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Abstract

We consider the totally asymmetric simple exclusion process
(TASEP) with two-sided Bernoulli initial condition, i.e., with left den-
sity ρ− and right density ρ+. We study the associated height function,
whose discrete gradient is given by the particle occurrences. Macro-
scopically one has a deterministic limit shape with a shock or a rar-
efaction fan depending on the values of ρ±. We characterize the large
time scaling limit of the multipoint fluctuations as a function of the
densities ρ± and of the different macroscopic regions. Moreover, us-
ing a slow decorrelation phenomena, the results are extended from
fixed time to the whole space-time, except along the some directions
(the characteristic solutions of the related Burgers equation) where
the problem is still open.

On the way to proving the results for TASEP, we obtain the limit
processes for the fluctuations in a class of corner growth processes with
external sources, of equivalently for the last passage time in a directed
percolation model with two-sided boundary conditions. Additionally,
we provide analogous results for eigenvalues of perturbed complex
Wishart (sample covariance) matrices.
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1 Introduction

We consider the totally asymmetric simple exclusion process (TASEP) on
Z. This is one of the basic one-dimensional interacting stochastic particle
systems that, despite its simplicity, exhibits a number of interesting features.
TASEP is a Markov process ηt with state space {0, 1}Z. For a given time
t ∈ R+ and position x ∈ Z, we say that site x is occupied at time t if ηt(x) = 1
and it is empty if ηt(x) = 0 (we can have at most one particle at each site:
exclusion principle). The dynamics is defined as follows. Particles jump to
the neighboring right site with rate 1 provided that the site is empty. Jumps
are independent of each other and take place after an exponential waiting
time with mean 1, which is counted from the time instant when the right
neighbor site is empty (for a rigorous construction, see [43, 44]).

One may study a variety of slightly different observables of TASEP such
as the total current, the location of a tagged particles or the TASEP height
function. Here we focus on the height function, ht, defined from a TASEP
configuration ηt as

ht(j) =





2Nt +
∑j

i=1(1− 2ηt(i)) for j ≥ 1,

2Nt for j = 0,

2Nt −
∑0

i=j+1(1− 2ηt(i)) for j ≤ −1,

(1.1)

where Nt is the total number of particles which jumped from site 0 to site 1
during the time interval [0, t].

In this paper we consider the simplest family of (random) initial condition,
in which shockwaves or rarefaction fans occur. More precisely, our initial con-
dition is Bernoulli product measure with density ρ− on Z− = {. . . ,−2,−1}
and ρ+ on Z

∗
+ = {0, 1, . . .}. We refer to this as two-sided Bernoulli initial

condition. Particular cases which have already been studied are:

• the step-initial condition (ρ− = 1 and ρ+ = 0), where Z− is completely
filled. In this case, there is a rarefaction fan, the fluctuations of ht scale as
t1/3, the correlation length as t2/3, and the limit process is the Airy2 process
(see the case b ≡ 0 in [13]). The Airy2 process occurred first in closely related
growth models [36, 49].

• Stationary initial condition (ρ ≡ ρ− = ρ+ ∈ (0, 1)). The only station-
ary and translation invariant measures are Bernoulli product measures with
constant density ρ ∈ [0, 1] (ρ = 0 and ρ = 1 are however trivial) [42]. The
scaling limit for the multi-point distribution of stationary TASEP has been
recently unraveled in [6].

Therefore we have only to focus on ρ+ 6= ρ− (the results below are the
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content of Theorem 2.1 and are illustrated in Figure 2.1). There are two
cases:

(a) ρ− > ρ+. For large time t the asymptotic density decreases linearly from
1 − ρ− to 1 − ρ+ over the region from (1− 2ρ−)t to (1 − 2ρ+)t called a rar-
efaction fan (see Figure 2.1 (a)). In this region the height fluctuations live
on a t1/3 and are governed by the Airy2 process like for step-initial condi-
tion (with correlation length scaling as t2/3). Around positions (1 − 2ρ±)t
the randomness of the initial conditions start being relevant and there is a
transition process from Airy2 to Brownian Motion. When the fluctuations
coming from the initial condition are on the t1/2 scale, they dominate the
fluctuations created by the dynamics (t1/3 scale) and are governed by Brow-
nian Motion. This is the case on the left and on the right of the rarefaction
fan.

(b) ρ− < ρ+. For large time t there is a macroscopic shock with density jump
from ρ− to ρ+ around the position (1 − ρ− − ρ+)t (see Figure 2.1 (b)). For
large time t, the fluctuations on the left and on the right of the shock are in-
dependent. Of particular interest, is then the joint-distribution of the height
function around the shockwave (1− ρ− − ρ+)t at different times. The initial
conditions considered here are random and therefore looking far enough away
the initial randomness becomes more important than the fluctuations created
by the dynamics, which live on the t1/3 scale only. For non-random initial
conditions this does not happen and further limit processes arise, see [14,15]
and, for one-sided random initial condition, see [16].

The results for the one-point distributions in Theorem 2.1 were conjectured
in [48] and recently proven in [10]. The conjecture was based on univer-
sality, since analogue results were available for a stochastic growth model
(the polynuclear growth (PNG) model) [7], which is in the same universality
class, named for Kardar-Parisi-Zhang (KPZ) [39]. The extension to multi-
point distributions at fixed time in the PNG model was carried out in [33]
(except for the case corresponding to stationary TASEP).

Extensions away from fixed-time have been previously obtained in TASEP
(with different type of initial conditions) in [13, 34]. However, the extension
was technically restricted to space-like paths, for which one could still get
explicit expressions for the correlation functions. Our main result (Theo-
rem 2.1) is much more general, since it covers almost all space-time. In
particular we can analyze situations where the correlation functions are not
explicitly known!

The only directions where the question of the limit process remains open
are the characteristic solutions of the Burgers equation associated to TASEP,
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also called characteristic lines [25, 61]. Along these space-time lines the ap-
propriate scaling limit is different, because the decorrelation occurs on a
much longer time scale compared with the usual decorrelation length. This
because second-class particles follow (on a macroscopic scale) exactly these
trajectories. This phenomenon was first proven in a PNG model [31] and it is
called slow decorrelation phenomenon (recently proven in greater generality
in [20], see Proposition 2.5 below for TASEP).

Methods in the proof of Theorem 2.1
The proof of our main result, Theorem 2.1, employs a combination of many
of the state-of-the-art methods in the study of TASEP fluctuations (exact
determinantal correlation formulas, the connection to last passage percola-
tion, coupling methods, and slow decorrelation). In outlining our proof we
also provide a brief review of the literature on these different techniques.

The first step in the proof is to establish a multipoint fluctuation result
along a fixed space-time cut for a simpler initial condition corresponding to
fixing ρ+ = 0. For certain space-time cuts there exist exact determinantal
expressions for the correlation functions. Specifically, if one considers the
fixed-time cut for TASEP (i.e., the joint-distribution of the height at a fixed
time) then there is a way to extend [14,16] to get the necessary formulas for
the correlation functions [11]. We consider a different cut which corresponds
to a directed last passage percolation model with one-sided boundary condi-
tion (see Section 2.2.2). In that case the Schur process gives the multipoint
correlation kernel, Equation (3.1) (for details on the Schur process and ap-
plications see [17, 37, 46, 47]). In the TASEP setting, the Schur process is
the process of a given (tagged) particle observed at different times. Using
techniques of asymptotic analysis for Fredholm determinants we can extract
our desired limit theorems from these formulas. This is done in Section 3.1
and recorded as Proposition 2.4. As opposed to the related work of [33], this
is the only case for which we must appeal to the exact correlation formulas
and take asymptotics.

From this point on our proof relies entirely on probabilistic methods.
The only case which is not covered by these other techniques is ρ− = ρ+ at
the characteristic speed, but this was analyzed independently in [6]. These
methods allow us to avoid the more involved shift and analytic continuation
arguments of [6] in addition to the Schur process (see Remark 9 of [6]).

The first probabilistic method we use is slow decorrelation [20] (given as
Proposition 2.5). This implies that the fluctuation limit process for one-sided
initial conditions extends away from cut on which it was proved (Propo-
sition 2.8). In order to bootstrap the one-sided process result to the full
two-sided case we appeal to a coupling method introduced in [10]. In fact,
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versions of this method can be found in the literature in [3,52,54] under the
names “microscopic Lax-Oleinik formula” or “strong monotonicity”. The
new component offered by the coupling method of [10] is that due to a few
(fairly simple) lemmas (see Section 3.2) one can now prove t1/3 fluctuation
results. The essential idea behind these methods is that statistics associated
to complicated particle system or growth process initial conditions can often
be written in terms of statistics associated to simpler particle systems which
have been coupled to the original system. Once this connection is in place (for
us Section 3.3) it is generally possible to translate asymptotic results about
the simplier systems into results about the original (more complicated) sys-
tem. This method is applied in Section 3.3 to prove Theorem 2.9 which is
the last passage percolation equivalent of our main TASEP result. Finally, in
Section 3.4 we show how to translate this back into a proof of Theorem 2.1.

One-side last passage percolation is closely related to the largest eigen-
value of some complex Wishart (sample covariance) matrices [5]. Using the
connection established in [17, 22], we restate our one-sided last passage per-
colation process result in terms of a random matrix eigenvalue process(see
Theorem 2.11).

There are a variety of conjectured results which go under the title of uni-
versality. The results of this paper deal with universality of the PNG and
continuous time TASEP. However, TASEP is also the extreme case of the
partially asymmetric version (PASEP), where particles can jump both left
and right with different jump rates. For the one-point distribution function
progress in this direction was made in [26–30] in the early 1990s. Very re-
cently, due to the efforts of Tracy and Widom [56–60], Derrida and Gerschen-
feld [21], Balázs and Seppäläinen [8, 9], Quastel and Valkó [50], Mountford
and Guiol [45] significant progress has been made in answering this question
in the general PASEP. Of particular note is the recent result of Tracy and
Widom [59] which shows that the results of [10] for TASEP with two-sided
Bernoulli initial conditions extend to the PASEP setting for ρ+ = 0 and
general values of ρ−. It seems hopeful that the integrable systems methods
which proved useful in that paper will, eventually be able to deal with gen-
eral two-sided Bernoulli initial conditions as well as multi-point distribution
functions. With that eventuality in mind, this paper should serve as a guide
in that pursuit.

In addition to extending TASEP results to the context of the PASEP,
Tracy and Widom’s formula has played a prominent role in the long sought
after calculation [4,53] of the one-point function for the KPZ stochastic PDE
with narrow wedge initial condition (for an alternative approach using the
replica trick see also [19, 23]).
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2 Results

Here we present the limit results, first for TASEP, then for last passage
percolation and we end with random matrices. The limit processes in the
following statements are defined in Section 2.4.

2.1 Continuous time TASEP

We want to analyze the fluctuations of the height function (1.1) with respect
to the macroscopic behavior. Thus, the first quantity we need to determine
is the limit shape

hma(ξ) := lim
t→∞

1

t
ht(⌊ξt⌋) (2.1)

which can be obtained by integrating the asymptotic macroscopic density of
particles, ̺(ξ, τ), given heuristically by

̺(ξ, τ) := lim
T→∞

P(there is a particle at [ξT ] at time τT ). (2.2)

The average current of particles for a density ̺ is ̺(1 − ̺), thus ̺ satisfies
Burgers equation [51]

∂τ̺+ ∂ξ(̺(1 − ̺)) = 0. (2.3)

The initial condition ̺(ξ, 0) = ρ− for ξ < 0 and ̺(ξ, 0) = ρ+ for ξ > 0 gives:
(a) for ρ− ≥ ρ+,

̺(ξ, 1) =






ρ− for ξ ≤ 1− 2ρ−,

(1− ξ)/2 for ξ ∈ [1− 2ρ−, 1− 2ρ+],

ρ+ for ξ ≥ 1− 2ρ+,

(2.4)
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(b) while for ρ− < ρ+,

̺(ξ, 1) =

{
ρ− for ξ < 1− (ρ− + ρ+),

ρ+ for ξ > 1− (ρ− + ρ+).
(2.5)

The characteristic lines1, (t, x(t))t≥0, of the Burgers equation with constant
density ρ are straight lines with speed 1−2ρ: {x(t)−x(0) = (1−2ρ)t, t ≥ 0}.
In the case of non-constant density (see case (a)), then all the rays leaving
from the origin with speed ξ ∈ [1− 2ρ−, 1− 2ρ+] are also characteristic lines
(see Figure 2.2).

