
UNIVERSALITY OF SLOW DECORRELATION IN KPZ GROWTH

IVAN CORWIN, PATRIK L. FERRARI, AND SANDRINE PÉCHÉ

Abstract. There has been much success in describing the limiting spatial fluctuations
of growth models in the Kardar-Parisi-Zhang (KPZ) universality class. A proper
rescaling of time should introduce a non-trivial temporal dimension to these limiting
fluctuations. In one-dimension, the KPZ class has the dynamical scaling exponent
z = 3/2, that means one should find a universal space-time limiting process under the
scaling of time as t T , space like t2/3X and fluctuations like t1/3 as t → ∞.

In this paper we provide evidence for this belief. We prove that under certain
hypotheses, growth models display temporal slow decorrelation. That is to say that in
the scalings above, the limiting spatial process for times t T and t T+tν are identical, for
any ν < 1. The hypotheses are known to be satisfied for certain last passage percolation
models, the polynuclear growth model, and the totally / partially asymmetric simple
exclusion process. Using slow decorrelation we may extend known fluctuation limit
results to space-time regions where correlation functions are unknown.

The approach we develop requires the minimal expected hypotheses for slow decor-
relation to hold and provides a simple and intuitive proof which applied to a wide
variety of models.

1. Introduction

Kardar, Parisi and Zhang (KPZ) [26] proposed on physical grounds that a wide variety
of irreversible stochastically growing interfaces should be governed by a single stochastic
PDE (with two model dependent parameters D, λ 6= 0). Namely, let x 7→ h(x, t) ∈ R

be the height function at time t and position x ∈ Rd, then the KPZ equation is

∂h(x, t)

∂t
= D∆h(x, t) + λ|∇h(x, t)|2 + η(x, t),

where η(x, t) is a local noise term modeled by space-time white noise. Since then, it has
been of significant interest to make mathematical sense of this SPDE (which is ill-posed
due to the non-linearity) and to find the solutions for large growth time t.
Significant progress has been made towards understanding this equation in the one-

dimensional d = 1 case. Specifically, it is believed that the dynamical scaling exponent
is z = 3/2. This should mean that for any growth model (also polymer models) in
the same universality class as the KPZ equation (i.e., the KPZ universality class), after
centering h by its asymptotic value h̄(v) := limt→∞

1
t
h(vt, t) and rescaling1

ht(X, T ) =
h(vT t+X(T t)2/3, T t)− T t h̄(v +X(T t)−1/3)

(T t)1/3
, (1)
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the limit of ht(X, T ) should exist (as t → ∞) and be independent of v. Moreover, the
limit should, regardless of microscopic differences in the original models, converge to
the same space-time process 2.
Most of the rigorous work3 done in studying the statistics associated with this fixed

point have dealt with the spatial process (obtained as the asymptotic statistics of
ht(X, T = 1) as a process in X , as t → ∞) and not on how the spatial process evolves
with T . The exact form of these statistics depend only on the type of initial geometry
of the growth process (e.g., the Airy1 process for non-random flat geometries and Airy2
process for wedge geometries; see the review [20]).
Computations of exact statistics require a level of solvability and thus have only been

proved in the context of certain solvable discrete growth models or polymer models in
the KPZ universality class. The partially/totally asymmetric simple exclusion process
(P/TASEP), last passage percolation (LPP) with exponential or geometric weights, the
corner growth model, and polynuclear growth (PNG) model constitute those models
for which rigorous spatial fluctuation results have been proved. Recently, progress was
made on analyzing the solution of the KPZ equation itself [1,7,16,34], though this still
relied on the approximation of the KPZ equation by a solvable discrete model.
The slow decorrelation phenomenon provides one of the strongest pieces of evidence

that the above scaling is correct. Indeed, slow decorrelation means that ht(X, T ) −
ht(X, T + tν−1) converges to zero in probability for any ν < 1. Fix m times of the form
T t + αit

ν (for αi ∈ R and 0 < i ≤ m). Then, as long as ν < 1, the height function
fluctuations, scaled by t1/3 and considered in a spatial scale of t2/3, will be asympotically
(as t → ∞) the same as those at time T t.
Specifically, we introduce a generalized LPP model which encompasses several KPZ

class models. Then we give sufficient conditions under which such LPP models dis-
play slow decorrelation. These conditions (the existence of a limit shape and one-point
fluctuation result) are very elementary and hold for all the solvable models already
mentioned, and are believed to hold for all KPZ class models. The proof that slow
decorrelation follows from these two conditions is very simple – it relies on the superad-
ditivity property of LPP and on the simple observation that if Xt ≥ Yt and both Xt and
Yt converge in law to the same random variable, then Xt − Yt converges in probability
to zero (see Lemma 2.3).
Previously, the slow decorrelation phenomenon was proved for the PNG model [19].

Therein the proof is based on very sharp estimates known in the literature only for the
PNG. Apart from the PNG, the only other model for which slow decorrelation has been
proved is TASEP under the assumption of stationary initial distribution [4].
Besides being of conceptual interest, the slow decorrelation phenomenon is an impor-

tant technical tool that allows one to, for instance: (a) easily translate limit process
results between different related observables (e.g., total current, height function repre-
sentation, particle positions in TASEP; see [4]), and more importantly, (b) prove limit
theorems beyond the situations where the correlation functions are known [8,12,22] (see
Section 3.1). A further application is in extending known process limit results to prove
similar results for more general initial conditions / boundary conditions [15].

2As explained in the forthcoming paper [17], this space-time process is expected to be a non-trivial
renormalization fixed point for the whole KPZ universality class. See also [25, 27, 28] for previous
discussion of space-time scalings in the physics literature.

3Results for joint distributions at different times before taking t to infinity have been derived, first
in the problem of tagged particle in the TASEP [22], and then in more general models [8,12]. However,
the different times are restricted to lie in an interval of width O(t2/3).
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Outline. In Section 2 we introduce the general framework for LPP models in which we
prove a set of criteria for slow decorrelation (Theorem 2.1). In the rest of the paper, we
apply Theorem 2.1 to various models in the KPZ class, which can be related in some
way with a LPP model: the corner growth model, point to point and point to line LPP
models, TASEP, PASEP (which requires a slightly different argument since it cannot
be directly mapped to a LPP problem) and PNG models. Finally we note extensions
of the theorem to first passage percolation and directed polymers, provided that (as
conjectured) the same criteria are satisfied.

