‖ · ‖,

‖Mt‖ < 1 (6.15)

which implies that

‖(1−Mt)
−1‖ ≤ (1− ‖Mt‖)−1 ≤ C <∞ (6.16)

for some finite constant C independent of t.

Proof. By Lemma 6.1 and the fact that σ̃t → σ̃ as t→ ∞, it follows that

lim
t→∞

Mt = χσ̃KAiχσ̃ =: M (6.17)

pointwise. Moreover,

lim
t→∞

‖Mt −M‖2 ≤ lim
t→∞

‖Mt −M‖2HS = lim
t→∞

∫
dκdλ |Mt(κ, λ)−M(κ, λ)|2

=

∫
dκdλ lim

t→∞
|Mt(κ, λ)−M(κ, λ)|2 = 0

(6.18)
where we use by Lemma 6.1 dominated convergence to exchange the limit
and the integral together with (6.17). It is known that λmax = ‖M‖ < 1 for
any fixed σ̃ (see, e.g., [48]). This, together with (6.18), implies that

‖Mt‖ ≤ ‖M‖+ ‖Mt −M‖ < 1 (6.19)

for t large enough.

Lemma 6.3. Consider Qt as defined in (6.5). There exists a t0 > 0 such
that uniformly for t ≥ t0 it holds

|Qt(κ)| ≤ c3e
−θκ (6.20)

for any θ > 0 and some constant c3 > 0 (independent of t). Moreover,

lim
t→∞

Qt(κ) = Q(κ) (6.21)

uniformly for κ in a bounded set.

11where ‖A‖ = sup|f |≤1 |Af |.
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Proof. For the sake of this proof, set Jt := J (0)
t and Kt := K(0)

t . First
of all we prove that Qt(κ) is uniformly bounded for t ≥ t0. Recall that
Qt(κ) = [(1 − Mt)

−1χσ̃tJ2t](κ). Since (1 − Mt)
−1 exists, we can use the

identity
(1−Mt)

−1 = 1+ χσ̃tKtχσ̃t(1−Mt)
−1, (6.22)

which upon integrating from σ̃ to ∞ against the function J2t gives

Qt(κ) = χσ̃tJ2t(κ) +

∫ ∞

σ̃t

dλKt(κ, λ)[(1−Mt)
−1χσ̃tJ2t](λ). (6.23)

Thus,

|Qt(κ)| ≤ |χσ̃tJ2t(κ)|+
∫ ∞

σ̃t

dλ
∣∣Kt(κ, λ)

∣∣ ∣∣[(1−Mt)
−1χσ̃tJ2t](λ)

∣∣. (6.24)

But
|[(1−Mt)

−1χσ̃tJ2t](λ)| ≤ ‖(1−Mt)
−1‖

∣∣J2t

∣∣
∞

(6.25)

is uniformly bounded for t ≥ t0 (by Lemma 6.1 and Lemma 6.2). Then,

using the bound for Kt and J (s)
t (κ) in (6.6) we obtain the bound (6.20).

To prove (6.21), we show that

|Qt −Q|∞ = sup
κ

|Qt(κ)−Q(κ)| → 0, (6.26)

as t→ ∞. We have

|Qt −Q|∞ =
∣∣(1−Mt)

−1χσ̃tJ2t − (1−M)−1χσ̃Ai
∣∣
∞

≤
∣∣[(1−Mt)

−1 − (1−M)−1
]
χσ̃J2t

∣∣
∞

+
∣∣(1−M)−1 [χσ̃J2t − χσ̃Ai]

∣∣
∞
+O(t−1/3),

(6.27)

where the correction term O(t−1/3) comes from the fact that the difference
between σ̃t and σ̃ is not larger than (2t)−1/3. Then,

(6.27) ≤
∥∥(1−Mt)

−1 − (1−M)−1
∥∥ |χσ̃J2t|∞

+
∥∥(1−M)−1

∥∥ |χσ̃J2t − χσ̃Ai|∞ +O(t−1/3)
(6.28)