Translated into the limit shape using (1.1), one obtains:
(a) for ρ− ≥ ρ+,

hma(ξ) =





2ρ−(1− ρ−) + (1− 2ρ−)ξ for ξ ≤ 1− 2ρ−,

(1 + ξ2)/2 for ξ ∈ [1− 2ρ−, 1− 2ρ+],

2ρ+(1− ρ+) + (1− 2ρ+)ξ for ξ ≥ 1− 2ρ+,

(2.6)

(b) while for ρ− < ρ+,

hma(ξ) =

{
2ρ−(1− ρ−) + (1− 2ρ−)ξ for ξ < 1− (ρ− + ρ+),

2ρ+(1− ρ+) + (1− 2ρ+)ξ for ξ > 1− (ρ− + ρ+).
(2.7)

This is illustrated in Figure 2.1.
For simplicity, we discuss the fixed time fluctuation results of our main

Theorem 2.1, which is however more general and holds for unequal times too.
Concerning the fluctuations for ρ− 6= ρ+, if we focus around a macroscopic
position ξt we have:

Case (a) and 1 − 2ρ− < ξ < 1 − 2ρ+: the limit shape is curved and the
behavior is like the one of step-initial condition, namely, for large time t the
fluctuations scale as t1/3, correlations as t2/3, and the multi-point statistics are
governed by the Airy2 process, A2. More precisely, there are two coefficients
κh = (2(1−ξ)2)1/3 and κv = −(1−ξ2)2/3/21/3 depending only on ξ (compare
with (2.9) below) such that for large time t,

h(ξt+ τκht
2/3) ≃ thma(ξ + τκht

−1/3) + κvA2(τ)t
1/3. (2.8)

Case (a) and ξ = 1− 2ρ− (or ξ = 1− 2ρ+): the influence of the randomness
in the initial condition and the randomness built up by the dynamics are of
the same order. The fluctuations of ht are on the t1/3 scale with correlation

1These characteristics are the ones coming from the entropy condition [25, 61].
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(a) (b)

ξ

ξξ

ξ

̺(ξ, 1)̺(ξ, 1)

ρ−

ρ− ρ+

ρ+

hma(ξ) hma(ξ)

ξ−

ξ−

ξ+

ξ+

ξs

ξs

B
B B′

B′

A2

ABM→2 A2→BM

Figure 2.1: The asymptotic density ̺ and the limit shape in the cases (a)
ρ− > ρ+ and (b) ρ− < ρ+. Transitions happen at ξ± = 1−2ρ± and shockwave
at ξs = 1−(ρ−+ρ+). The fluctuations processes are also indicated: B and B′

two independent standard Brownian motions, A2 the Airy2 process, ABM→2 is
the transition process from Brownian behavior to Airy2 process, and A2→BM

is its time-reversed version. See Section 2.4 for definitions.

scale t2/3 and are governed by a transition process ABM→2 between Brownian
Motion behavior and the Airy2 process.

Case (a) and ξ < 1− 2ρ− (or ξ > 1− 2ρ+) or Case (b) away from the shock
position: the influence of the initial randomness dominates and one has sim-
ply Brownian Motion (with fluctuations scale t1/2 and correlation scale t).
The two sides are asymptotically independent.

Case (b) at the shock position: the statistics of the height function is influ-
enced by both the right and left particle densities.

The stationary case, ρ− = ρ+ = ρ was analyzed already in [6] (see Theo-
rem 1.7 therein). At ξ = 1 − 2ρ the fluctuations are of order t1/3 and there
is a transition process Astat over a distance of order t2/3 to the Gaussian
behavior.
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In a related model [31] the following slow decorrelation phenomenon was
noticed: along the characteristic lines the height-height correlations live on
a longer space-time scale than the fixed-time correlation scale. For instance,
in the rarefaction fan, the height function at two space-time points on the
same characteristic line, the first at time T and the second at time T + T ν ,
ν < 1, will differ by a deterministic factor (speed of growth × T ν) plus
o(T 1/3). This means that the two height functions (centered and rescaled by
T−1/3) are asymptotically the same random variable (i.e., they are perfectly
correlated on the T 1/3 scale). The proof in [31] uses several results of other
papers and a considerable amount of work is needed to reproduce them for
other models. While looking for a proof for the TASEP, we discovered a
much simpler proof, which applies not only to TASEP but to a large number
of models in the KPZ class, see [20]. The statement for TASEP is reported
in Proposition 2.5.

This allows us to extend the fixed-time statement to space-time. This is
the reason for the following limit theorem: for ξ ∈ [1 − 2ρ−, 1 − 2ρ+], let us
set

X(τ, θ) = ⌊ξ(T + θT ν) + τ(2(1− ξ2))1/3T 2/3⌋,

H(τ, θ, s) =
1 + ξ2

2
(T + θT ν) + ξτ(2(1− ξ2))1/3T 2/3 + (τ 2 − s)

(1− ξ2)2/3

21/3
T 1/3.

(2.9)
The value of H(τ, θ, 0) is a generalization of the term thma(ξ + τκht

−1/3) in
(2.8), namely the macroscopic approximation. Indeed,

H(τ, θ, 0) = (T + θT ν)
1

2

(
1 +

(
X(τ, θ)

T + θT ν

)2)
+ o(T 1/3), (2.10)

compare with (2.6), while H(τ, θ, s) − H(τ, θ, 0) measures the fluctuations.
The definitions of the limit processes occurring in the following theorem are
collected in Section 2.4.

Theorem 2.1. (a) Fix m ∈ N, ν ∈ [0, 1), ξ ∈ R, and ρ+ ∈ (0, 1], ρ− ∈ [0, 1).
Then, for any choice of real numbers τ1 < τ2 < . . . , τm, θ1, . . . , θm, and
s1, . . . , sm, we have:
(a1) If ρ+ < ρ− and ξ ∈ (1− 2ρ−, 1− 2ρ+), then

lim
T→∞

P( m⋂

k=1

{hT+θkT ν (X(τk, θk)) ≥ H(τk, θk, sk)}
)

= P( m⋂

k=1

{A2(τk) ≤ sk}
)
.

(2.11)
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(a2) If ρ+ < ρ− and ξ = 1− 2ρ−, then

lim
T→∞

P( m⋂

k=1

{hT+θkT ν (X(τk, θk)) ≥ H(τk, θk, sk)}
)

= P( m⋂

k=1

{ABM→2(τk) ≤ sk}
)
.

(2.12)
(a3) If ρ+ = ρ− ≡ ρ and ξ = 1− 2ρ, then

lim
T→∞

P( m⋂

k=1

{hT+θkT ν (X(τk, θk)) ≥ H(τk, θk, sk)}
)

= P( m⋂

k=1

{Astat(τk) ≤ sk + τ 2k}
)
.

(2.13)
(b) Fix m ∈ N, and ρ+ ∈ (0, 1], ρ− ∈ [0, 1). Fix ml, ms, mr ∈ Z

∗
+ and set

m = ml +ms +mr and real numbers θ1, . . . , θm. Consider a set of m space-
time points with macroscopic coordinates (ξiθiT, θiT ). Let ml of the points be
such that ξi < 1−ρ−−max{ρ+, ρ−}, mb such that ξi > 1−ρ+−min{ρ+, ρ−},
and ms on the shockwave (ξi = 1− ρ+ − ρ− if ρ+ > ρ−). Then

lim
T→∞

P( m⋂

k=1

{hθkT (ξkθkT ) ≥ hma(ξk)θkT − 2skT
1/2}

)

=P(ml+ms⋂

k=1

{B (θk(1− 2ρ− − ξk)(ρ−(1− ρ−))) ≤ sk}
)

×P( m⋂

k=ml+1

{B′ (θk(ξk + 2ρ+ − 1)(ρ+(1− ρ+)) ≤ sk}
)
.

(2.14)

where B and B′ are two independent copies of Brownian Motion.

Remark 2.2. Although in the statement we fix θ1, . . . , θm, the same
holds true if they depend on T provided that they are uniformly bounded
in T . What we need is that there exists a ν < 1 such that
limT→∞ ln(|θkT ν |)/ ln(T ) < 1. For instance, we can take θkT

ν = θ̃kT
2/3

with θ̃k fixed real numbers.

Remark 2.3. The case ρ+ < ρ− and ξ = 1−2ρ+ can be recovered from (a2)
by particle-hole symmetry. The entries in the Brownian motions in (2.14)
are (proportional to) the projections of the space-time points to time t = 0
along the characteristics to the initial conditions; the proportionality takes
just into account the variance of the random walk of the initial condition.
This is illustrated in Figure 2.2.

The proof of Theorem 2.1 is in Section 3.4. It is a consequence of the
corresponding result for last passage percolation (see Theorem 2.9), together
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(a) (b)
x x

tt

Figure 2.2: Illustration of the characteristic lines for (a) ρ− > ρ+ and (b)
ρ− < ρ+. The fluctuations of the black points depend on fluctuation of their
projections to the t = 0 line. Points on the shockwave, the gray points,
depend on the projections on the two directions. Finally, the fluctuations in
the rarefaction fan (white points) do not depend on the initial randomness.

with the slow decorrelation phenomena (see Proposition 2.5). The stationary
case, (a3), was analyzed in [6] (see Theorem 1.7 therein); the τ 2k term in (2.13)
compensates the fact that the scaling (2.9) is not following the (straight) limit
shape approximation. For presentation simplicity in [6] only the fixed-time
result was stated, but slow decorrelation allow immediately to extend it as
in Theorem 2.1.

2.2 Directed percolation

In Section 2.2.1 we explain the precise connection between TASEP and last
passage percolation (LPP). In Proposition 2.8 we give the asymptotics for
one-sided LPP, which uses the determinantal structure of the Schur process
and slow decorrelation. The extension to two-sided boundary conditions via
coupling arguments is stated in Theorem 2.9.

2.2.1 Connection with TASEP

We define a directed last passage percolation model by assigning random
waiting times wi,j to each site (i, j) in (Z∗

+)
2 (Z∗

+ = {0, 1, . . .}). We require
wi,j’s are independent and exponentially distributed variables2 (to be speci-
fied below). To every directed (up/right only) path π from (0, 0) to (x, y) we

2We use the notation Exp(m) for a random variable which is exponentially distributed
with mean m.
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associate the waiting time T (π) =
∑

(i,j)∈π wi,j. Then, the last passage time

from (0, 0) to (x, y) is the longest waiting time over all directed paths:

L(x, y) = max
π:(0,0)→(x,y)

T (π). (2.15)

It is well known that the height function for TASEP with our initial condi-
tion is expressible in terms of a LPP model. Let us shortly recall this connec-
tion which is established in full generality in [48] and briefly reexplained [6],
extending the step-initial condition case considered in [35]. We label parti-
cles from right to left and denote by xk(t) the position of particle k at time
t. We set the label so that · · · < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < · · · .
(a) For i, j ≥ 1, wi,j is the waiting time that particle j jump from site i−j−1
to site i− j (of course, the waiting time counted from the instant where site
i− j is empty). Thus, wi,j ∼ Exp(1) random variables, i, j ≥ 1.
(b) On the other hand, the effect on the dynamics on x0(t) due to the par-
ticles on the its right is equivalent to set the jump rate of particle 0 to be
1−ρ+ instead of 1. This is a consequence of Burke’s Theorem [18]. Therefore
we set wi,0 ∼ Exp(1/(1− ρ+)) for i > x0(0) and wi,1 = 0 otherwise.
(c) By looking at the particle-hole transformation, we set w1,j ∼ Exp(1/ρ−)
for j ≥ −x1(0) and w0,j = 0 otherwise. Finally, we set w0,0 = 0.