Acknowledgments. The authors wish to thank Jinho Baik for early discussions about
this and related problems. I. Corwin wishes to thank the organizers of the “Random
Maps and Graphs on Surfaces” conference at the Institut Henri Poincaré, as much of
this work was done during that stay. Travel to that conference was provided through
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Research Fellowship. S. Péché would like to thank Hervé Guiol for useful discussions on
TASEP and her work is partially supported by the Agence Nationale de la Recherche
grant ANR-08-BLAN-0311-01. The authors are very grateful to the anonymous referee
for careful reading and a number of constructive remarks.

2. A sufficient condition for slow decorrelation

In this section we consider a general class of last passage percolation models (or
equivalently growth models). Given the existence of a law of large numbers (LLN)
and central limit theorem (CLT) for last passage time (or for the associated height
function), we prove that such models display slow decorrelation along their specific,
model dependent, “characteristic” directions.
We consider growth models in Rd+1 for d ≥ 1 which may be lattice based or driven

by Poisson point processes. We define a directed LPP model to be an almost surely
sigma-finite random non-negative measure µ on Rd+1. For example we could take µ to
be a collection of delta masses at every point of Zd+1 with weights given by random
variables (which need not be independent or identically distributed). Alternatively we
could have a Poisson point process such as in the LPP realization of the PNG model.
We will focus on a statistic we call the directed half-line to point last passage time. We
choose to study this since, by specifying different distributions on the random measure
µ one can recover statistics for a variety of KPZ class models. In order to define this
passage time we introduce the half-line

HL = {p : p1 = p2 = · · · = pd+1 ≤ 0},

where pi is the i coordinate of the point p.
It is convenient for us to define a second coordinate system which we call the space-

time coordinate system as follows: Let R be the rotation matrix which takes HL to
{p : p1 ≤ 0, p2 = · · · = pd+1 = 0}. Then the space-time coordinate system is R−1

applied to the standard basis. The line {p : p1 = p2 = · · · = pd+1} (which contains HL)
is the inverse image of {p : p2 = · · · = pd+1 = 0} and we call it the t-axis (for “time”),
see Figure 1 for an illustration. The other space-time axes are labeled x1 through xd

(these are considered to be “space” axes). Call a curve π in Rd+1 a directed path if
γ = Rπ is a function of t and is 1-Lipschitz. Two points are called “time-like” if they
can be connected by such a path. Otherwise they are called “space-like”.
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Figure 1. The black line is half-line HL and the space and time axis
are label. A directed path π from HL to the point p is shown.

To a directed path we assign a passage time

T (π) = µ(π)

which is the measure, under the random measure µ of the curve π. Now we define the
last passage time from the half-line HL to a point p as

LHL(p) = sup
π:HL→p

T (π),

where we understand the supremum as being over all directed paths starting from
the half-line and going to p. One may also consider point to point last passage time
between p and q which we write as LPP(p, q). This is the special case of µ ≡ 0 on
{x : x− p ∈ Rd+1 \ Rd+1

+ }.
In Section 3 we show how, by specifying the random measure µ differently, this model

encompasses a wide variety of LPP models and related processes (such as TASEP and
PNG). Just to illustrate though, take d = 1 and let µ be composed of only delta masses
at points p in Z2

+ with mass wp exponentially distributed with rate 1. Then LHL(p) is
the last passage time for the usual LPP in a corner (or equivalently the corner growth
model considered in Section 3.1). We present our result in this more general framework
to allow for non-lattice models such as the PNG model.
We can now state a result showing that slow decorrelation occurs in any model which

can be phrased in terms of this type of last passage percolation model provided both a
LLN and a CLT hold.

Theorem 2.1. Fix a last passage model in dimension d+1 with d ≥ 1 by specifying the
distributions of the random variables which make up the environment. Consider a point
p ∈ Rd+1 and a time-like direction u ∈ Rd+1

+ . If there exist constants (depending on
p, u, and the model): ℓHL and ℓPP non-negative; γHL, γPP ∈ (0, 1); ν ∈ (0, γHL/γPP);
distributions D, D′; and scaling constants cHL, cPP such that

χ1(t) :=
LHL(tp)− tℓHL

cHLtγHL

=⇒ D, as t goes to infinity,

χ2(t) :=
LHL(tp+ tνu)− tℓHL − tνℓPP

cHLtγHL

=⇒ D, as t goes to infinity,

χ3(t) :=
LPP(tp, tp+ tνu)− tνℓPP

cPP(tν)γPP

=⇒ D′, as t goes to infinity,
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then we have slow decorrelation of the half-line to point last passage time at tp, in the
direction u and with scaling exponent ν, which is to say that for all M > 0,

lim
t→∞

P(|LHL(tp+ tνu)− LHL(tp)− tνℓPP | ≥ MtγHL) = 0. (2)

Remark 2.2. There are many generalizations of this result whose proofs are very
similar. For instance the fixed (macroscopic) point p and the fixed direction u can, in
fact, vary with t as long as they converge as t → ∞. One may also think of the random
LPP measure µ (and the associated probability space Ω) as depending on t. Thus for
each t the LPP environment is given by µt defined on the space Ωt. The probability
P will therefore also depend on t, however an inspection of the proof below shows that
the whole theorem still holds with P replaced by Pt.

Proof of Theorem 2.1. Recall the super-additivity property:

LHL(tp+ tνu) ≥ LHL(tp) + LPP(tp, tp+ tνu),

which holds provided the last passage times are defined on the same probability space.
This follows from the fact that, by restricting the set of paths which contribute to
LHL(tp + tνu) to only those which go through the point tp, one can only decrease the
last passage time. The following lemma plays a central role in our proof.