The first term goes to zero as t → ∞. Indeed, |χσ̃J2t|∞ ≤ C < ∞ by
Lemma 6.1, and, using the identity

(1−Mt)
−1 − (1−M)−1 = (1−Mt)

−1 [Mt −M] (1−M)−1 (6.29)

together with the fact that ‖Mt‖ < 1, ‖M‖ < 1, and ‖M−Mt‖ → 0
in the t → ∞ limit (see Lemma 6.2 and (6.18)); so one has
‖(1−Mt)

−1 − (1−M)−1‖ → 0. The second term goes to zero as well, since
‖(1−M)−1‖ is bounded and, by Lemma 6.1, |χσ̃J2t − χσ̃Ai|∞ → 0.
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Proof of Theorem 2.2, formula (2.20). We now define new functions
At(s, ξ), Bt(s, ξ), Ct(s, ξ), which are rescaled versions of A(τ, x), B(τ, x),
C(τ, x) (see formula (5.24)) under the scaling (6.1):

At(s, ξ) := t1/3A(st2/3, ξt1/3),

Bt(s, ξ) := t1/3B(st2/3, ξt1/3),

Ct(s, ξ) := t1/3C(st2/3, ξt1/3).

(6.30)

As t → ∞, these functions will converge to A(s, ξ),B(s, ξ), C(s, ξ) of (2.15)
and (2.16).

One then recognizes in these expressions the functions (6.5), thus yielding

At(s, ξ) = J (s)
t (σ − ξ)

+
1

(2t)1/3

∑

κ∈In,t

1

(2t)1/3

∑

α∈(2t)−1/3N

Qt(κ)J (0)
2t (κ+ α)J (s)

t (21/3α + σ − ξ),

Bt(s, ξ) =
1

(2t)1/3

∑

κ∈In,t

Qt(κ)J (s)
t (ξ − σ + 21/3κ− t−1/3),

Ct(s, ξ) =
2−1/3

(2t)1/3

∑

κ∈In,t

Qt(κ)
(
J (2−2/3s)

2t (κ− 2−1/3ξ) + J (2−2/3s)
2t (κ + 2−1/3ξ)

)

+
2−1/3

(2t)2/3

∑

κ,λ∈In,t

Qt(κ)Qt(λ)
(
K(s)

t (κ− 2−1/3ξ, λ) +K(s)
t (κ+ 2−1/3ξ, λ)

)
.

(6.31)
For instance, the function Jk+1+a(4t) in A(τ, x) becomes, upon setting
a = α(2t)1/3 and κ := (2t)−1/3(k − 4t),

Jk+1+a(4t) = J[4t+(κ+α)(2t)1/3+1](4t) = (2t)−1/3J (0)
2t (κ+ α). (6.32)

Notice that the sum over k ≥ n in the expressions (5.24) becomes a sum over
κ ∈ In,t with

In,t := (2t)−1/3({n, n+ 1, . . .} − 4t). (6.33)

so that the condition k ≥ n = 2m + 1 = 4t + 2σt1/3 + 1 translates into
κ = (2t)−1/3(k − 4t) > 22/3σ = σ̃. Setting the summation variable c = γt1/3,
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rewrite the kernel (5.26) in Theorem 5.4, with the scaling (6.1)

(−1)x2e4t2

(−1)x1e4t1
Hn+1(0)

Hn(0)
K̃ext

m (t1, x1; t2, x2)

= −1[s1>s2]
Hn+1(0)

Hn(0)
t1/3p(s1−s2)t2/3(ξ1t

1/3, ξ2t
1/3) + Ct(s1 − s2, ξ1 − ξ2)

+
1

t1/3

∑

γ∈t−1/3N




At(s1, ξ1 − γ)At(−s2, ξ2 − γ) +At(s1,−ξ1 − γ)At(−s2,−ξ2 − γ)

−At(s1, ξ1 − γ)Bt(−s2, ξ2 − γ)−At(s1,−ξ1 − γ)Bt(−s2,−ξ2 − γ)