With this settings, the correspondence between last passage time, particle
positions, and height function is the following: for xk, yk ≥ 1, tk > 0, we haveP (∩m

k=1{L(xk, yk) ≤ tk}) = P (∩m
k=1{xyk(tk) ≥ xk − yk})

= P (∩m
k=1{htk(xk − yk) ≥ xk + yk}) .

(2.16)

Since x0(0) ∼ Geom(1 − ρ+) and −(1 + x1(0)) ∼ Geom(ρ−), we can set
wi,1 ∼ Exp(1/(1 − ρ+)) for all i ≥ 1, and w1,j ∼ Exp(1/ρ−) for all j ≥ 1
without changing the large time asymptotics (see e.g. Proposition 2.2 in [32])
(but keeping w0,0 = 0).

2.2.2 One-sided LPP

As briefly mentioned in the introduction, the proof of our result uses a mix-
ture of analytic and probabilistic methods. On the analytic side, we have to
analyze the following LPP model (referred as one-sided LPP):

wi,j =





Exp(1) for i, j ≥ 1,

Exp(1/η) for i = 0, j ≥ 1,

0 for i ≥ 0, j = 0,

(2.17)

where η ∈ (0, 1] is a constant. We denote by L1 the last passage time for the
waiting times (2.17), where 1 stands for one-sided. This problem is related

12



to TASEP with ρ+ = 0 and ρ− = η. Moreover, see Section 2.3, the statistics
of L1 are related to those of the largest eigenvalue of a perturbed Wishart
(sample covariance) matrix.

To set the scaling variables, we need an expression for the limit shape.
Let us focus along the line y = γ2x. There are two cases:

(a) for γ(1 + γ)−1 ≤ η ≤ 1,

lim
T→∞

1

T
L1(ξT, ξγ

2T ) = ξ(1 + γ)2, (2.18)

(b) for 0 < η ≤ γ(1 + γ)−1,

lim
T→∞

1

T
L1(T, γ

2T ) =
1

1− η
+

γ2

η
. (2.19)

In the regime where the limit shape is (2.18), the fluctuations of L1 are
of random matrix type with correlation on the T 2/3 scale and fluctuations in
the T 1/3 scale. Therefore we introduce the scaling

x(τ) =

⌊
1

(1 + γ)2
T +

2τ

(1 + γ)2/3γ2/3
T 2/3

⌋
,

y(τ) =

⌊
γ2

(1 + γ)2
T

⌋
,

ℓ(τ, s) = T +
2τ(1 + γ)1/3

γ2/3
T 2/3 + (s− τ 2)

(1 + γ)2/3

γ1/3
T 1/3,

(2.20)

where the parameter s is a measure of the fluctuations with respect to ℓ(τ, 0),
that is what we expect to see from (2.18). Under this scaling, the height
fluctuations are governed by the Airy2 process, A2, up to the critical value
η = γ(1 + γ)−1 where there is a transition process, ABM→2, to the Brownian
motion behavior. In the regime where the limit shape is (2.19), the fluctu-
ations will be governed by the boundary sources. They have fluctuation on
the T 1/2 scale, correlation length of order T and limit process the Brownian
Motion, B. This is precisely stated in following theorem.

Proposition 2.4. Let A2, ABM→2 and B be the processes defined in Sec-
tion 2.4.
(a) Fix m ∈ N, η ∈ (0, 1] and γ ∈ (0,∞) with η ≥ γ(1+ γ)−1. Then, for any
given τ1 < τ2 < . . . < τm and s1, . . . , sm ∈ R, we have:
(a1) if η > γ(1 + γ)−1, then

lim
T→∞

P( m⋂

k=1

{L1(x(τk), y(τk)) ≤ ℓ(τk, sk)}
)

= P( m⋂

k=1

{A2(τk) ≤ sk}
)
,

(2.21)

13



(a2) while if η = γ(1 + γ)−1, then

lim
T→∞

P( m⋂

k=1

{L1(x(τk), y(τk)) ≤ ℓ(τk, sk)}
)

= P( m⋂

k=1

{ABM→2(τk) ≤ sk}
)
.

(2.22)
(b) Fix m ∈ N, η ∈ (0, 1]. Then, for any given γ1 < γ2 < . . . < γm such that
η < γ1(1 + γ1)

−1, and s1, . . . , sm ∈ R, we have

lim
T→∞

P( m⋂

k=1

{
L1(T, γ

2
kT ) ≤

(
γ2
k

η
+

1

1− η

)
T + skT

1/2

})

= P( m⋂

k=1

{
B
([

γ2
k

η2
− 1

(1− η)2

])
≤ sk

})
. (2.23)

This theorem is proved in Section 3.1 using the Schur process and applying
methods of asymptotic analysis. Having established this theorem for the one-
sided boundary condition model above we use coupling methods to prove a
general two-sided boundary condition theorem.

To understand intuitively the cutoff η = γ(1 + γ)−1 there is a simple
argument. The last passage path (the random directed path which achieves
the last passage time) goes along the left boundary for some distance and
then will depart. Restricting the set of paths to only those which go a certain
macroscopic distance along the boundary and then depart into the bulk, one
may use independence of the boundary and the bulk to establish a law of
large number and fluctuation theorem for the restricted last passage time.
If the mean 1/η of the boundary waiting times is large enough (η small
enough), the restricted law of large numbers will be maximized for a positive
macroscopic distance along the boundary. In this case, the fluctuations will
come entirely from the boundary fluctuations and they will be given by the
standard CLT: Gaussian fluctuations on the scale T 1/2. On the other hand, if
the boundary waiting times are too small, the restricted law of large numbers
will be maximized for a distance along the boundary of o(T 2/3), and hence
the fluctuations will come from the bulk, which are known to be T 1/3 and
GUE Tracy-Widom distributed. At the cutoff, the two fluctuations compete
and yield a perturbation of the bulk fluctuations. This intuition will be useful
in some of the arguments used in this paper.

To extend Proposition 2.4 to points which have different y coordinates we
use the fact that in certain directions (the characteristics) the last passage
time fluctuations decorrelate not in the scale T 2/3 but rather in the scale of
order T . This means that the passage time at two points at distance o(T ) but
on the same characteristic have the same fluctuations (up to o(T 1/3)). This
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phenomena, known as slow decorrelation3, was observed (and proven) in the
related PNG model in [31] and then extended to a much greater generality
within models in the KPZ universality class [20]. We recall the result needed
here below.

The characteristic lines for TASEP with particle density ρ move with
speed 1− 2ρ. In the present LPP picture this implies the following:

(a) if γ ≤ η
1−η

, the line y = γ2x is a characteristic related to the rarefaction
fan of TASEP,

(b) while in the case γ > η
1−η

, the characteristic passing by (T, γ2T ) is given
by

y = Tγ2 + (x− T )η2(1− η)−2. (2.24)

With these preliminaries, we can state the slow decorrelation theorem for
LPP.

Proposition 2.5 (Corollary of Theorem 2.2 of [20]).
(a) For γ ≤ η

1−η
, define

P =

(⌊
T

(1 + γ)2

⌋
,

⌊
γ2T

(1 + γ)2

⌋)
, Q =

(⌊
T + r

(1 + γ)2

⌋
,

⌊
γ2(T + r)

(1 + γ)2

⌋)
.

(2.25)
Then, for any r ∼ T ν with ν ∈ [0, 1) and any given M > 0, it holds

lim
T→∞

P (|L1(Q)− L1(P )− r| ≥ MT 1/3
)
= 0. (2.26)

(b) For γ > η
1−η

, define

P = (⌊T ⌋, ⌊γ2T ⌋), Q =
(
⌊T + r⌋,

⌊
γ2T + rη2(1− η)−2

⌋)
. (2.27)

Then, for any r ∼ T ν with ν ∈ [0, 3/2) and any given M > 0, it holds

lim
T→∞

P(∣∣∣∣L1(Q)− L1(P )− r

(1− η)2

∣∣∣∣ ≥ MT 1/2

)
= 0. (2.28)

Remark 2.6. In Proposition 2.5 γ can be also chosen to be T -dependent,
provided that it converges to a fixed number in the T → ∞ limit.

3For flat interfaces as considered in [38] the dynamic scale invariance [41] implies a
scaling form for the temporal autocorrelation, from which one could expect to see a slow-
decorrelation type of phenomenon. This phenomenon is also related with what is known
as persistence, see [38] for KPZ class and [40] for Gaussian-type models.
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Remark 2.7. We will use a generalization of Proposition 2.5 to joint dis-
tributions. We let r be a vector r = (r1, r2, . . . , rm) with each ri ∼ T νi.
Let us interprete P and L1(P ) as vectors P = (P1, P2, . . . , Pm) and
L1(P ) = (L1(P1), L1(P2), . . . , L1(Pm)), and similarly for Q and L1(Q). Then,
the theorem still holds, with absolute values replaced by Euclidean norms.
Case (a) holds for max(νi) < 1 and case (b) for max(νi) < 3/2). This follows
directly from triangular inequality the union probability bound.

As immediate application of Proposition 2.5 (and Remark 2.7) is the
extension of Proposition 2.4 away from the fixed-y line. Indeed, often one
considers the cut x + y = t and t is then interpreted as the time parameter
in a stochastic growth model (see e.g. [36, 49]). For that reason we consider
the following modification of the scaling (2.20): for a given ν ∈ [0, 1),

x(τ, θ) =

⌊
1

(1 + γ)2
(T + θT ν) + τ

2γ4/3

(1 + γ2)(1 + γ)2/3
T 2/3

⌋
,

y(τ, θ) =

⌊
γ2

(1 + γ)2
(T + θT ν)− τ

2γ4/3

(1 + γ2)(1 + γ)2/3
T 2/3

⌋
,

ℓ(τ, θ, s) = T + θT ν + τ
2γ1/3(1 + γ)1/3(γ − 1)

1 + γ2
T 2/3 + (s− τ 2)

(1 + γ)2/3

γ1/3
T 1/3.

(2.29)
One might have noticed that in the scaling (2.29) we extend x and y along
the characteristic for τ = 0, which is not exactly the characteristic for τ 6= 0.
However, this is not a problem, since the projection of (x(τ, θ), y(τ, θ)) along

the true characteristic on the line x + y = 1+γ2

(1+γ)2
T is (x(τ̃ , 0), y(τ̃ , 0)) with

τ̃ = τ + o(1). Then, the extension of Proposition 2.4 to the scaling (2.29) is
the following.

Proposition 2.8.
(a) Fix m ∈ N, ν ∈ [0, 1), η ∈ (0, 1], and γ ∈ (0,∞) such that
η ≥ γ(1 + γ)−1. Then, for any given real numbers τ1 < τ2 < . . . < τm,
θ1, . . . , θm and s1, . . . , sm, we have:
(a1) if η > γ(1 + γ)−1, then

lim
T→∞

P( m⋂

k=1

{L1(x(τk, θk), y(τk, θk)) ≤ ℓ(τk, θk, sk)}
)

= P( m⋂

k=1

{A2(τk) ≤ sk}
)
,

(2.30)
(a2) while if η = γ(1 + γ)−1, then

lim
T→∞

P( m⋂

k=1

{L1(x(τk, θk), y(τk, θk)) ≤ ℓ(τk, θk, sk)}
)

= P( m⋂

k=1

{ABM→2(τi) ≤ sk}
)
.