Lemma 2.3 (Lemma 4.1 of [6]). Consider two sequences of random variables {Xn}
and {X̃n} such that for each n, Xn and X̃n are defined on the same probability space
Ωn. If Xn ≥ X̃n and Xn ⇒ D as well as X̃n ⇒ D then Xn − X̃n converges to zero in
probability. Conversely if X̃n ⇒ D and Xn − X̃n converges to zero in probability then
Xn ⇒ D as well.

From now on, we assume that the different last passage times LHL(·) and LPP(·) are
realized on the same probability space. Also, by absorbing the constants cHL and cPP

into the distributions, we may fix them to be equal to one. Using super-additivity we
may write

LHL(tp + tνu) = LHL(tp) + LPP(tp, tp+ tνu) +Xt, (3)

where Xt ≥ 0 is a (compensator) random variable. Rewriting the above equation in
terms of the random variables χ1(t), χ2(t) and χ3(t) and dividing by tγHL we are left
with

χ2(t) = χ1(t) + χ3(t)t
νγPP−γHL +Xtt

−γHL .

By assumption on ν, νγPP − γHL < 0 and hence we know that the distribution of χ2(t)
and separately of χ1(t)+χ3(t)t

νγPP−γHL converge to the same distribution D. However,
since Xtt

−γHL is always non-negative, we also know that χ2(t) ≥ χ1(t)+χ3(t)t
νγPP−γHL .

Therefore, by Lemma 2.3 their difference, Xtt
−γHL , converges to zero in probability.

Thus χ2(t)− χ1(t) converges to zero in probability. Since

χ2(t)− χ1(t) =
LHL(tp+ tνu)− LHL(tp)− tνℓPP

tγHL

the theorem immediately follows. �

3. Slow decorrelation in KPZ growth models:

examples and applications

The aim of this section is to make a non-exhaustive review of the possible fields of
applications of Theorem 2.1. We introduce a few standard models and explain, briefly,
how they fit into the framework of half-line to point LPP and what the consequences
of Theorem 2.1 are for these models.
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Figure 2. Corner growth height function. The wi,j are the random,
exponentially distributed times it takes to fill an outer corner. The black
line is the height function at time t = w1,1. There are two outer corners
at that time.

3.1. Corner growth model. We choose to first develop in detail the implications of
slow decorrelation for a simple KPZ growth process. This process is known as the corner
growth model and is related to both LPP and TASEP .
Consider a set At in R2

+ with initial condition A0 = R2
+ and evolving under the

following dynamics: from each outer corner of At a [0, 1) × [0, 1)-box is fill at rate
one (i.e., after exponentially distributed waiting time of mean 1). See Figure 2 for an
illustration of this growth rule where the model has been rotated by π/4. One can
record the evolution of the growing interface ∂At in terms of the random variable

L(x, y) := inf{t ≥ 0|(x− 1
2
, y − 1

2
) 6∈ At} for (x, y) ∈ Z2

+.

This random variable is well known to define a last passage time in a related directed
percolation model, as we now recall. Let wi,j be the waiting time for the outer corner
(i, j) to be filled, once it appears. A path π from (1, 1) to (x, y) is called directed if it
moves either up or to the right along lattice edges from (1, 1) to (x, y). To each such
path π, one associates a passage time T (π) =

∑

(i,j)∈π wi,j. Then

L(x, y) = max
π:(1,1)→(x,y)

T (π),

i.e., L is the last passage times from (1, 1) to (x, y).
Alternatively one can keep track of At in terms of a height function h defined by the

relationship
{h(x− y, t) ≥ x+ y} = {L(x, y) ≤ t} (x, y) ∈ Z2

+, (4)

(together with linear interpolation for non-integer values of x− y). Note that for given
t, h(X, t) = |X| for |X| large enough. Thus the corner growth process is equivalent to
the stochastic evolution of a height function h(X, t) with h(X, 0) = |X| and growing
according to the rule that local valleys (��) are replaced by local hills (��) at rate
one. We will speak mostly about the height function, but when it comes to computing
and proving theorems it is often easier to deal with the last passage picture.

3.1.1. LLN and CLT. Analogous to the LLN for sums of i.i.d. random variables, there
exists an almost sure limit shape for the height function [33, 36] of this growth model:

h̄(v) := lim
t→∞

h(vt, t)

t
=

{

1
2
(v2 + 1), for v ∈ (−1, 1),

|v|, for v /∈ (−1, 1).
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If we more generally consider the height function arising from a LPP model with
an ergodic measure (e.g., iid random lattice weights), then super-additivity and the
Kingman’s ergodic theorem implies the existence of a (possibly infinity) limit growth
evolution

h̃(X, T ) := lim
t→∞

h(Xt, T t)

t
.

Since LPP is a variation problem, the limiting profile is also given by the solution to
a variational problem which, when translated into the limiting height function means
that h̃ satisfies a Hamilton-Jacobi PDE ∂T h̃ = f(∂X h̃) for a model dependent flux

function f . Such PDEs may have multiple solutions, and h̃ corresponds to the unique
weak solutions subject to entropy conditions. Such PDEs can be solved via the method
of characteristics [18]. Characteristics are lines of slope f ′ along which initial data

for h̃ is transported. In our present case if we set ρ = 1
2
(1 − ∂X h̃) then ρ satisfies the

Burgers equation ∂Tρ = ∂X(ρ(1−ρ)) and the characteristic lines are of constant velocity
emanating out of the origin.
It is the fluctuations around this macroscopic profile which are believed to be univer-

sal. Johansson [23] proved that asymptotic one-point fluctuations are given by

lim
t→∞

P

(

h(vt, t)− th̄(v)

2−1/3(1− v2)2/3t1/3
≥ s

)

= FGUE(s), (5)

where FGUE is the GUE Tracy-Widom distribution defined in [37]. Unlike the traditional
CLT the fluctuations here are in the order of t1/3 and the limiting distribution is not
Gaussian.
Likewise we may consider the fluctuations at multiple spatial locations by fixing

X(τ) = vt+ τ(2(1− v2))1/3t2/3,

H(τ, s) =
1 + v2

2
t+ τ v(2(1− v2))1/3t2/3 + (τ 2 − s)

(1− v2)2/3

21/3
t1/3.