− Bt(s1, ξ1 − γ)At(−s2, ξ2 − γ)− Bt(s1,−ξ1 − γ)At(−s2,−ξ2 − γ)




− 1

t1/3

∑

γ∈t−1/3Z−

(
Bt(s1, ξ1 − γ)Bt(−s2, ξ2 − γ) + Bt(s1,−ξ1 − γ)Bt(−s2,−ξ2 − γ)

)

(6.34)
In view of (2.10) we have limt→∞Hn+1(0)/Hn(0) = 1 and in the t → ∞
limit, (n− 4t)/(2t)1/3 → σ̃. Notice that the sums with the preceding volume
element, 1/t1/3 or 1/(2t)1/3 depending on the case, can be just thought of as
integrals with the integrand being piece-wise constant. What follows holds
uniformly in t for t ≥ t0 where t0 is a fixed constant. The exponential bounds
of Lemma 6.1 and Lemma 6.3 imply that for any θ > 0 there exists some
c > 0 (the constant c depends on σ, which is however fixed)

|At(s,−ξ)| ≤ c e−θξ and lim
t→∞

At(s, ξ) = A(s, ξ). (6.35)

Moreover At(s, ξ) tends to A(s, ξ) uniformly on bounded sets, by uniform
convergence on bounded sets and dominated convergence of the integrand.
Using the exponential bound of Lemma 6.3 and the fact that Jt is just
bounded, we obtain similarly

|Bt(s, ξ)| ≤ cmin{1, e−θξ} and lim
t→∞

Bt(s, ξ) = B(s, ξ). (6.36)

Finally, the exponential bounds of Lemma 6.1 and Lemma 6.3 imply that

|Ct(s, ξ)| ≤ c and lim
t→∞

Ct(s, ξ) = C(s, ξ), (6.37)

where the last limit holds uniformly for ξ and s in bounded sets.
Using the bounds in (6.35), (6.36), and (6.37), one concludes that the

integrands (summands) in (6.34) are uniformly bounded by functions which
are integrable (summable). This is uniform for ξ, η and s in a bounded
set. Then, by dominated convergence, we can take the limit inside, thus
yielding (2.20). Finally, the Gaussian term in (2.20) comes from the known
asymptotic (for s > 0),

lim
t→∞

t1/3e−2st2/3Iξt1/3(2st
2/3) =

1√
4πs

exp
(
−ξ2/(4s)

)
, (6.38)
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which can be derived from a saddle point argument.

7 Integral representation of the Tacnode ker-

nel

To derive the double integral representation (2.21) of Theorem 2.2 there are
two ways. One can use the Airy functions integral representations (A.7)
together with

∫ ∞

0

dλ e−λ(u−v) =
1

u− v
, whenever ℜ(u− v) > 0. (7.1)

This is quite straightforward but it requires several computations which are
not reported here.

The second is to do a steepest descent analysis starting from for-
mula (5.25) in Lemma 2.1. Here we merely indicate a sketch of the saddle
point argument (not a proof). The limits of the other terms have been dis-
cussed in the previous section. The main task here is to take the limit of this
double integral, when t→ ∞, with the scaling

n = 2m+ 1, m = 2t+ σt1/3

z = −1 + ζt−1/3 and w = −1 + ωt−1/3

xi = ξit
1/3 and ti = sit

2/3, i = 1, 2.

(7.2)

Also recall the definitions (2.17) of the Laplace transforms Q̂(ζ) and P̂(ζ),
as well as the function C in (2.16). The reader is reminded of the steepest
descent discussion in Section 4.1. For taking the limit of the extended kernel,
we need the following Lemma.