(2.31)
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(b) Fix m ∈ N, η ∈ (0, 1]. Then, for any given γ1 < γ2 < . . . < γm such that
η < γ1(1 + γ1)

−1, and s1, . . . , sm ∈ R, it holds

lim
T→∞

P( m⋂

k=1

{
L1(θkT, γ

2
kθkT ) ≤

(
γ2
k

η
+

1

1− η

)
θkT + skT

1/2

})

= P( m⋂

k=1

{
B
(
θk

[
γ2
k

η2
− 1

(1− η)2

])
≤ sk

})
. (2.32)

2.2.3 Two-sided LPP

The main object of interest in this paper is last passage percolation with
two-sided boundary conditions defined as follow. Given two paramaters
π, η ∈ (0, 1], the independent waiting times wi,j satisfy

wi,j =






Exp(1/π) for i ≥ 1, j = 0,

Exp(1/η) if i = 0, j ≥ 1,

Exp(1) if i, j ≥ 1,

0 for i = 0, j = 0.

(2.33)

We denote by L2 the last passage percolation time for the waiting times
(2.33), where the subscript 2 stands for the two-sided. This corresponds
with TASEP with two-sided Bernoulli initial conditions. The connection
with two-sided Bernoulli initial condition for TASEP is obtained by setting
η = ρ− and π = 1− ρ+.

The new phenomenon that occurs for two-sided LPP with respect to one-
sided is the possible presence of shockwaves in the corresponding TASEP
picture. This occurs when π+η < 1, i.e., when characteristics meet. Indeed,
the characteristic leaving from the axis (R+, 0) have slope (1 − π)2π−2 and,
whenever η + π < 1, they meet the characteristics leaving from the (0,R+)
axis, whose slope is η2(1 − η)−2. The slope of the shockwave is determined
by the Rankine-Hugoniot condition and it is given by the equation

y =
η(1− π)

π(1− η)
x. (2.34)

The limit shape is not anymore always as in (2.32) but depends on the which
side of the shockwave we focus on S(γ) ≡ limT→∞

1
T
L2(T, γ

2T ) given by

S(γ) =






γ2

η
+

1

1− η
, if π ≤ (1 + γ)−1, η < γ(1 + γ)−1, γ2 > η(1−π)

π(1−η)
,

γ2

1− π
+

1

π
, if π < (1 + γ)−1, η ≤ γ(1 + γ)−1, γ2 < η(1−π)

π(1−η)
.

(2.35)
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When η+π < 1, then the fluctuations are dominated by the boundary terms
and live on a T 1/2 scale, while the bulk contribution to the fluctuations is only
on a T 1/3 scale. Therefore, the limit process describing the fluctuations on
each side of (not including) the shockwave is given by the Brownian motion
obtained as the boundary contribution from the origin to the projections
along the characteristics of the points we focus on. Thus, the two side of
the shockwave will be independent. On the shockwave, there is a balance
between the two boundary contributions: the last passage time for a point P
on the shockwave is the maximum between the last passage time of the one-
sided problem with wi,0 = 0 and the transposed one-sided problem w0,j = 0.
Since the fluctuations come only from the boundaries, the distribution of P
will be the product of the distribution of the two one-sided problems, see
Figure 2.2.

This intuitive picture is confirmed by Theorem 2.9, which can be obtained
from Proposition 2.8 without any additional hard analysis by using coupling
arguments introduced in [10].

Theorem 2.9. Consider the same scaling (2.29) as in Proposition 2.8.
(a) Fix m ∈ N, η, π ∈ (0, 1], γ ∈ (0,∞), and ν ∈ [0, 1). Then, for any choice
of real numbers τ1 < τ2 < . . . , τm, θ1, . . . , θm, and s1, . . . , sm, we have:
(a1) If π > (1 + γ)−1 and η > γ(1 + γ)−1, then

lim
T→∞

P( m⋂

k=1

{L2(x(τk, θk), y(τk, θk)) ≤ ℓ(τk, θk, sk)}
)

= P( m⋂

k=1

{A2(τk) ≤ sk}
)
.

(2.36)
(a2) If π > (1 + γ)−1 and η = γ(1 + γ)−1, then

lim
T→∞

P( m⋂

k=1

{L2(x(τk, θk), y(τk, θk)) ≤ ℓ(τk, θk, sk)}
)

= P( m⋂

k=1

{ABM→2(τk) ≤ sk}
)
.

(2.37)
(a3) If π = (1 + γ)−1 and η = γ(1 + γ)−1, then

lim
T→∞

P( m⋂

k=1

{L2(x(τk, θk), y(τk, θk)) ≤ ℓ(τk, θk, sk)}
)

= P( m⋂

k=1

{Astat(τk) ≤ sk+τ 2k}
)
.

(2.38)
(b) Fix ml, ms, mb ∈ Z

∗
+ and set m = ml +ms +mb. ml is the number of

points associated with characteristics from the left boundary of the LPP, mb

to the bottom boundary, and ms on the shockwave (if exists). For π, η ∈ (0, 1]
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and real numbers θ1, . . . , θm, choose γi corresponding to each case. Then

lim
T→∞

P( m⋂

k=1

{L2(θkT, γ
2
kθkT ) ≤ S(γk)θkT + skT

1/2}
)

=P(ml+ms⋂

k=1

{
B
(
θk

[
γ2
k

η2
− 1

(1− η)2

])
≤ sk

})

×P( m⋂

k=ml+1

{
B′

(
θk

[
1

π2
− γ2

k

(1− π)2

])
≤ sk

})
,

(2.39)

where B and B′ are two independent copies of Brownian Motion.

Remark 2.10. The case π = (1+ γ)−1 and η > γ(1+ γ)−1 can be recovered
by Theorem 2.9 (a2) by the change of variable (x, y) → (y, x) and γ → γ−1.

Because of the nice correspondence with the TASEP, we focused here
on LPP with two-sided “of width one”, i.e., with modified weights only for
i = 0 and j = 0 in (2.33). From a LPP point of view a natural extension
is to consider weights different from 1 for a larger number of columns/rows.
For example, the one-sided with boundary width equal to r was considered
in [5]. Like for the Airy2 process [2], also one can describe joint distributions
by PDE’s [1]. For an extension to two-sided thick boundaries, see [17]. The
particular case of boundaries of sizes 1 and r corresponds, in terms of TASEP,
to Bernoulli initial condition on Z− with the first r particles having a different
jump rate [16]. The coupling techniques would also work, except to the
critical cases (like η + π = 1).

2.3 Random sample covariance matrices

We now give a random matrix interpretation of our result. For that
purpose, we use a result proven in [22]. Consider an infinite array
A(N) = [Ai,j]i≥1,1≤j≤N where the Ai,j are independent complex Gaussian ran-
dom variables with mean zero and variance 1/(πi + π̃j). Define A(n,N) to
be the matrix obtained by considering the first n rows from A. Define the
N×N matrixMN(n) := A(n,N)∗A(n,N) and denote by λN,max(n) its largest
eigenvalue.

Let also L(n,N) be the last passage time from (1, 1) to (n,N) in the
percolation model with independent exponential random variables with ex-
pectations 1/(πi + π̃j). Then it is proved in [17] and [22] that the process
n 7→ λN,max(n) and the process of last passage times n 7→ L(n,N) have the
same distributions. Therefore, from Proposition 2.4 we deduce the following.
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Theorem 2.11. Set πi = 1− η, i ≥ 2, π1 = 0, π̃j = η, j ≥ 1.
(a) Fix m ∈ N, γ ∈ (0,∞) and η ∈ (0, 1]. Recall x(τk), y(τk), and ℓ(τk, sk)

defined in (2.20). Set N = y(τk) =
⌊

γ2

(1+γ)2
T
⌋
.

(a1) If η > γ
1+γ

, then for real numbers τ1 < τ2 < . . . < τm and s1, . . . , sm it
holds

lim
T→∞

P( m⋂

k=1

{λN,max(x(τk)) ≤ ℓ(τk, sk)}
)

= P( m⋂

i=1

{A2(τi) ≤ si}
)
. (2.40)

(a2) If η = γ
1+γ

, then for real numbers τ1 < τ2 < . . . < τm and s1, . . . , sm it
holds

lim
T→∞

P( m⋂

k=1

{λN,max(x(τk)) ≤ ℓ(τk, sk)}
)

= P( m⋂

i=1

{ABM→2(τi) ≤ si}
)
.

(2.41)
(b) Fix m ∈ N, η ∈ (0, 1]. Set N = ⌊T ⌋, then for any γ1 < γ2 < . . . < γm
such that η < γ1(1 + γ1)

−1, and s1, . . . , sm ∈ R, it holds

lim
T→∞

P( m⋂

k=1

{
λN,max(γ

2
kT ) ≤

(
γ2
k

η
+

1

1− η

)
T + skT

1/2

})

= P( m⋂

k=1

{
B
([

γ2
k

η2
− 1

(1− η)2

])
≤ sk

})
. (2.42)

2.4 Limit processes: definitions

Here we collect the definitions of the limit processes.

Definition 2.12 (Airy2 process, A2). The Airy2 process is defined in terms
of finite dimensional distributions asP( m⋂

k=1

{A2(τk) ≤ sk}
)

= det(1− χsKA2χs)L2({τ1,...,τm}×R), (2.43)

where χs(τk, x) = 1[x>sk], and KA2 is the extended Airy kernel:

KA2(τ, s; τ
′, s′) =





∫

R+

dze(τ
′−τ)z Ai(s+ z) Ai(s′ + z), τ ≥ τ ′,

−
∫

R−

dze(τ
′−τ)z Ai(s+ z) Ai(s′ + z), τ < τ ′.

(2.44)

20



The Airy2 process was discovered in the PNG model [49]. It is a sta-
tionary process with one-point distribution given by the GUE Tracy-Widom
distribution F2 [55]. An integral representation of KA2 can be found in
Proposition 2.3 of [36]; another form is in Definition 21 of [16] in the M = 0
case.

Definition 2.13. We denote by ABM→2 the transition process from Brownian
Motion to Airy2. It is defined in terms of finite dimensional distributions asP( m⋂

k=1

{ABM→2(τk) ≤ sk}
)

= det(1− χsKABM→2
χs)L2({τ1,...,τm}×R), (2.45)

where χs(τk, x) = 1[x>sk], and KABM→2
is the rank-one perturbation KA2:

KABM→2
(τ, s; τ ′, s′) = KA2(τ, s; τ

′, s′) + Ai(s)

(
e

1
3
τ ′3−s′τ ′ −

∫

R+

dzeτ
′z Ai(s′ + z)

)
.

(2.46)

This transition process was derived in [33]. In Equation (3.6) of [33] the
kernel is divided into two cases. However, using the identity (D.3) in [32],
namely,

∫
R
dyewy Ai(β + y) = ew

3/3−βw, we can rewrite

KABM→2
(τ, s; τ ′, s′) = KA2(τ, s; τ

′, s′) + Ai(s)

∫

R+

dze−τ ′z Ai(s′ − z) (2.47)

for τ ′ > 0.
An integral representation of the kernel KABM→2

can be found in [16],
Definition 21, in the M = 1 case. To see the Brownian Motion behavior, one
has to take the τ ≪ −1 and replace s by s+ τ 2. This shift is needed to take
into account that the actual limit shape at the critical point changes from
(2.18) to (2.19). So, for large −τ , the approximation coming from (2.18) is
not optimal anymore. Indeed, using (2.19), s− τ 2 would be replaced by s in
(2.20).

The definition of the process for stationary TASEP, Astat, is quite intri-
cate [6]. Its joint distributions is the r.h.s. of Equation (1.9) in [6].