Here H(τ, 0) = t h̄(X(τ)/t) + o(1) and H(τ, s)−H(τ, 0) measures the fluctuations with
respect to the limit shape behavior. Then, in the large time limit, the joint-distributions
of the fluctuations are governed by the so-called Airy2 process, denoted by A2. This
process was introduced by Prähofer and Spohn [32] in the context of the PNG model
(see also [24]). A complete definition of the Airy2 process is recalled in [15]. More
precisely, it holds that

lim
t→∞

P

(

m
⋂

k=1

{h(X(τk), t) ≥ H(τk, sk)}

)

= P

(

m
⋂

k=1

{A2(τk) ≤ sk}

)

, (6)

where m ≥ 1, τ1 < τ2 < · · · < τm and s1, . . . , sm are real numbers. Of course, (5) is the
special case of (6) for m = 1 and τ1 = 0.

3.1.2. Slow decorrelation in the corner growth model. We now consider how fluctuations
in the height function are carried through time. For instance, if the fluctuation of the
height function above the origin is known at time t (large) for how long can we expect
to see this fluctuation persist (in the t1/3 scale)? The answer is non-trivial and given
by applying Theorem 2.1: there exists a single direction in space-time along which the
height function fluctuations are carried over time scales of order t1, while for all other
directions only at space-time distances of order t2/3. Indeed, given a fixed velocity
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v ∈ (−1, 1), any exponent ν < 1, and any real number θ,

lim
t→∞

P
(
∣

∣[h
(

v(t+ θtν), t+ θtν
)

− (t+ θtν)h̄(v)]− [h
(

vt, t
)

− th̄(v)]
∣

∣ ≥ Mt1/3
)

= 0, (7)

for any M > 0. Thus, the height fluctuations at time t at position vt and at time and
t+ θtν at position v(t+ θtν) differs only of o(t1/3). These fixed velocity space-time lines
are the characteristic of the Burgers equation above.
Thus, the right space-time scaling limit to consider is that given in equation (1), with

h and h̄ now taken to be the TASEP height function and asymptotic shape, rather
than that of the KPZ equation. As noted below equation (1), the value of the velocity
v should not affect the law of the limiting space-time process. As evidence for this,
equation (6) shows that we encounter the Airy2 process as a scaling limit regardless of
the value of v ∈ (−1, 1). This amounts to saying that the fixed T marginals of the full
space-time limit process of equation (1) are independent of v.

3.1.3. Implications of slow decorrelation. Up to now only the “spatial-like behavior” of
the space-time process (1), i.e., the process in the variable x for fixed β (which one can
set to 1 w.l.o.g.) has been obtained, while the process in the variable β remains to be
unraveled.
A consequence of (7) is that if we look at the fluctuations at two moments of time

t and t′ with |t′ − t| ∼ tν with ν < 1, it corresponds to taking β = 1 + O(tν−1) in the
r.h.s. of (1). Then in the t → ∞ limit, the limit process is identical to the process for
fixed β = 1. So, if we determine the limit process for any space-time cut such that in
the t → ∞ limit, β → 1, then, thanks to slow decorrelation, one can extend the result
to any other space-time cut with the same property. In the following we refer to this
property as the process limit extends to general 1+0 dimensional space-time directions,
meaning that we have 1 dimension with spatial-like behavior and 0 dimensions in the
orthogonal direction.
As indicated in the Introduction, slow decorrelation also allows for instance (a) to

translate the limit of different related observables and (b) to extend results on fluctuation
statistics to space-time regions where correlation functions are unknown. We illustrate
these features in the context of the corner growth model. For simplicity, we consider
the case where v = 0. Fix m ≥ 1, ν ∈ [0, 1), real numbers τ1 < τ2 < · · · < τm and
s1, . . . , sm. Then set

x(τ, θ) = ⌊1
4
(t+ θtν) + τ2−2/3t2/3⌋,

y(τ, θ) = ⌊1
4
(t+ θtν)− τ2−2/3t2/3⌋,

ℓ(τ, θ, s) = (t+ θtν) + (s− τ 2)22/3t1/3.

(8)

(a) We first show that one can recover (6) from an analoguous statement in the
corresponding LPP model using (4) and slow decorrelation. We start from a result
in LPP. Consider the fixed y = t/4 slice of space-time. This is obtained by setting
θkt

ν = τk2
4/3t2/3 in (8), for which

x(τ, θ) = 1
4
t+ τ21/3t2/3, y(τ, θ) = 1

4
t, ℓ(τ, θ, s) = t+ τ24/3t2/3+(s− τ 2)22/3t1/3. (9)

Using the Schur process [14], it is proven [15,22] that for θkt
ν = τk2

4/3t2/3, k = 1, . . . , m,

lim
t→∞

P

(

m
⋂

k=1

{L(x(τk, θk),
1
4
t) ≤ ℓ(τk, sk)}

)

= P

(

m
⋂

k=1

{A2(τk) ≤ sk}

)

. (10)
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Figure 3. Assume that the black dots are O(T ν) for some ν < 1 away
from the line y = t/4. Then, the fluctuations of the passage time at the
locations of the black dots are, on the T 1/3 scale, the same as those of
their projection along the critical direction to the line y = t/4, the white
dots.

To get the result on the height function (6) using (4), one would need to make the
choice: θkt

ν = −(sk − τ 2k )2
2/3t1/3. Then we have

x(τ, θ)− y(τ, θ) = τ21/3t2/3, x(τ, θ) + y(τ, θ) = 1
2
t− (s− τ 2)2−1/3t1/3, ℓ(τ, θ, s) = t.

(11)
Thus, to obtain (6) (for v = 0) from (10) it is actually sufficient to project (x, y) in (11)
on the line y = t/4 along the characteristic line passing through (x, y), see Figure 3 for
an illustration. One finds that this projection gives the scaling (9) but with τ replaced
by some τ̃ = τ(1+ o(1)) → τ as t → ∞. The reason is that the characteristics for τ 6= 0
have slope slightly different from 0. Finally, slow decorrelation (Theorem 2.1, see also
(7)) and the union bound imply then that

l.h.s. of (6)
∣

∣

v=0
= l.h.s. of (10) = P

(

m
⋂

k=1

{A2(τk) ≤ sk}

)

.