Lemma 7.1. Given the scaling (7.2) above, the following limits hold:

lim
t→∞

et(z−z−1)(−z)m = e
ζ3

3
−σζ , (7.3)

and
lim
t→∞

Tn(z
−1) = e−2σζQ̂(ζ), lim

t→∞
Tn(w) = e2σωQ̂(−ω)

lim
t→∞

Sn(z
−1) = P̂(ζ), lim

t→∞
Sn(w) = P̂(−ω),

(7.4)

where P̂ and Q̂ are the Laplace transforms defined in (2.17). One also checks:

lim
t→∞

(−w)x2−1

(−z)x1
=
eξ1ζ

eξ2ω
and lim

t→∞
e−ti(z+z−1+2) = esiζ

2

. (7.5)
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Proof. Letting t→ ∞; setting n = 2m+1, m = 2t+ σt1/3, the critical point
will be at z, w = −1 and thus the leading contribution will come from the
neighborhood of the critical points, which suggests the scalings in z and w
above. The Taylor expansion of the F -function (4.22) gives

et(z−z−1)(−z)m = et(z−z−1)+m log(−z) = etF (z)+σt1/3 log(−z)

= etF (−1+ζt−1/3)+σt1/3 log(1−ζt−1/3) = e
ζ3

3
−σζ(1 +O(t−1/3)).

(7.6)
Setting in addition the scaling for ti and xi, one finds by Taylor expanding
about z = −1 and w = −1 the limits (7.5). Introducing the running variable
k = 4t+ κ(2t)1/3, one gets

lim
t→∞

Tn(z
−1) = lim

t→∞

∑

k≥n

Qk

(−z)k−n+1
= lim

t→∞

∑

k≥n

Qke
−(k−n+1) log(−z)

= lim
t→∞

(2t)−1/3
∑

κ≥σ̃+(2t)−1/3

(2t)1/3Q4t+κ(2t)1/3e
−(κ−σ̃)(2t)1/3(−ζt−1/3)

=

∫

κ≥σ̃

dκQ(κ)e(κ−σ̃)ζ21/3 = e−2σζQ̂(ζ)

(7.7)
and similarly

lim
t→∞

Tn(w) = e2σω
∫

κ≥σ̃

dκQ(κ)e−κω21/3 = e2σωQ̂(−ω). (7.8)

The limit of the expression Sn, as in (4.10), involves h̄k, as in (4.24). Using
the formula (4.24) for h̄k(z

−1) in terms of Bessel functions and Lemma 6.1,
one checks, introducing the running variable a = µ(2t)1/3,

lim
t→∞

h̄k(z
−1) = − lim

t→∞

∑

a≥0

(−z)aJk+a+1(4t)

= − lim
t→∞

(2t)−1/3
∑

κ≥σ̃+(2t)−1/3

eµ(2t)
1/3 log(1−ζt−1/3)J (0)

2t (κ+ µ)

= −
∫ ∞

0

dµ e−µζ21/3Ai(κ+ µ).

(7.9)
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Therefore, one finds

lim
t→∞

Sn(z
−1) = lim

t→∞
〈Q, χnh̄(z

−1)〉 = lim
t→∞

∑

k≥n

Qkh̄k(z
−1)

= lim
t→∞

(2t)−1/3
∑

κ≥σ̃+(2t)−1/3

(2t)1/3Qt(κ)h̄k(z
−1)

= −
∫

κ≥σ̃

dκQ(κ)

∫ ∞

0

dµ e−µζ21/3Ai(κ+ µ) = P̂(ζ).

(7.10)

This ends the proof of Lemma 7.1.

Sketch of Proof of Theorem 2.2, formula (2.21). Since the sum in brackets
in (5.25) is invariant under the involution x1 ↔ −x2 and t1 ↔ −t2, it suffices
to consider the double integral, with the first term only. The second half
comes for free by acting with the involution! Given scaling (7.2), Lemma 7.1
yields

lim
t→∞

t1/3
dz dw

z − w

(−w)x2−1

(−z)x1

e−t1(z+z−1+2)

e−t2(w+w−1+2)
=
dζ dω

ζ − ω

(
eξ1ζ

eξ2ω

)
es1ζ

2

es2ω2
(7.11)

and from (4.12)

lim
t→∞

4∑

i=1

Ei(z, w)