Definition 2.14. The last process, B, is simply a standard one dimensional
Brownian motion. Its finite dimensional distributions can be expressed in
terms of a Fredholm determinant: let 0 < τ1 < · · · < τm, thenP( m⋂

k=1

{B(τk) ≤ sk}
)

= det(1− χsKBχs)L2({τ1,...,τm}×R), (2.48)
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where χs(τk, x) = 1[x>sk], and the kernel KB is given by

KB(τ, s; τ
′, s′) =

1√
2πτ

exp

(
− s2

2τ

)
− 1[τ>τ ′]√

2π(τ − τ ′)
exp

(
− (s− s′)2

2(τ − τ ′)

)
.

(2.49)

3 Proof of results

3.1 Proof of Proposition 2.4

Let n,N be positive integers. Consider the directed percolation model with
one-sided boundary conditions (2.17). Let L1(n,N) be the last passage times
from (0, 0) to (n,N). The joint distribution of L1(n,N), n ≥ 0 can be ana-
lyzed thanks to the so-called Schur process studied in [17]4. In particular the
joint distribution of the last passage times in the directed percolation model
is given by:P( m⋂

k=1

{L1(nk, N) ≤ Sk}
)

= det(1− PSKNPS)L2({n1,...,nm}×R), (3.1)

where PS(k, x) := 1[x>Sk] and KN is the correlation kernel given by

KN(ni, x;nj, y) = −Ψni,nj
(x, y) +K1

N(ni, x;nj, y),

K1
N(ni, x;nj, y) =

1

(2πi)2

∮

C

dz

∮

C′

dw
ewy−zx

w − z

(z + 1− η)ni−1

(w + 1− η)nj−1

z

w

(w − η)N

(z − η)N
,

Ψni,nj
(x, y) = 1[ni<nj ]1[x<y]

1

2πi

∮

C′

dwew(y−x)(w + 1− η)ni−nj .

(3.2)
where C (resp. C′) is a contour oriented anticlockwise and enclosing η (resp.
0 and η − 1).

4The (N, p) in [17] corresponds to (n− 1, N) in this paper.
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3.1.1 The case where η > γ
1+γ

Consider the asymptotics of the correlation kernel with the rescaling5

ni =

(
1

1 + γ

)2

T +
2τi

(1 + γ)2/3γ2/3
T 2/3, N =

(
γ

1 + γ

)2

T,

xi = ℓ̃(τi, si) = T +
2τi(1 + γ)1/3

γ2/3
T 2/3 + si

(1 + γ)2/3

γ1/3
T 1/3.

(3.3)

We fix some s0 ∈ R and assume that si ≥ s0 for any i. To give the result we
need a few definitions. Let us set

wc = η − γ

1 + γ
, χ =

(1 + γ)1/3

γ2/3
, ρ =

(1 + γ)2/3

γ1/3
=

1 + γ

γχ
(3.4)

and Z(i) := exp
(
2τ 3i /3 + τisi + TFi(wc) + siT

1/3ρwc

)
where

Fi(w) = w

(
1 +

2τiχ

T 1/3

)
+

γ2

(1 + γ)2
ln(w−η)−

(
1

(1 + γ)2
+

2τi
T 1/3γρ

)
ln(w+1−η).

(3.5)

Proposition 3.1. Uniformly for si, sj in a bounded interval, it holds

lim
N→∞

ρT 1/3 Z(i)

Z(j)
K1

N(ni, xi;nj, xj)

=

∫ ∞

0

e−λ(τi−τj)Ai(si + τ 2i + λ) Ai(sj + τ 2j + λ)dλ+O(T−1/3).

(3.6)

Furthemore, for any κ > 0, there exists a T0 large enough such that

∣∣∣ρT 1/3 Z(i)

Z(j)
K1

N (ni, xi;nj , xj)
∣∣∣ ≤ Ce−κ(si+sj) (3.7)

for all si, sj ∈ R and T ≥ T0. The constant C is uniform in T ≥ T0 and
si, sj.

Proof of Proposition 3.1. The proof of Proposition 3.1 relies on a saddle
point analysis of the correlation kernel (3.2) with the rescaling (3.3). We
first rewrite the singularity 1/(w − z) in the kernel (3.2) as

1

w − z
= −

∫ ∞

0

eλ(w−z)ρT 1/3

ρT 1/3dλ. (3.8)

5Comparing (3.3) with (2.20) one sees two minor differences: (a) the integer parts are
not explicitly written, but it is irrelevant for the large T asymptotics and (b) ℓ̃ does not
have the shift by −τ2

i
on si. This is not a problem, because in our case the τi are chosen

in a bounded set. The scaling (2.20) is reobtained in the end by replacing si + τ2
i
by si.
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This allows us to rewrite K1
N as a product of two integral kernels:

ρT 1/3K1
N(ni, xi;nj, xj) =

∫ ∞

0

H(τi, si + λ)G(τj, sj + λ)dλ, (3.9)

where

H(τi, si) =
ρT 1/3

2πi

∮

C̃

e−Tz−2τiχT
2/3zz

(z + 1− η)
T

(1+γ)2
+2τi

T2/3

ργ

(z − η)T ( γ
1+γ

)2
e−siT

1/3ρzdz,

G(τi, si) =
ρT 1/3

2πi

∮

C′

eTw+2τiχT
2/3w 1

w

(w − η)T ( γ
1+γ

)2

(w + 1− η)
T

(1+γ)2
+2τi

T2/3

ργ

esiT
1/3ρwdw.

(3.10)

The contour C̃ is like C but instead of anticlockwise it is clockwise oriented.
Note that the two contours C̃ and C′ still cannot cross each other. To perform
a saddle point analysis of both G and H , we consider the first order leading
terms in the exponential. Recall Fi from (3.5). Then for τi in a uniformly (in
T ) bounded interval, Fi admits wc defined in (3.4) as unique critical point.
Furthermore

F ′′
i (wc) = 2(1 + γ)2

τi
γρ

T−1/3, F
(3)
i (wc) = −2

(γ + 1)2

γ
. (3.11)

Now we briefly expose the ideas of the asymptotics since such arguments
have already been developed many times (see e.g. [5] or at the beginning of
the proof of Lemma 6.1 in [12], where the steps are explained). From the
assumption η > γ

1+γ
it follows wc > 0. Consider the contours

C1 = {wc + teπi/3, t ∈ R}, C′
1 = {wc + te2πi/3, 0 ≤ t ≤ 2}. (3.12)

Then one has that

d

dt
ReFi

(
wc +

t

γ + 1
e2πi/3

)
=

−t4 + (γ − 1)t3 − 2γt2

(t2 − t+ 1)(t2 + γt+ γ2)
−τiχ

t(t + 1)

1− t+ t2
T−1/3.

(3.13)
The denominators in (3.13) is positive, being (product of) squared distances
between the poles of the integrand and the integration path, e.g., t2− t+1 =
(γ + 1)2|wc +

t
γ+1

e2πi/3 + 1− η|2. In particular ReFi decreases along C′
1. We

now complete the contour in the upper half-plane as follows. Call w0 the
endpoint of C′

1 and set r := |w0 − η + 1|. Let 0 < θ0 < π be such that
w0 = η − 1 + reiθ0. Define

C′
2 := {η − 1 + reiθ, θ0 ≤ θ ≤ π}. (3.14)
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C̃C′

wc

O(T−1/3)

Figure 3.1: The contours C̃ and C′ are slightly deformed in the neighborhood
of wc so that they don’t touch each other.

Then it is not hard to see that ReFi decreases along C′
2:

d

dθ
ReFi

(
η − 1 + reiθ

)
= −r sin θ

(
1 +

2τiχ

T 1/3
− 1

| − 1 + reiθ|2
)

< −cr sin θ,

(3.15)
for some constant c > 0. Thus C′ = C′

1 ∪ C′
2 ∪ C′

1 ∪ C′
2 is a steep descent path

for Fi.
For the z−contour, one has that

d

dt
ReFi

(
wc +

t

γ + 1
eπi/3

)
=

t4 + t3(γ − 1) + 2γt2

(1 + t+ t2)(t2 − γt + γ2)
+τiχ

t(t− 1)

1 + t+ t2
T−1/3.

(3.16)
In particular d

dt
ReFi(wc +

t
γ+1

eπi/3) > 0 as soon as t ≥ 1
2
γτiχT

−1/3. From the
latter we deduce that the main contribution to the z−integral will come from
a T−1/3 neighborhood of wc. The contour C1 is not a steep ascent contour
for Fi but is enough for the purpose of evaluating the integral: it is a steep
ascent path for the first order approximation of Fi, that is forgetting for a
while the O(T−1/3) terms in Fi.

In order to take care of the constraint on the contours C̃ and C′ which can-
not cross or touch each other, we now deform the w and z contours in a T−1/3

neighborhood of wc so that the w- (resp. z-) contour lies to the left (resp.

right) of wc (see Figure 3.1). As F ′′
i (w) = O(T−1/3), and F

(3)
i (w) = O(1) in

such a neighborhood, the fact that the two contours are moved of O(T−1/3)
from the critical point has no impact on the asymptotics: this follows from
a straightforward Taylor expansion of the exponential term.

We then make the change of variables

w = wc +
s

ρT 1/3
, z = wc +

t

ρT 1/3
. (3.17)
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Then it is not hard to see that for bounded si, sj it holds

1

wc
eTFi(wc)+siρT

1/3wcH(τi, si) =
1

2πi

∫ ∞eπi/3

∞e−πi/3

et
3/3−sit−τit

2

dt+O(T−1/3)

=Ai(τ 2i + si)e
−2τ3i /3−τisi +O(T−1/3),

wce
−TFj(wc)−siρT

1/3wcG(τi, si) =
1

2πi

∫ ∞e2πi/3

∞e−2πi/3

e−s3/3+sis+τis
2

dt+O(T−1/3)

=Ai(τ 2i + si)e
2τ3i /3+τisi +O(T−1/3).

(3.18)
In the above we used Appendix A in [6] to derive Airy identities. In the case
where si > 0, one also gets the following exponential decay: let κ′ > 0 be
given. Then, as we can modify the contours C and C′ so that Re(w − wc) <
− κ′

T 1/3ρ
while Re(z − wc) >

κ′

T 1/3ρ
one gets that

∣∣∣
1

wc
eTFi(wc)+siρT

1/3wcH(τi, si)
∣∣∣ ≤ C

e−κ′si

T 1/3
,

∣∣∣wce
−TFj(wc)−siρT 1/3wcG(τi, si)

∣∣∣ ≤ C
e−κ′si

T 1/3
.

(3.19)

This ensures that

lim
N→∞

ρT 1/3 Z(i)

Z(j)
K1

N(ni, xi;nj , xj) =

∫ ∞

0

e−λ(τi−τj)Ai(si+τ 2i +λ) Ai(sj+τ 2j +λ)dλ

(3.20)
in the trace-norm class (one can choose κ′ = max{|τi|, i = 1, . . . , N}+κ).

We also need to consider the asymptotics of ρT 1/3Ψni,nj
(xi, xj)

Z(i)
Z(j)

.

Proposition 3.2. For |si − sj | in a bounded interval, it holds

ρT 1/3Ψni,nj
(xi, xj)

Z(i)

Z(j)
=

1√
4π(τj − τi)

exp

(
−(sj − si)

2

4(τj − τi)

)
+O(T−1/3).