(b) The results for (6) and (10) are derived by using the knowledge of (determinantal)
correlation functions. The techniques used for these models are however restricted to
space-like paths (in the best case, see [8]), i.e., for sequences of points (xk, yk)k such that
xk+1−xk ≥ 0 and yk+1− yk ≤ 0 (which can not be connected by directed paths). Now,

choose in (8) θkt
ν = θ̃kt

ν − (sk − τ 2k )2
2/3t1/3 for some real θ̃k. Then, it means that we

look at the height fluctuations at times ℓ(τk, θk, sk) = t + θ̃kt
ν , with

x(τ, θ)− y(τ, θ) = τ21/3t2/3, x(τ, θ) + y(τ, θ) = 1
2
(t+ θ̃tν)− (s− τ 2)2−1/3t1/3. (12)

Thus, one can cover much more than only the space-like regions. As before, the projec-
tion along the characteristic line of (x, y) on θ̃k = 0 leads to (12) with θ̃ = 0 and with
a slightly modified τ (i.e., τ → τ(1 + o(1))). Then, using slow decorrelation, one can
extend (6) to the following result: fix m ≥ 1, ν ∈ [0, 1), real numbers τ1 < τ2 < · · · < τm
and s1, . . . , sm. Set

X(τ) = τ21/3t2/3, H(τ, θ, s) =
1

2
(t+ θtν) + (τ 2 − s)2−1/3t1/3.
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Then we have

lim
t→∞

P

(

m
⋂

k=1

{h(X(τk), t+ θkt
ν) ≥ H(τk, θk, sk)}

)

= P

(

m
⋂

k=1

{A2(τk) ≤ sk}

)

. (13)

This type of computations can be readily adapted to the other KPZ models considered
in the sequel.

3.2. Point to point LPP. Consider the following random measure µ on Rd+1:

µ =
∑

p∈Zd+1

+

wpδp

where Z+ = {0, 1, . . .} and wp are non-negative random variables. One may consider
directed paths to be restricted to follow the lattice edges. This is just standard (point-
to-point) last passage percolation (as considered for instance in [23]). We will restrict
ourselves to the case where d = 1, i.e., LPP in the 2-dimensional corner. Here we write
wi,j for weights.
The conditions for our slow decorrelation theorem to hold amount to the existence

of a LLN and CLT. Presently, for point to point LPP, this is only rigorously know
for the two solvable classes of weight distributions – exponential and geometric. For
general weight distributions, the existence of a LLN follows from superadditivity (via
the Kingman subadditive ergodic theorem), though the exact value of the LLN is not
known beyond the solvable cases. None the less, universality is expected at the level
of the CLT for a very wide class of underlying weight distributions. That is to say
that, after centering by the LLN, and under t1/3 scaling, the fluctuations of LPP should
always be given by the FGUE distribution. In the results we now state we will restrict
attention to exponential weights, as geometric weights lead to analogous results.
Define LPP with two-sided boundary conditions as the model with independent ex-

ponential weights such that, for positive parameters π, η > 0,

wi,j =



















exponential of rate π, if i > 0, j = 0;

exponential of rate η, if i = 0, j > 0;

exponential of rate 1, if i > 0, j > 0;

zero, if i = 0, j = 0.

(14)

Recall that an exponential of rate λ has mean 1/λ. This class of models was introduced
in [31] (and for geometric weights in [5]) and includes the one considered in [23].
A full description of the one-point fluctuation limit theorems for LHL(tp) was con-

jectured in [31] (see Conjecture 7.1) and a complete proof was given in [6]. These limit
theorems show that the hypotheses for slow decorrelation are satisfied and hence The-
orem 2.1 applies. We present an adaptation of Theorem 1.3 of [6] stated in such a way
that Theorem 2.1 is immediately applicable. As such, we also state the outcome of
applying Theorem 2.1 (see Figure 4 for an illustration). The characteristic direction u
as well as the exponents and limiting distributions for the fluctuations depend on the
location of the point p as well as the values of π and η. Due to the radial scaling of p
it suffices to consider p of the form p = (1, κ2) for κ2 ∈ (0,∞).
In the following theorem, γPP = 1/3, cHL is a constant depending on the direction

p, cPP is a constant depending on the direction u, and D′ is FGUE. We also refer the
reader to [6] for the definitions of the distribution functions FGUE, F

2
GOE and F0 which

arise here.
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Theorem 3.1. Define κη =
η

1−η
, κπ = 1−π

π
and κsh =

√

η(1−π)
π(1−η)

.

(1) If κη ≥ κ ≥ κπ (which implies that π + η ≥ 1) then ℓHL = (1 + κ)2, γHL = 1/3,
and D is either FGUE (in the case of strict inequality) or F 2

GOE (in the case of
either, but not both, equalities) or F0 (in the case where all three terms in the
inequality are equal). Then, there is slow decorrelation in the direction u = p
for all ν ∈ (0, 1).

(2) If π + η ≥ 1 and κ > κη then ℓHL = κ2

η
+ 1

1−η
, γHL = 1/2, and D = N0,1 is the

standard Gaussian distribution. Then there is slow decorrelation in the direction
u = (1, κ2

η) for all ν ∈ (0, 1).

(3) If π + η ≥ 1 and κ < κπ then ℓHL = 1
π
+ κ2

1−π
, γHL = 1/2, and D = N0,1. Then

there is slow decorrelation in the direction u = (1, κ2
π) for all ν ∈ (0, 1).

(4) If π + η < 1 and κ > κsh then ℓHL = κ2

η
+ 1

1−η
, γHL = 1/2, and D = N0,1. Then

there is slow decorrelation in the direction u = (1, κ2
η) for all ν ∈ (0, 1).

(5) If π + η < 1 and κ < κsh then ℓHL = 1
π
+ κ2

1−π
, γHL = 1/2, and D = N0,1. Then

there is slow decorrelation in the direction u = (1, κ2
π) for all ν ∈ (0, 1).

(6) If π + η < 1 and κ = κsh then ℓhl = 1
π(1−π)

= 1
η(1−η)

, γhl = 1/2, and D is

distributed as the maximum of two independent Gaussian distributions. Then
there is no slow decorrelation.