=
e
ζ3

3
−σζ

e
ω3

3
−σω

(1− P̂(ζ))(1− P̂(−ω))− e
ζ3

3
−σζ

e−
ω3

3
+σω

e2σω(1− P̂(ζ))Q̂(−ω)

− e−
ζ3

3
+σζ

e
ω3

3
−σω

e−2σζ(1− P̂(−ω))Q̂(ζ)− e
ζ3

3
−σζ

e
ω3

3
−σω

e2σζ

e2σω
Q̂(−ζ)Q̂(ω).

(7.12)
Combining (7.11) and (7.12) yields the following limit below, first with

the contours as indicated in Figure 5, which then can be transformed into
the vertical lines above in Figure 6, compatible with Figure 5. Indeed, to
pick steepest descent paths about z = w = −1 respecting the integration
contours in

∮
Γ0
dz
∮
Γ0,z

dw of (7.13), one must choose the local paths, as

illustrated in Figure 5; these paths must be completed by closed contours
encircling the origin deformed to provide steepest descent contours. In the
ζ, ω scale, there are 4 rays emanating from the origin ω = ζ = 0; one is then

44



−1

zz
zz ww

ww

E1(z, w) ∼
et(F (z)−F (w))

E2(z, w) ∼
et(F (z)+F (w))

E3(z, w) ∼
e−t(F (z)+F (w))

E4(z, w) ∼
et(F (z)−F (w))

Figure 5: Contours z ∈ Γ0 and w ∈ Γ0,z in the neighborhood of z = w = −1.

0

ωωω ω ζζζζ

Figure 6: Vertical lines ±δ + iR and ±2δ + iR of integration for ζ and ω.

free to deform these rays so as to obtain two parallel imaginary lines near
the origin, as depicted above. Therefore the following limit holds for the first
double integral

lim
t→∞

t1/3

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw

z − w

(−w)x2−1

(−z)x1

e−t1(z+z−1+2)

e−t2(w+w−1+2)

4∑

i=1

Ei(z, w)

=
1

(2πi)2

∫

δ+iR

dζ

∫

−δ+iR

dω
e

ζ3

3
−σζ

e
ω3

3
−σω

es1ζ
2

es2ω2

(
eξ1ζ

eξ2ω

)
(1− P̂(ζ))(1− P̂(−ω))

ζ − ω
(i)

− 1

(2πi)2

∫

2δ+iR

dζ

∫

δ+iR

dω
e

ζ3

3
−σζ

e−
ω3

3
−σω

es1ζ
2

es2ω2

(
eξ1ζ

eξ2ω

)
(1− P̂(ζ))Q̂(−ω)

ζ − ω
(ii)

− 1

(2πi)2

∫

−δ+iR

dζ

∫

−2δ+iR

dω
e−

ζ3

3
−σζ

e
ω3

3
−σω

es1ζ
2

es2ω2

(
eξ1ζ

eξ2ω

)
(1− P̂(−ω))Q̂(ζ)

ζ − ω
(iii)

− 1

(2πi)2

∫

δ+iR

dζ

∫

−δ+iR

dω
e

ζ3

3
+σζ

e
ω3

3
+σω

es1ζ
2

es2ω2

(
eξ1ζ

eξ2ω

) Q̂(−ζ)Q̂(ω)

ζ − ω
. (iv)

(7.13)
In view of the scaling (7.2), the involution x1 ↔ −x2 and t1 ↔ −t2 induces
the involution ξ1 ↔ −ξ2 and s1 ↔ −s2, so that the limit of the other double
integral is given by the same formula (7.13) above, but with

ξ1 ↔ −ξ2 and s1 ↔ −s2. (7.14)
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We are also allowed to interchange the integration variables ζ ↔ −ω,
provided the contours of integration are modified accordingly; this last inter-
change implies ∫

δ+iR

dζ

∫

−δ+iR

dω remains (7.15)