(3.21)
Furthermore for any κ > 0, there exists a T0 large enough such that

∣∣∣ρT 1/3Ψni,nj
(xi, xj)

Z(i)

Z(j)

∣∣∣ ≤ Ce−κ|si−sj |+(τi−τj)(si+sj)/2. (3.22)

for all si, sj ∈ R and T ≥ T0. The constant C is uniform in T ≥ T0 and
si, sj.
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Proof of Proposition 3.2. The asymptotics of Ψ are again analyzed through
a saddle point argument. Consider

f(w) := χw − (ργ)−1 ln(w + 1− η). (3.23)

Then

Ψni,nj
(xi, xj) =

1

2πi

∮

C′

e2(τj−τi)f(w)T 2/3+ρ(sj−si)wT 1/3

dw. (3.24)

The critical point is again wc = η− γ
1+γ

and f ′′(wc) = ρ2 > 0. We choose the
contour to be the circle centered at η − 1 and passing through wc: this is a
steep descent path. Making the change of variables w = wc +

it
ρT 1/3 one gets

that

ρT 1/3Ψni,nj
(xi, xj)e

−f(wc) =
1

2π

∫

R

e−t2(τj−τi)+it(sj−si)dt+O(T−1/3)

=
1√

4π(τj − τi)
exp

(
−(sj − si)

2

4(τj − τi)

)
+O(T−1/3).

(3.25)
Thus one obtains

ρT 1/3Ψni,nj
(xi, xj)e

T (Fi(wc)−Fj(wc))+(si−sj)T
1/3wc+2(τ3i −τ3j )/3+τisi−τjsj

=
1√

4π(τj − τi)
exp

(
−(sj − si)

2

4(τj − τi)
+

2

3
(τ 3i − τ 3j ) + τisi − τjsj

)
+O(T−1/3).

(3.26)
The exponential decay for large sj − si is obtained as in [6], Lemma 21. For
large positive sj−si we can modify the contour so that it lies to the left of wc:
Re(w−wc) < −κ′/(ρT 1/3) for any arbitrary κ′ > 0. For large negative sj−si,
the contour is modified in the following way: it is again a circle centered at
η− 1 but passing through w̃c := wc + κ′/(ρT 1/3). It is a simple computation
to check that f decreases along this modified contour and ensures that

∣∣∣ρT 1/3Ψni,nj
(xi, xj)e

T (Fi(wc)−Fj(wc))+(si−sj)T
1/3wc

∣∣∣ ≤ Ce−κ′|si−sj |. (3.27)

The complete details to derive (3.22) from the above estimate is given in
Lemma 21 in [6] (choosing again κ′ ≥ max |τi|+ κ).

Combining Proposition 3.1, Proposition 3.2 and the definitions of Sec-
tion 2.4 yields part (a1) of Proposition 2.4.
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3.1.2 The case where η = γ
1+γ

The rescaling is still given by (3.3). In this case, wc = 0. We recall that
the contour C′ has to encircle the pole w = 0. Thus to get the exponential
decay for large positive si, one needs to consider a different conjugation of
the kernel. Indeed it is no longer possible to deform the contour C′ so that
it lies to the left of wc. On the other hand, it is a well known fact that
conjugation does not impact on the correlation functions of a determinantal
random point process.

Let then δ > 0 be given. Define

Z(i, δ) := exp

(
2

3
τ 3i + τisi + TFi(wc) + siρT

1/3

(
wc +

δ

ρT 1/3

))
. (3.28)

Proposition 3.3. Uniformly for si, sj in a bounded interval, it holds

lim
N→∞

ρT 1/3Z(i, δ)

Z(j, δ)
K1

N(ni, xi;nj, xj)

= Ai(si + τ 2i )e
(si−sj)δ

(
e−2τ3j /3−τjsj −

∫ ∞

0

Ai(τ 2j + sj + x)eτjxdx

)

+ e(si−sj)δ

∫ ∞

0

e−λ(τi−τj) Ai(si + τ 2i + λ) Ai(sj + τ 2j + λ)dλ+O(T−1/3).

(3.29)
Furthemore, for any κ > 0, there exists a T0 large enough such that

∣∣∣ρT 1/3Z(i, δ)

Z(j, δ)
K1

N (ni, xi;nj , xj)
∣∣∣ ≤ e−κ(si+sj) (3.30)

for all si, sj ∈ R and T ≥ T0. The constant C is uniform in T ≥ T0 and
si, sj.

Proof of Proposition 3.3. Define then

H̃(τi, si) =
(ρT 1/3)2

2πi

∮

C̃

e−Tz−2τiχT
2/3zz

(z + 1− η)
T

(1+γ)2
+2τi

T2/3

ργ

(z − η)T ( γ
1+γ

)2
e−siT

1/3ρzdz,

G̃(τi, si) =
1

2πi

∮

C′

eTw+2τiχT
2/3w 1

w

(w − η)T ( γ
1+γ

)2

(w + 1− η)
T

(1+γ)2
+2τi

T2/3

ργ

esiT
1/3ρwdw.

(3.31)
We can now perform the saddle point analysis of the above kernels. We
use the same contours as in the proof of Proposition 3.1 up to the following
modifications: the contours C̃ and C′ are deformed in a T−1/3 neighborhood
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of wc = 0 so that C′ encircles 0 lying to the left of w̃c := wc+δ/(ρT 1/3) and C̃
remains to the right of w̃c. Furthermore we can assume that the distance of
these contours to w̃c is at least κ

′/T 1/3. From the preceding, one easily gets
for bounded si that

Z(i, δ)H̃(τi, si) = esiδ+
2
3
τ3i +τisi

1

2πi

∫ ∞eπi/3

∞e−πi/3

tet
3/3−sit−τit

2

dt+O(T−1/3)

= esiδ
(
−Ai′(τ 2i + si) + τi Ai(τ

2
i + si)

)
.

(3.32)
Similarly

G̃(τi, si)

Z(i, δ)
= e−siδ−2τ3i /3−τisi

1

2πi

∫ ∞e2πi/3

∞e−2πi/3

1

t
e−t3/3+sit+τit2dt+O(T−1/3), (3.33)

where the contour passes to the right of 0. Using again Appendix A in [6]

G̃(τi, si)

Z(i, δ)
= e−siδ

(
e−2τ3i /3−τisi −

∫ ∞

0

Ai(τ 2i + si + x)eτixdx

)
+O(T−1/3).

(3.34)
The exponential decay (as in (3.19)) for large positive si follows from the fact
that the w−contour (resp. z-contour) lies to the left (resp. right) of w̃c and
with a distance at least κ′/T 1/3. Again one shall choose κ′ ≥ maxi |τi|+ κ.

Finally, to derive the asymptotic correlation kernel in the case where si, sj
lie in a fixed bounded set, we use the simple algebra:

∫ ∞

0

e−λ(t−s)dλ
1

(2πi)2

∫ ∞e2πi/3

∞e−2πi/3

ds

∫ ∞eπi/3

∞e−πi/3

dt

(
t

s
− 1

)
et

3/3−sit−τit2

es3/3−sjs−τjs2

=
1

(2πi)2

∫ ∞e2πi/3

∞e−2πi/3

ds

∫ ∞eπi/3

∞e−πi/3

dt
1

s

et
3/3−sit−τit2

es3/3−sjs−τjs2
,

(3.35)

yielding the asymptotic of K1
N given in Proposition 3.3.

The asymptotic analysis of Ψ for wc = 0 is almost unchanged from the
last subsection. For bounded si − sj, one gets that

ρT 1/3Ψni,nj
(xi, xj)

Z(i, δ)

Z(j, δ)

=
e(si−sj)δ

√
4π(τj − τi)

exp

(
−(sj − si)

2

4(τj − τi)
+

2

3
(τ 3i − τ 3j ) + τisi − τjsj

)
+O(T−1/3).

(3.36)
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To get the exponential decay (as in (3.22)), one simply deforms the contour
to the right or left of w̃c depending on the sign of si − sj.

Combining the above with Proposition 3.3 and definitions in Section 2.4
yields part (a2) of Proposition 2.4, by using the fact that

det(1− χsK1χs)L2({τ1,...,τm}×R) = det(1− χsK
b
1χs)L2({τ1,...,τm}×R), (3.37)

where Kb
1(s, x; t, y) = eb(x−y)K1(s, x; t, y) for any b in a compact interval.

3.1.3 The case where η < γ
1+γ

Let m be a given integer. We now consider the asymptotic joint distributionP( m⋂

k=1

{
L1(T, γ

2
kT ) ≤

(
γ2
k

η
+

1

1− η

)
T + skT

1/2

})
. (3.38)

For k = 1, . . . , m we set

xk =

(
γ2
k

η
+

1

1− η

)
T + skT

1/2, nk = γ2
kT, ck =

√
γ2
k

η2
− 1

(1− η)2
.

(3.39)
We recall that the correlation kernel KN is defined in (3.2) and let us set

Z(i) :=
(−η)γ

2
i T

(1− η)T
, for a given small δ > 0.

Proposition 3.4. For si − sj in a bounded interval, it holds

lim
N→∞

√
T
Z(i)

Z(j)
e(si−sj)δKN(ni, xi;nj, xj)

=
e(si−sj)δ

√
2πc2i

exp

(
− s2i
2c2i

)
− 1[γi<γj ]

e(si−sj)δ

√
2π(c2j − c2i )

exp

(
− (si − sj)

2

2(c2j − c2i )

)
.

(3.40)
Furthermore, for any κ > 0, there exists a T0 large enough such that

∣∣∣∣
√
T
Z(i)

Z(j)
e(si−sj)δKN(ni, xi;nj, xj)

∣∣∣∣ ≤ Ce−κ|si−sj |, (3.41)

for all si, sj ∈ R and T ≥ T0. The constant C is uniform in T ≥ T0 and
si, sj.
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Proof of Proposition 3.4. Define

fj(w) :=

(
γ2
j

η
+

1

1− η

)
w + γ2

j ln(w − η)− ln(w + 1− η). (3.42)

Then

K1
N(ni, xi;nj, xj) =

1

(2πi)2

∮

C

dz

∮

C′

dw
z

w

1

w − z
eT (fj(w)−fi(z))+T 1/2(sjw−siz).

(3.43)
It is easy to check that the exponential term fj admits two critical points

wc = 0 and w−
c =

η2−γ2
j (1−η)2

γ2
j (1−η)+η

< 0. The critical point wc = 0 satisfies

f ′′(0) = 1
(1−η)2

− γ2
j

η2
< 0. The steep descent (resp. ascent) path for fj should

pass through w−
c (resp. wc = 0). Nevertheless the contour C′ has to encircle

the critical point wc. To deal with this difficulty, we separate the contribution
of the pose at w = 0 and the pole at w = η − 1. This will modify a little
bit the saddle point analysis, which turns out to be similar to the analysis in
Section 3 of [5].

Computing the residue at w = 0, one gets that

KN (ni, xi;nj , xj) =
1

(2πi)2

∮

C

dz

∮

C′′

dw
ewxj−zxi

w − z

(z + 1− η)T

(w + 1− η)T
z

w

(w − η)γ
2
j T

(z − η)γ
2
i T

−Ψni,nj
(xi, xj)−

1

(2πi)

∮

C

dze−zxi
(z + 1− η)T

(1− η)T
(−η)γ

2
j T

(z − η)γ
2
i T

,

(3.44)
where the contour C′′ does not encircle the pole w = 0.

Let us first consider

K2
N(ni, xi;nj, xj) :=

1

(2πi)

∮

C

dze−zxi
(z + 1− η)T

(1− η)T
(−η)γ

2
j T

(z − η)γ
2
i T

. (3.45)

For ease we assume that η < 1/2 so that γj > 1, j = 1, . . . , m. Set the contour
C1 = {z = it, |t| ≤ 2}. Then 2Re(fi(it)) = γ2

i ln(t
2 + η2)− ln(t2 + (1− η)2) so

that

d

dt
Re(fi(it)) = t

(
γ2
i

t2 + η2
− 1

t2 + (1− η)2

)
= t

(γ2
i − 1)t2 + γ2

i (1− η)2 − η2

(t2 + η2)(t2 + (1− η)2)
(3.46)

has the same sign as t. Thus C1 is a steep descent path for −fi with maxi-
mum at z = 0. We complete C1 by the contour C2 = {z = η+

√
4 + η2eiθ, 0 ≤
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θ ≤ θ0} where θ0 is defined by η +
√

4 + η2eiθ0 = 2it. Then setting

z = η +
√

4 + η2eiθ,

Re
d

dθ
fi(z) = −Im(z)

(
γ2
i

η
+

1

1− η
− 1

|z + 1− η|2
)
, (3.47)

and there exists a c > 0 such that
γ2
i

η
+ 1

1−η
− 1

|z+1−η|2
≥ c along C2, so that

also C2 is a steep descent path for −fi.
Then, for bounded si we obtain

lim
N→∞

√
T
Z(i)

Z(j)
K2

N(ni, xi;nj, xj) =
1

2πci

∫

R

e−t2/2+itsi/cidt =
1√
2πci

e
−

s2i
2c2

i .