This last passage percolation model is related to a TASEP model with two-sided initial
conditions (which we discuss in Subsection 3.3). As explained before the characteristics
are those for the Burgers equation. The first three cases above correspond with a
situation that is known of as a rarefaction fan, while the last three correspond with
the shockwave. The above result is illustrated in Figure 4. The left case displays the
rarefaction fan (the fanning of the characteristic lines from the origin) and the right case
displays a shockwave (the joining together of characteristic lines coming from different
directions).
In addition to one-point fluctuation limits, the above two-sided boundary condition

LPP model has a fully classified limit process description. The description was given
in [4] for π + η = 1 (known as the stationary case) and in [15] for all other (non-
equilibrium) boundary conditions. These process limits are obtained using determinan-
tal expressions for the joint distribution of the last passage times for points along fixed
directions. Thus, initially, one only gets process limits along fixed lines. As explained
in Section 3.1 and in [15] slow decorrelation, however, implies that the appropriately
rescaled fluctuations at the points which are off of this line (to order tν for ν < 1)
have the same joint distribution as their projection along characteristics to the line (see
Figure 1 of [4] for an illustration of this).
A completely analogous situation arises in the case of geometric, rather than expo-

nential weights (this model is often called discrete PNG). Such a model is described
in [5] and the one-point limiting fluctuation statistics are identified. The spatial pro-
cess limit is characterized in [21]. These results are only proved in a fixed space-time
direction, though applying Theorem 2.1 we can extend this process limit away from this
fixed direction just as with the exponential weights.
A slightly different model with boundary conditions was introduced in [3] and involves

thick one-sided boundary conditions. Fix a k ∈ N, parameters π1, . . . , πk, and set πi = 1
for i > k. Just as above, we define independent random weights on Z2

+, this time
with wi,j exponential random variables of rate πi (mean 1/πi). Section 6 of [3] explains
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(a) (b)

Case 1

Case 2

Case 3

Case 4

Case 5

κ2 = κ2
η

κ2 = κ2
π

κ2 = κ2
s

Figure 4. The different cases of fluctuation limit theorems and accom-
panying directions of slow decorrelation: (a) η + π > 1 (actually shown
η = π = 2/3); (b) η + π < 1 (actually shown η = π = 1/3). As κ2

(the height along the dashed line) varies, the case of fluctuation theorem
changes, as does the direction of slow decorrelation (given by the direction
of the thin lines).

how results they obtain for perturbed Wishart ensembles translate into a complete
fluctuation limit theorem description for this model. Just as in the two-sided boundary
case, those limit theorems show that the hypotheses of Theorem 2.1 are satisfied and
therefore there is slow decorrelation. The exponent γHL depends on the point p and
the strength of the boundary parameters πi and can either be 1/3, with random matrix
type fluctuations, or 1/2 with Gaussian type (more generally ℓ × ℓ GUE for some
1 ≤ ℓ ≤ k) fluctuations (see [3] Theorem 1.1). The exponent γPP = 1/3 and the
limiting distribution D′ is FGUE. The direction of the slow decorrelation depends on
the parameters and the point (we do not write out a general parametrization of this
direction as there are many cases to consider depending on the πi). The fluctuation
process limit theorem has not been proved for this model, though the method of [15]
would certainly yield such a theorem. Also, analogous results for the geometric case
have not been proved either but should be deducible from the Schur process [14].

3.3. TASEP and PASEP.

3.3.1. Totally asymmetric simple exclusion process (TASEP). TASEP is a Markov pro-
cess in continuous time with state space {0, 1}Z (think of 1s as particles and 0s as holes).
Particles jump to their right neighboring site at rate 1, provided the site is empty. The
waiting time for a jump is exponentially distributed with mean 1 (discrete-time versions
have geometrically distributed waiting times). See [29,30] for a rigorous construction of
this process.
TASEP with different initial conditions can be readily translated into LPP with

specific measures µ and hence Theorem 2.1 may be applied. Slow decorrelation can
thus be used to show that fluctuation limit processes can be extended from fixed space-
time directions to general 1 + 0 dimensional space-time directions.
An observable of interest for TASEP is the integrated current of particles I(x, t)

defined as the number of particles which jumped from x to x + 1 during the time
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xx

tt

Figure 5. Rarefaction wave on the left and shockwave on the right.

interval [0, t]. Also of interest is the height function h(x, t)

h(x, t) =











2I(0, t) +
∑x

i=1(1− 2ηt(i)), x ≥ 1,

2I(0, t), x = 0,

2I(0, t)−
∑0

i=x+1(1− 2ηt(i)), x ≤ −1,

(15)

where ηt(i) = 1 (resp. ηt(i) = 0) is site i is occupied (resp. empty) at time t. There is a
simple relationship between the current and the height function given by

I(x, t) = 1
2
(h(x, t)− x). (16)

A well-studied initial condition is step initial condition: At time t = 0, {. . . ,−2,−1, 0}
is filled by particles and {1, 2, . . .} is empty, i.e., h(x, t = 0) = |x|. There is a simple
relation with the corner growth model studied in Subsection 3.1. The weight wi,j is
the waiting time (counted from the instant when the particle can jump) for the particle
which started in position −j+1 to move from position i−j to i−j+1. Thus, the TASEP
height function records the boundary of the region of points p for which LHL(p) ≤ t.
Therefore, as in Subsection 3.1, one can apply Theorem 2.1 leading to slow decorrelation
(in the sense of equation (7)) for the fluctuations of the TASEP height function along
space-time lines corresponding to the characteristics of Burgers equation.
An important generalization of the step initial condition are the two-sided Bernoulli

initial conditions which are defined for all pairs ρ−, ρ+ ∈ [0, 1] as the random initial con-
ditions in which particles initially occupy sites to the left of the origin with probability
ρ− (independently of other sites) and likewise to the right of the origin with probability
ρ+. It was proven in [32] that two-sided TASEP can be mapped4 to the LPP with
two-sided boundary conditions model (14) with π = 1 − ρ+ and η = ρ−. Using this
connection and slow decorrelation, one can show that all the results stated for the LPP
model (14) can be translated into their counterpart for two-sided TASEP. This is made
in detail in [15] (which uses some arguments of this paper), where we prove a complete
fluctuation process limit for ρ− 6= ρ+ which complements the recent result of [4] for
ρ− = ρ+.
The characteristic line leaving position x has slope 1 − 2ρ(x). On top of this, the

entropy condition ensures that if ρ− > ρ+, there will be a rarefaction fan from the origin
which will fill the void between lines of slope 1−2ρ− and 1−2ρ+. The Rankine-Hugoniot
condition applies to the case where ρ− < ρ+ and introduces shockwaves with specified