∫

2δ+iR

dζ

∫

δ+iR

dω and

∫

−δ+iR

dζ

∫

−2δ+iR

dω interchange. (7.16)

So, the three combined maps,

ζ ↔ −ω, s1 ↔ −s2, ξ1 ↔ −ξ2, (7.17)

have the following effect on the four double integrals (i), . . . , (iv) in (7.13):

double integral (i) with eξ1ζ

eξ2ω
→ same double integral (i), except for e−ξ1ζ

e−ξ2ω

double integral (ii) with eξ1ζ

eξ2ω
→ same double integral (iii), except for e−ξ1ζ

e−ξ2ω

double integral (iii) with eξ1ζ

eξ2ω
→ same double integral (ii), except for e−ξ1ζ

e−ξ2ω

double integral (iv) with eξ1ζ

eξ2ω
→ same double integral (iv), except for e−ξ1ζ

e−ξ2ω
.

Therefore the limit

lim
t→∞

t1/3

(2πi)2

∮

Γ0

dz

∮

Γ0,z

dw

z − w

4∑

i=1

Ei(z, w)

×
(
(−w)x2−1

(−z)x1

e−t1(z+z−1+2)

e−t2(w+w−1+2)
+

(−z)x2

(−w)x1+1

e−t1(w+w−1+2)

e−t2(z+z−1+2)

)
(7.18)

is given by r.h.s. of (7.13) with the replacement

eξ1ζ

eξ2ω
−→ eξ1ζ

eξ2ω
+
e−ξ1ζ

e−ξ2ω
. (7.19)

Finally, in order to change the sign of the last integral, one switches the sign
ω → −ω and ζ → −ζ , which changes

−
∫

δ+iR

dζ

∫

−δ+iR

dω
1

ζ − ω
into +

∫

−δ+iR

dζ

∫

δ+iR

dω
1

ζ − ω
. (7.20)

Renaming variables ζ → u, ω → v gives formula (2.21).

46



A Some properties of Bessel and Airy func-

tions

Let us recall that the Bessel function representation of order n ∈ Z

Jn(2t) =
1

2πi

∮

Γ0

dz
et(z−z−1)

zn+1
(A.1)

has the symmetries

Jn(2t) = (−1)nJ−n(2t) = (−1)nJn(−2t). (A.2)

Moreover,

1

2πi

∮

Γ0

dz

z

eb(z−z−1)ea(z+z−1)

zn
=

(
b+ a

b− a

)n/2

Jn

(
2
√
b2 − a2

)
. (A.3)

It is well-known [1] that

lim
t→∞

t1/3J[2t+ξt1/3](2t) = Ai(ξ). (A.4)

An uniform bound obtained in [34] is

|(2t)1/3Jn(2t)| ≤ c, c = 0.785 . . . , n ∈ Z. (A.5)

This bound, together with uniform expansion which can be found in [1] is
used in Lemma A.1 of [23] to get the following result. Fix any θ > 0. Then,
there exists a constant t0 > 0 and a constant C > 0 such that, uniformly in
t ≥ t0,

|t1/3J[2t+ξt1/3](2t)| ≤ Cmin{1, e−θξ}. (A.6)

Actually, the statement of Lemma A.1 of [23] is for θ = 1/2 but inspecting
the proof it is straightforward to see that it holds for any fixed θ > 0. The
Airy function has, among others, the following two integral representations.
For any δ > 0, it holds

Ai(x) =
1

2πi

∫

δ+iR

du eu
3/3−ux, Ai(x) =

1

2πi

∫

−δ+iR

dv e−v3/3+vx. (A.7)

Moreover, for any δ > 0, it holds

Ai(s)(x) = es x+2s3/3Ai(x+ s2) =
1

2πi

∫

δ+iR

du eu
3/3+u2s−ux,

Ai(s)(x) = es x+2s3/3Ai(x+ s2) =
1

2πi

∫

−δ+iR

dv e−v3/3+v2s+vx.

(A.8)
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