(3.48)
Next, we consider

K3
N (ni, xi;nj , xj) :=

1

(2πi)2

∮

C

dz

∮

C′′

dw
ewxj−zxi

w − z

(z + 1− η)T

(w + 1− η)T
z

w

(w − η)γ
2
j T

(z − η)γ
2
i T

(3.49)
for some constant C > 0. We set C′′ = {|w−

c |eiθ, θ ∈ [0, 2π]} so that w−
c −η =

−γj(1− η) ensuring that

d

dθ
Refj(|w−

c |eiθ) < −|w−
c | sin θ

(
γ2
j

η
− η

(1− η)2

)
< −C sin θ, (3.50)

for 0 ≤ θ ≤ π. Thus Refj achieves its maximum on C′′ at w = w−
c . Now a

simple computation shows that fj(0)− fj(w
−
c ) =

∫ 0

w−

c
f ′
j(x)dx > 0. Thus, one

has that ∣∣∣∣
√
T
Z(i)

Z(j)
K3

N(ni, xi;nj, xj)

∣∣∣∣ ≤ Ce−cT , (3.51)

for some constants C, c > 0. Thus, for bounded si we obtain

lim
N→∞

√
T
Z(i)

Z(j)
K3

N(ni, xi;nj , xj) = 0. (3.52)

To consider large positive si, we consider the conjugated kernel

K1
N (ni, xi;nj , xj)e

(si−sj)δ, (3.53)

for some δ > 0 small. The contours C1 is modified so that it passes to the
right of (δ+ κ)/T 1/2. The w−contour passes to the left of (δ−κ)/T 1/2. The
exponential decay for large positive si follows.
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The analysis of Ψni,nj
is similar to those of the preceding sections. The

exponential term to be considered is

g(w) := (γ2
i − γ2

j )

(
w

η
+ ln(w − η)

)
. (3.54)

g has a single critical point wc = 0 with g′′(0) = −γ2
i −γ2

j

η2
= c2j − c2i . Consider

the contour w = η(1 + eiθ). Then the leading (i.e., non exponentially neg-
ligible) contribution to Ψni,nj

comes from a neighborhood of width T−1/2 of
w = 0. Thus for bounded |sj − si| we deduce that

lim
T→∞

√
T
Z(i)

Z(j)
Ψni,nj

(xj , xi) =
1

2π

∫

R

dte−(c2j−c2i )t
2/2+it(si−sj)

=
1√

2π(c2j − c2i )
exp

(
− (si − sj)

2

2(c2j − c2i )

)
.

(3.55)

For large |sj − si|, we consider the conjugated kernel

KN (ni, xi;nj , xj)e
(si−sj)δ. (3.56)

Depending on the sign of si − sj we modify the contour to be the circle of
ray δ ± 2κ′/

√
T . This ensures the exponential decay for large |si − sj|.

The above Proposition 3.4 has the required asymptotic results needed to
conclude part (b) of Proposition 2.4.

3.2 Coupling Lemmas

The following technical lemmas provide a basis for the coupling arguments
necessary in our proof of Theorem 2.9. They provide generalizations of
Lemma 4.1 and Lemma 4.2 of [10] from one-point functions to n-point func-
tions. The proofs, however, are almost identical.

For the purpose of the lemmas let Xn and X̃n take values in R
k. We

say that Xn ≥ X̃n if, with probability one, every coordinate of Xn is greater
than or equal to the corresponding coordinate of X̃n. We say that Xn ⇒ F ,
where F is a distribution function on R

k if for all ε > 0 and (s1, . . . , sk) a
continuity point of F , there exists an N = N(ε, s1, . . . , sk) such that for all
n > N , ∣∣P (∩k

i=1{X i
n ≤ si}

)
− F (s1, . . . , sk)

∣∣ < ε. (3.57)

Finally we say that Xn − X̃n converges in probability to zero if for all ε > 0,
limn→∞P(‖Xn− X̃n‖∞ > ε) → 0 (the infinity norm is just that max over all
finitely many coordinates: ‖X‖∞ = max1≤i≤k |X i|).

In the three lemmas below we assume all random variables are Rk valued.
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Lemma 3.5. If Xn ≥ X̃n and Xn ⇒ D as well as X̃n ⇒ D, then Xn − X̃n

converges to zero in probability. Conversely, if Xn ≥ X̃n, X̃n ⇒ D and
Xn − X̃n converges to zero in probability then Xn ⇒ D as well.

For vectors X and Y in R
k we define Z = max(X, Y ) to be the coordinate-

wise maximum (i.e., Z i = max(X i, Y i) for i = 1, . . . , k).

Lemma 3.6. Assume Xn ≥ X̃n and Xn ⇒ D1 as well as X̃n ⇒ D1; and
similarly Yn ≥ Ỹn and Yn ⇒ D2 as well as Ỹn ⇒ D2. Let Zn = max(Xn, Yn)
and Z̃n = max(X̃n, Ỹn). Then if Z̃n ⇒ D3, we also have Zn ⇒ D3.

Lemma 3.7. Assume Xn ≥ X̃n and Xn ⇒ D1 as well as X̃n ⇒ D1; and
similarly Yn ≥ Ỹn and Yn ⇒ D2 as well as Ỹn ⇒ D2. Then if (X̃n, Ỹn) ⇒ F
(a 2k-dimensional distribution function) so does (Xn, Yn) ⇒ F . More gen-
erally this also applies to m sequences of random variables under the same
hypotheses on each sequence and on their m-point joint distribution function
limit.

Proof of Lemma 3.5. This proof is a straight forward generalization of the
proof of Lemma 4.1 of [10] and hence we will not reproduce it. All inequalities
in the original proof should now be considered as holding true coordinate-
wise, all absolute values should be replaced by ℓ∞ norms (on R

k). The ε sized
blocks used should be replaced by k dimensional ε boxes, and all intervals
should interpreted as boxes in R

k. Other than these changes, the proof goes
through word for word.

Proof of Lemma 3.6. Again this proof is word for word the same as Lemma
4.2 of [10], with the modified interpretations of notation noted above.

Proof of Lemma 3.7. Lemma 3.5 shows that Xn − X̃n and likewise Yn − Ỹn

converges in probability to zero. This implies that for all ε > 0, using the
triangle inequality and the union bound,P(‖(Xn, Yn)− (X̃n, Ỹn)‖∞ > ε) ≤ P(‖Xn−X̃n‖∞ > ε)+P(‖Yn− Ỹn‖∞ > ε),

(3.58)
which, by Lemma 3.5 goes to zero as n → ∞. This immediately implies that
the joint (Xn, Yn) converge to the same distribution as (X̃n, Ỹn). Lemma 3.6
is, in fact a corollary of this result. The generalization follows by the exact
same argument as above.
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3.3 Proof of Theorem 2.9

In Section 3.1 we proved Proposition 2.4 directly from asymptotic analysis
of the Schur Process. From that theorem we will, using the three lemmas
above and the slow decorrelation result of Proposition 2.5, provide proofs of
Proposition 2.8 and Theorem 2.9.

Proof of Proposition 2.8. The proof is based on Proposition 2.4 together with
slow-decorrelation phenomenon (Proposition 2.5, see also Remark 2.7).

Consider first cases (a1) and (a2). Denote by τ̃k the number such that
(x(τ̃k), y(τ̃k)) (defined in (2.20)) and (x(τk, θk), y(τk, θk)) (defined in (2.29)
belongs to the same characteristic line. Moreover, notice that the projection
along the characteristic direction for τ = 0 to the line y = γ2

(1+γ)2
T is obtained

by choosing

θk = 2τk
(1 + γ)4/3

γ2/3(1 + γ2)
T 2/3−ν (3.59)

in (2.29). However, the slope of the characteristic line passing by
(x(τk, θk), y(τk, θk)) differs from the slope of the characteristic line for τk = 0
by just O(T−1/3). Therefore, as ν < 1, τ̃k = τk +O(T ν−1) → τk as T → ∞.
Also, due to slow decorrelations, the fluctuation of L1(x(τk, θk), y(τk, θk)) dif-
fers from the fluctuation of L1(x(τ̃k), y(τ̃k)) by o(T 1/3), whose differs from the
fluctuations of L1(x(τk), y(τk)) again by o(T 1/3). Thus Proposition 2.8 (a1)
and (a2) follows.

The case (b) is even simpler. In that case, the point (θkT, γ
2
kθkT ) is on

the same characteristic line as (T, γ2
kT ), at a distance O(T ). Therefore by

Proposition 2.5 (b) the fluctuations of L1(θkT, γ
2
kθkT ) and L1(T, γ

2
kT ) differs

only by o(T 1/2), from which Proposition 2.8 (b) follows.

Proof of Theorem 2.9. We follow the method of [10] and define two coupled
random vectors X and Y . X is the vector of last passage times from (0, 0)
to (x(τi, θi), y(τi, θi)), 1 ≤ i ≤ m, with last passage paths forced to take a
first step to the right, and Y is the vector of last passage times with paths
forced to take a first step up. Therefore, their coordinate-wise maximum
Z = max(X, Y ) is the last passage times without any restrictions on the first
step (i.e., Z i = L2(x(τi, θi), y(τi, θi)). A key observation is that X and Y
are both marginally distributed as the last passage times for last passage
percolation models with only one-sided boundary conditions (as opposed to
the two-sided conditions we must consider for Z). In the case of Y the one-
sided boundary waiting time is exponential of mean 1/η and in the case of X
the boundary waiting time is exponential of mean 1/π. But the coordinates
must be flipped so as to conform to our definition of last passage percolation
with one-sided boundary conditions (the boundary condition should appear
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on the left boundary, not the bottom). Depending on the regime of fluctua-
tions we will be able to compare the random vectors to related but simplified
vectors X̃ and Ỹ which have the same asymptotic limiting distribution but
are strictly less than X and Y . Then, using the coupling lemmas we will be
able to show that Z and Z̃ = max(X̃, Ỹ ) have the same distribution limits as
T goes to infinity. However, as X̃ and Ỹ are simpler than X and Y , we will
be able to identify Z̃ exactly and hence determine the asymptotic multipoint
distribution of Z, completing our proof.

As slightly different coupling arguments are necessary for each part of the
theorem we will split the proof up according to the four cases of the theorem.

3.3.1 Proof of Theorem 2.9 part (a1)

This case corresponds to both X and Y being last passage time vectors from
last passage percolation models with one-sided boundary conditions of small
enough mean so as to behave asymptotically the same as the corresponding
models without boundary conditions. With this in mind we define X̃ and
Ỹ , random vectors which are coupled to X and Y in terms of the underlying
random last passage waiting times. Let X̃ = X and let Ỹ be the vector of last
passage times defined by Ỹ i = L̃1(x(τi, θi), y(τi, θi)). The new last passage
time L̃1 is the last passage time in a coupled model where the boundary
waiting times (which are exponential with mean 1/η) are multiplied by η
(hence making them distributed as exponentials of mean 1). The key is
that this random last passage time is coupled to the last passage time L1)
since that they are based off of the same random waiting times. Additional,
because of η ≤ 1 it holds L̃1 ≤ L1. Therefore Ỹ ≤ Y where the inequality
is in terms of each coordinate separately. More trivially we also have that
X̃ ≤ X .