4The mapping requires a geometric number of zero weights along the boundary which do not affect
asymptotics.
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(a) (b)

Figure 6. Flat (a) and half-flat (b) TASEP correspond, via their height
functions, with the LPP models in the two regions shown above. Char-
acteristic lines are perpendicular to the initial direction of the height
function and in case (b) the entropy condition implies that they fan out
to the right of the origin.

velocities when characteristic lines would cross. These two types of characteristics are
illustrated side-by-side in Figure 5.
Another variation is TASEP with slow particles or slow start-up times, which is con-

sidered in [2]. It may likewise be connected to the LPP with thick one-sided boundary
conditions model which we previously introduced. As a result we may similarly conclude
slow decorrelation.
Not all initial conditions correspond to LPP with weights restricted to Z2

+. For
example, TASEP with flat (or periodic) initial conditions corresponds to the case where
only the sites of kZ, for k ≥ 2 are initially occupied. For simplicity, we focus on the case
k = 2. Then, the height function at time t = 0 is a saw-tooth, see Figure 6(a) (though
asymptotically flat, from which the name). Rotating by π/2, it is the growth interface
for half-line to point LPP where the measure µ is supported on points in (i, j) ∈ Z2

such that i+ j ≥ 0 and given by delta masses with independent exponential weights of
rate 1. Fluctuation theorems and limit process have been proved for several periodic
initial conditions [9, 10] (in [9] was in discrete time, i.e., with geometric weights).
Similarly TASEP with half-flat initial conditions is defined by letting particles start

at 2Z− = {· · · ,−4,−2, 0}. The corresponding last passage percolation model has non-
zero weights for points (i, j) such that i + j ≥ 0 and j ≥ 0. The limit process for this
model was identified in [11]. Theorem 2.1 applies to both of these model and proves slow
decorrelation. This implies that the fluctuation process limits extend to general 1 + 0
dimensional space-time directions. The characteristics lines are shown in Figure 6(b).
A variant of half flat initial conditions has particles starting at 2Z− plus a few particles

at positive even integers, with a different speed α. This is known as two speed TASEP
and [13] gives a complete description and proof of the process limit for these initial
conditions. As with all of the other examples, this can be coupled with a LPP model
and hence Theorem 2.1 applies and prove slow decorrelation and enables us to extend
these process limit results as well.

3.3.2. Partially asymmetric simple exclusion process (PASEP). The PASEP is a gener-
alization of TASEP where, particles jump to the right-neighboring site with rate p 6= 1/2
and to the left-neighboring site with rate q = 1− p (always provided that the destina-
tion sites are empty). An important tool to study PASEP is the basic coupling [29,30].
Through a graphical construction, one can realize and hence couple together every



UNIVERSALITY OF SLOW DECORRELATION IN KPZ GROWTH 15

PASEP (with different initial conditions) on the same probability space. Even though
PASEP can not be mapped to a LPP model, it still has the same super-additivity prop-
erties necessary to prove a version of Theorem 2.1. The property comes in the form
of attractiveness. That PASEP is attractive means that if you start with two initial
conditions corresponding to height functions h1(x, 0) ≤ h2(x, 0) for all x ∈ R, then for
any future time t, h1(x, t) ≤ h2(x, t) for all x ∈ R.
We now briefly review this graphical construction. Above every integer draw a half-

infinite time ladder. Fix p (and hence q) and for each ladder place right and left
horizontal arrows independently at Poisson points with rates p and q respectively. This
is the common environment in which all initial conditions may be coupled. Particles
move upwards in time until they encounter an arrow leaving their ladder. They try to
follow this ladder, and hence hop one step, yet this move is excluded if there is already
another particle on the neighboring ladder. That this graphical construction leads to
attractiveness for the PASEP is shown, for instance, in [29, 30].
In a series of three papers [38–40] Tracy and Widom show that for step initial con-

ditions with positive drift γ = p − q > 0, PASEP behaves asymptotically the same as
TASEP (when speeded-up by 1/γ). Just as in TASEP the current or height function is
of central interest. I(x, t) is defined as the number of particles which jumped from x to
x + 1 minus the ones from x + 1 to x during [0, t] and h(x, t) is defined by (15). This
time, the height function does not monotonically grow, but does still have a drift.
The slow decorrelation theorem for PASEP with general initial conditions is stated

below. By a PASEP model we mean a measure on initial configurations, as well as a
rate p = 1 − q ∈ (1/2, 1]. We write h(x, t) for the height function for this specified
model, and h′(x, t) for the height function for the PASEP with step initial conditions.
Note that the generalizations of Remark 2.2 apply in this case too.

Theorem 3.2 (Slow decorrelation for PASEP). Consider a velocity v ∈ R and a second
variable u ∈ R. If there exist constants (depending on v and u and the model): ℓ and ℓ′

non-negative; γ, γ′ ∈ (0, 1); ν ∈ (0, γ/γ′); and distributions D and D′ such that

h(vt, t)− tℓ

tγ
=⇒ D, as t goes to infinity,

h(vt+ utν , t+ tν)− tℓ− tνℓ′

tγ
=⇒ D, as t goes to infinity, (17)

h′(ut, t)− tℓ′

tγ′
=⇒ D′, as t goes to infinity,

then we have slow decorrelation of the PASEP height function at speed v, in the direction
given by u and with scaling exponent ν, i.e., for all M > 0,

lim
t→∞

P(|h(vt+ utν , t+ tν)− h(vt, t)− tνℓ′| ≥ Mtγ) = 0.

Proof of Theorem 3.2. Rather than the height function we focus on the current which
is related via equation (16). I(vt + utν , t + tν) is equal to the current I(vt, t) up to
time t, plus the current of particles which cross the space-time line from vt at time t
to vt + utν at time t + tν . We consider a coupled system starting at time t reset so as
to appear to be in step initial conditions centered at position vt. By attractiveness of
the basic coupling, the current across the space-time line from vt at time t to vt + utν

at time t + tν for this “step” system will exceed that for the original system. Denote
by I ′(utν , tν) the current associated to the coupled “step” system and observe that, it
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is distributed as the current of an independent step initial condition PASEP. Thus,

I(vt+ utν , t+ tν) = I(vt, t) + I ′(utν , tν) +Xt

where Xt ≤ 0. From this point on the proof follows exactly as in the proof of Theo-
rem 2.1. �

Using the fluctuation results proved in [38–40], reviewed in [41], we find that the
above hypotheses are satisfied for PASEP with step initial conditions and also for step
Bernoulli initial conditions [42] with ρ− = 0 and ρ+ > 0. The slow decorrelation
directions are given by the characteristics just as in the case of TASEP. These two
sets of initial conditions are the only ones for which fluctuations theorems are presently
known for PASEP, but limit process theorems are not yet proven.

3.4. The polynuclear growth (PNG) model. As mentioned before, slow decorrela-
tion for the (continuous time, Poisson point) PNG model was proved previously in [19]
in the case of the PNG droplet and stationary PNG. Theorem 2.1 (along with the nec-
essary preexisting fluctuation theorems) gives an alternative proof of these results as
well as the analogous result for flat PNG. Because of the minimality of the hypotheses
of our theorem we may further prove slow decorrelation for the model of PNG with two
(constant) external sources considered in [5]. The way that PNG fits into the framework
of our half-line to point LPP model is that one takes µ to be a Poisson point process of
specified intensity on some domain. For the PNG droplet, stationary PNG and PNG
with two external sources, we restrict the point process to R2

+ and (in the second and
third cases) augment the measure µ with additional one dimensional point process along
the boundaries. For flat PNG the support of the point process is {(x, y) : x + y ≥ 0}.
The limit process for the PNG droplet for fixed time was proved in [32] and for flat
PNG was proved in [12] for space-like paths. It was explained in [19] that slow decorre-
lation implies that these limit processes extend to general 1+ 0 dimensional space-time
directions (with time scaling tν for ν < 1).

3.5. First passage percolation. As opposed to LPP one can look to the minimum
value of T (π). This then goes by the name of directed first passage percolation and for
simplicity we consider this only when we restrict our measure to being supported on a
lattice. One may also consider undirected first passage percolation. Theorem 2.1 can
be adapted in a straightforward way for both of these models. The statement of the
theorem remains identical up to replacing the last passage time variable with the first
passage time. For the proof the only change is that the compensator Xt now satisfies
Xt ≤ 0 rather than Xt ≥ 0. Unfortunately no fluctuation theorems have been proved
for first passage percolation, so all that we get is a criterion for slow decorrelation.

3.6. Directed polymers. We now briefly consider a lattice-based directed polymer
models in 1 + 1 dimension and note that just as in LPP, slow decorrelation can arise in
these models. Unfortunately, just as in first passage percolation, there are no fluctuation
theorems proved for such polymers. Recently, however, the order of fluctuations for a
particular specialization of this model was proved in [35]. It should be noted that while
we focus on just one model, the methods used can be applied to other polymer models
and in more than 1 + 1 dimension (for example line to point polymers).
The model we consider is the point to point directed polymer. In this model we

consider any directed, lattice path π from (0, 0) to a point p and assign it a Gibbs
weight eβT (π) where β ≥ 0 is known as the inverse temperature and where T (π) is the
sum of weights (which are independent) along the path π (−T (π) is the energy of the
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path π). We define the partition function and free energy for a polymer from a point p
to q as:

Zβ(p, q) =
∑

π:p→q

eβT (π), Fβ(0, p) =
1

β
logZβ(0, p).

It is expected that the free energy satisfies similar fluctuation theorems to those of LPP
(which is the β = ∞ limit of Fβ(0, p)).

Theorem 3.3. Consider a directed polymer model and consider a point p ∈ R2
+ and a

direction u ∈ R2
+. If there exist constants (depending on p and u and the model weight

distributions): ℓ and ℓ′ non-negative; γ, γ′ ∈ (0, 1); ν ∈ (0, γ/γ′); and distributions D,
D′ such that

χ1(t) :=
Fβ(0, tp)− tℓ

tγ
=⇒ D, as t goes to infinity,

χ2(t) :=
Fβ(0, tp+ tνu)− tℓ− tνℓ′

tγ
=⇒ D, as t goes to infinity,

χ3(t) :=
Fβ(tp, tp+ tνu)− tνℓ′

(tν)γ′
=⇒ D′, as t goes to infinity,

then we have slow decorrelation of the point to point polymer at tp, in the direction u
and with scaling exponent ν, which is to say that for all M > 0,

lim
t→∞

P(|Fβ(0, tp+ tνu)− Fβ(0, tp)− tνℓ′| ≥ Mtγ) = 0.

Proof. The direction u for a given p should correspond to the characteristic through
that point. The proof of this criterion for slow decorrelation is identical to the proof for
Theorem 2.1 and follows from the computation below (a result of super-additivity yet
again):

Fβ(0, tp+ tνu) =
1

β
log

(

∑

π:0→tp

eβT (π) ×
∑

π:tp→tp+tνu

eβT (π) +
∑

π:0→tp+tνu,
tp/∈π

eβT (π)

)

=
1

β
log

(

∑

π:0→tp

eβT (π) ×
∑

π:tp→tp+tνu

eβT (π)

)

+Xt

= Fβ(0, tp) + Fβ(tp, tp+ tνu) +Xt.

Here Xt ≥ 0 and the argument is analogous to (3). �
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[14] A. Borodin and S. Péché. Airy kernel with two sets of parameters in directed percolation and

random matrix theory. J. Stat. Phys., 132:275–290, 2008.
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