In order to apply our coupling lemmas we must center and rescale X, Y, X̃
and Ỹ so that our new X = (X1, . . . , Xm) equals the vector with coordinates

X i − ℓ(τi, θi, 0)

(1 + γ)2/3γ−1/3T 1/3
, 1 ≤ i ≤ m, (3.60)

with ℓ(τ, θ, 0) given in (2.29), and likewise for the other variables. Under
this centering and rescaling X̃ ≤ X and Proposition 2.8 shows that both
X̃ and X converge in joint-distribution to the same A2 process as T → ∞.
Likewise Ỹ ≤ Y by construction and Ỹ and Y converge in joint-distribution
to the same A2 process as well. Moreover, Z̃ = max(X̃, Ỹ ) is (except for a
single waiting time of zero at the origin, which is asymptotically irrelevant)
the last passage time vector for a one-sided last passage percolation model
with boundary waiting times with mean 1/η. Proposition 2.8 shows that Z̃

36



converges in joint-distribution to theA2 process. Therefore, using Lemma 3.6
it follows that Z = max(X, Y ) also converges to the A2 process, which is
exactly what we needed to prove.

3.3.2 Proof of Theorem 2.9 part (a2)

We are in the case of η = γ(1 + γ)−1 and π > (1 + γ)−1. As such, we can
apply the exact same argument as in the proof of part (a1) above. The only
difference is that the Z̃ process will now, as determined by Proposition 2.8,
converge to the ABM→2 process. Therefore Z will also converge in finite-
distribution to the ABM→2 process, which is, again, what we desired to show.

3.3.3 Proof of Theorem 2.9 part (a3) (see [6])

This proof is the subject of the recent paper [6]. The coupling techniques
employed for all of the other proof do not apply here. The heuristic explana-
tion is that the last passage time comes from the competition of two sets of
paths each of which goes along the boundary for distance of order T 2/3 and
then enters the bulk. Because the range of the transversal fluctuations of a
last passage path are of that order T 2/3, these sets of paths have non-trivial
correlation, which is evident in that fact that they yield a different process,
the Astat process.

3.3.4 Proof of Theorem 2.9 part (b)

As before we write the last passage random variable L2(θiT, γ
2
i θiT ) as

max(X i, Y i) where X i and Y i are coupled last passage times, restricted to
paths which step first right or up, respectively. We now couple X i with X̃ i

which is the last passage time when forced to stay along the bottom edge for
a specific deterministic fraction of the path, and then depart into the bulk.
Specifically we define X̃ i to be the max of passage times over all paths which
go distance (

1− γ2
i

(π−1 − 1)2

)
θiT (3.61)

and then take a step up. Likewise we define Ỹ i to be the max of the passage
times over all paths which go distance

(
γ2
i −

1

(η−1 − 1)2

)
θiT (3.62)

and then take a step right. It is clear that X̃ i ≤ X i and that Ỹ i ≤ Y i. What
is not obvious is the choice of distances. In short, this is given by the solution
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to an optimization problem at the level of the law of large numbers (see [5]
for an explanation of this heuristic).

Define the following events: for i ∈ {1, . . . , ml +ms}, set

Ei =

{
L2(θiT, γ

2
i θiT ) ≤

(
γ2
i

η
+

1

1− η

)
θiT + siT

1/2

}
, (3.63)

while for i ∈ {1 +ml +ms, . . . , m}, set

Ei =

{
L2(θiT, γ

2
i θiT ) ≤

(
1

π
+

γ2
i

1− π

)
θiT + siT

1/2

}
. (3.64)

Notice that for i ∈ {ml + 1, . . . , ml + ms} both definitions are identical.

Likewise, define Ẽi except in place of L2(θiT, γ
2
i θiT ) use Z̃ i = max(X̃ i, Ỹ i).

Let us denote L2(θiT, γ
2
i θiT ) = max(X i, Y i) as Z i. It is clear that Z̃ i ≤ Z i.

We claim that

lim
T→∞

P( m⋂

k=1

Ek

)
= lim

T→∞
P( m⋂

k=1

Ẽk

)
. (3.65)

For i ∈ {1, . . . , ml} center and scale X i, X̃ i, Y i, Ỹ i, Z i and Z̃ i by applying

x 7→
x−

(
γ2
i

η
+ 1

1−η

)
θiT

T 1/2
. (3.66)

It follows from the one-point fluctuation result of [10] that the centered and
scaled Z̃ i and Z i both converge in distribution to the same Gaussian random
variable with variance

θi

[
γ2
i

η2
− 1

(1− η)2

]
. (3.67)

For i ∈ {ml +ms + 1, . . . , m} we center and scale with

x 7→
x−

(
1
π
+

γ2
i

1−π

)
θiT

T 1/2
. (3.68)

Then the centered and scaled Z̃ i and Z i both converge in distribution to the
same Gaussian random variable with variance

θi

[
1

π2
− γ2

i

(1− π)2

]
. (3.69)

For i ∈ {ml + 1, . . . , ml + ms} we center and scale as (3.66). Then the
centered and scaled Z̃ i and Z i both converge in distribution to the maximum
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of two Gaussian random variables with variances given by equations (3.67)
and (3.69).

Since for every i ∈ 1, . . . , m, the centered and scaled Z i and Z̃ i converge
to the same distributions, and since Z̃ i ≤ Z i, Lemma 3.7 implies that the
asymptotic joint distribution of the Z i, and of the Z̃ i converge to the same
distribution. This proves the claim given in equation (3.65).

Therefore it remains to show that the joint distribution of the Z̃ i behaves
as desired. The fluctuations given by Z̃ i are a combination of the fluctuations
from the boundary waiting times and from the bulk waiting times. However,
since we scaled by T 1/2 and since the boundary and bulk fluctuations are
independent, the bulk fluctuations have a prefactor of T−1/6 and hence (by,
for instance applying the Converging Together Lemma on page 89 of [24])
only the boundary fluctuations contribute asymptotically. The covariance
of these fluctuations depends on portion of the boundary which the X̃ i and
Ỹ i depend upon. We can encode this covariance structure in terms of two
independent Brownian motions (one for the left boundary and one for the
bottom boundary). For i ∈ {1, . . . , ml} all of the fluctuations come from the
left boundary. For i ∈ {ml+ms+1, . . . , m} all of the fluctuations come from
the bottom boundary. For i ∈ {ml +1, . . . , ml +ms} fluctuations come from
the maximum of the left and bottom boundary Brownian motions. Writing
down this joint distribution leads exactly to (2.39).

Remark 3.8. It is worth noting that in the proof of part (b) above we
did not, in fact, appeal to the analogous one-sided last passage percolation
result of Proposition 2.8. This is because we needed to establish the product
structure and hence reduce everything to just processes along the boundary.
As such the Brownian motion results of Proposition 2.4 and 2.8 may, in fact,
be proved directly in this manner (as they are corollaries of this result) and
do not require the asymptotic analysis of the Schur process.

3.4 Proof of the TASEP height function theorem

Proof of Theorem 2.1. The connection between two-sided directed percola-
tion and TASEP has been discussed in Section 2.2.1. Consider first the cases
(a1)-(a3). From (2.16) we haveP( m⋂

k=1

{hT+θkT ν(X(τk, θk)) ≥ H(τk, θk, sk)}
)

= P( m⋂

k=1

{L2(xk, yk) ≤ T + θkT
ν}
)

(3.70)
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with (difference of order 1, due to the integer parts which are not explicitly
written since they are irrelevant in the asymptotics)

xk = 1
2
(X(τk, θk) +H(τk, θk, sk)),

yk =
1
2
(H(τk, θk, sk)−X(τk, θk)),

(3.71)

where X and H are defined in (2.9). Explicitly, by setting γ := (1−ξ)/(1+ξ),
i.e., ξ = (1− γ)/(1 + γ), we have

xk =
1

(1 + γ)2
(T + θkT

ν) + τk
2γ1/3

(1 + γ)5/3
T 2/3 + (τ 2k − sk)

γ2/3

(1 + γ)4/3
T 1/3,

yk =
γ2

(1 + γ)2
(T + θkT

ν)− τ
2γ4/3

(1 + γ)5/3
T 2/3 + (τ 2k − sk)

γ2/3

(1 + γ)4/3
T 1/3.

(3.72)
Once the problem is rewritten in terms of directed percolation, the the-

orem is proven using Theorem 2.9 and the slow decorrelation (see Proposi-
tion 2.5), i.e., we use a similar strategy of the proof of Proposition 2.8 starting
from Proposition 2.4.

For the above given (xk, yk), the limit shape (2.18) gives us

xk(1 +
√

yk/xk)
2 = T + θkT

ν − sk
(1 + γ)2/3

γ1/3
T 1/3 +O(1). (3.73)

Therefore,P( m⋂

k=1

{L2(xk, yk) ≤ T + θkT
ν}
)

= P( m⋂

k=1

{
L2(xk, yk) ≤ xk(1 +

√
yk/xk)

2 + sk
(1 + γ)2/3

γ1/3
T 1/3 +O(1)

})
.

(3.74)

The fluctuations (with respect to the limit shape behavior) are, by the slow
decorrelation theorem, the same as the fluctuations of the projection along
the characteristic line on the line x + y = 1+γ2

(1+γ)2
(T + θkT

ν). Exactly as in
the proof of Proposition 2.8, we can use an approximate characteristic line,
namely the characteristic line for τk = sk = 0. We look for τ̃k such that

xk = x(τ̃k, θk) + r(1 + γ)−2,

yk = y(τ̃k, θk) + rγ2(1 + γ)−2 (3.75)

with x(τ, θ), y(τ, θ) as defined in (2.29). If τ̃k → τk as T → ∞, then
the theorem is proven. This is the case, algebraic computations lead to
τ̃k = τk +O((sk − τ 2k )T

−1/3) as desired.
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Consider now the case (b). From (2.16) we haveP( m⋂

k=1

{hθkT (ξkθkT ) ≥ hma(ξk)θkT−2skT
1/2}

)
= P( m⋂

k=1

{L2(xk, yk) ≤ θkT}
)

(3.76)
with

xk = 1
2
(ξkθkT + hma(ξk)θkT − 2skT

1/2),

yk =
1
2
(hma(ξk)θkT − ξkθkT − 2skT

1/2).
(3.77)

Let us focus on the case ξk ≤ 1− (ρ− + ρ+) (remind η = ρ− and π = ρ+); we
have

xk = (1− ρ−)(ρ− + ξk)θkT + skT
1/2,

yk = ρ−(1− ρ− − ξk)θkT + skT
1/2.

(3.78)

Let θ̃k and γ̃k such that xk = θ̃kT and yk = θ̃kγ̃
2
kT . Then, we get

θkT = S(γ̃k)θ̃kT + sk
T 1/2

ρ−(1− ρ−)
, (3.79)

and
θ̃k = (1− ρ−)(ρ− + ξk)θk +O(T−1/2). (3.80)

Then, we can apply directly (2.39) with θk replaced by θ̃k, γk by γ̃k and sk
replaced by sk/(ρ−(1−ρ−)) (similarly for the case ξk > 1− (ρ−+ ρ+)) to get

lim
T→∞

P( m⋂

k=1

{L2(xk, yk) ≤ θkT}
)

= P(ml+ms⋂

k=1

{
B
(
θk
1− 2ρ− − ξk
ρ−(1− ρ−)

)
≤ sk

ρ−(1− ρ−)

})

×P( m⋂

k=ml+1

{
B′

(
θk
ξk + 2ρ+ − 1

ρ+(1− ρ+)

)
≤ sk

ρ+(1− ρ+)

})
.

(3.81)

Finally, one uses the scaling of Brownian Motion to rewrite it as in (2.14).
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